基于孿生網(wǎng)絡(luò )與多重通道融合的脫機筆跡鑒別
doi: 10.16383/j.aas.c230777
-
1.
廈門(mén)理工學(xué)院計算機與信息工程學(xué)院福建省模式識別與圖像理解重點(diǎn)實(shí)驗室 廈門(mén) 361024
-
2.
中國科學(xué)院自動(dòng)化研究所多模態(tài)人工智能系統全國重點(diǎn)實(shí)驗室 北京 100190
Offline Handwriting Verification Based on Siamese Network and Multi-channel Fusion
-
1.
Fujian Key Laboratory of Pattern Recognition and Image Understanding, School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024
-
2.
State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190
-
摘要: 脫機簽名驗證模型因其具有判斷簽名是否偽造的能力而備受關(guān)注. 當今大多數脫機簽名驗證模型可分為深度度量學(xué)習方法和雙通道判別方法. 大部分深度度量學(xué)習方法利用孿生網(wǎng)絡(luò )生成每張圖片的細節特征向量, 采用歐氏距離法判斷相似度, 但是歐氏距離僅考慮兩個(gè)點(diǎn)之間的絕對距離, 而容易忽視點(diǎn)的方向、縮放的信息, 不會(huì )考慮數據之間的相關(guān)性, 因此無(wú)法捕獲特征向量?jì)炔恐g的關(guān)系; 而雙通道判別方法在網(wǎng)絡(luò )訓練前就進(jìn)行特征的判別, 更能判斷不同圖像的相似性, 但此時(shí)圖像的細節特征不夠清晰, 大量特征丟失. 針對雙通道判別方法中特征消失過(guò)多的問(wèn)題, 提出了一種面向獨立于書(shū)寫(xiě)者場(chǎng)景的手寫(xiě)簽名離線(xiàn)驗證模型MCFFN (Multi-channel feature fusion network). 在 CEDAR、BHSig-B、BHSig-H 和 ChiSig 四個(gè)不同語(yǔ)言的簽名數據集上測試了所提出的方法, 實(shí)驗證明了所提方法的優(yōu)勢和潛力.
-
關(guān)鍵詞:
- 脫機手寫(xiě)簽名驗證 /
- 深度度量學(xué)習 /
- 孿生網(wǎng)絡(luò ) /
- 通道融合 /
- ACMix
Abstract: The offline signature verification model has garnered considerable attention due to its ability to discern the authenticity of signatures. Presently, most offline signature verification models can be categorized into deep metric learning approaches and 2-channel discriminative methods. Most of deep metric learning methods use Siamese network to generate detailed feature vectors for each image, and the Euclidean distance method is used to determine the similarity. However, the Euclidean distance only considers the absolute distance between two points, and it is easy to overlook the direction and scaling information of points. The correlation between data will not be considered, so unable to capture relationships within feature vectors. On the other hand, 2-channel discriminative methods perform feature discrimination before the model training, enhancing the ability to determine the dissimilarity between different images. However, in this case, the fine details of the images are not sufficiently clear, resulting in a significant loss of features. Addressing the issue of excessive feature loss in 2-channel discriminative methods, this paper introduces a handwritten signature offline verification model designed for scenarios independent of the writer MCFFN (Multi-channel feature fusion network). The efficacy and potential of the proposed method were validated through experiments conducted on four distinct language signature datasets: CEDAR, BHSig-B, BHSig-H, and ChiSig. The experimental results affirm the advantages and potential of the proposed approach. -
表 1 脫機簽名驗證數據集
Table 1 Offline signature verification dataset
數據集名稱(chēng) 語(yǔ)言 簽名種類(lèi) 圖片數量 真實(shí)偽造樣本比 CEDAR 英語(yǔ) 55 2624 24/24 BHSig-B 孟加拉語(yǔ) 100 5400 24/30 BHSig-H 印地語(yǔ) 160 8640 24/30 ChiSig 中文 102 10242 ?/? 下載: 導出CSV表 2 基于CEDAR數據集的對比實(shí)驗 (%)
Table 2 Comparison on CEDAR dataset (%)
模型名稱(chēng) FRR FAR ACC SigNet (2017arXiv) 0 0 100.00 DeepHSV (2019ICDAR) — — 100.00 IDN (2019CVPR) 2.17 5.87 96.38 SDINet (2021AAAI) 3.42 0.73 98.25 2C2S (2023EAAI) 0 0 100.00 OURS 0 0 100.00 下載: 導出CSV表 3 基于BHSig-B數據集的對比實(shí)驗 (%)
Table 3 Comparison on BHSig-B dataset (%)
模型名稱(chēng) FRR FAR ACC SigNet (2017arXiv) 13.89 13.89 86.11 DeepHSV (2019ICDAR) — — 88.08 IDN (2019CVPR) 5.24 4.12 95.32 SDINet (2021AAAI) 7.86 3.30 94.42 SURDS (2022ICPR) 5.42 19.89 87.34 2C2S (2023EAAI) 8.11 5.37 93.25 TransOSV (2022ICME) 9.95 9.95 90.05 OURS 3.86 3.84 95.61 下載: 導出CSV表 4 基于BHSig-H數據集的對比實(shí)驗 (%)
Table 4 Comparison on BHSig-H dataset (%)
模型名稱(chēng) FRR FAR ACC SigNet (2017arXiv) 15.36 15.36 84.64 DeepHSV (2019ICDAR) — — 86.66 IDN (2019CVPR) 4.93 8.99 93.04 SDINet (2021AAAI) 3.77 6.24 95.00 SURDS (2022ICPR) 8.98 12.01 89.50 2C2S (2023EAAI) 9.98 8.66 90.68 TransOSV (2022ICME) 3.39 3.39 96.61 OURS 4.89 4.89 95.70 下載: 導出CSV表 5 基于ChiSig數據集的消融實(shí)驗 (%)
Table 5 Ablation experiment on ChiSig dataset (%)
模型名稱(chēng) EER TAR ACC InceptionResnet 6.60 28.10 93.60 SigNet — — 82.28 IDN (基線(xiàn)) 17.91 10.50 84.82 IDN (通道融合) 14.81 9.61 85.72 IDN (通道融合 + 注意力) 11.38 7.82 88.96 OURS (無(wú)反灰度圖片, 無(wú)注意力) 11.78 32.49 88.09 OURS (無(wú)反灰度圖片, 單注意力) 10.83 — 89.20 OURS (反灰度圖片, 無(wú)注意力) 7.84 — 92.14 OURS 5.19 28.96 95.23 下載: 導出CSV表 6 基于ChiSig數據集的主流參數 (%)
Table 6 Main parameters on ChiSig dataset (%)
模型名稱(chēng) FRR FAR ACC IDN 10.46 17.91 84.82 IDN (通道融合) 9.61 18.97 85.72 IDN (通道融合 + 注意力) 7.82 14.27 88.96 OURS (無(wú)反灰度圖片, 無(wú)注意力) 21.91 17.26 88.09 OURS (無(wú)反灰度圖片, 單注意力) 15.59 16.30 89.20 OURS (反灰度圖片, 無(wú)注意力) 6.90 17.18 92.14 OURS 5.34 5.34 95.23 下載: 導出CSV表 7 跨語(yǔ)言實(shí)驗 (%)
Table 7 Cross-language test (%)
訓練集 測試集 CEDAR BHSig-B BHSig-H ChiSig CEDAR 100.00 48.76 49.89 57.48 BHSig-B 64.86 95.61 82.79 63.71 BHSig-H 50.11 86.27 95.70 20.00 ChiSig 54.60 70.02 55.37 95.23 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Bromley J, Bentz J W, Bottou L, Guyon I, Lecun Y, Moore C, et al. Signature verification using a “Siamese” time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(4): 669?688 doi: 10.1142/S0218001493000339 [2] Cpa?ka K, Zalasiński M, Rutkowski L. New method for the on-line signature verification based on horizontal partitioning. Pattern Recognition, 2014, 47(8): 2652?2661 doi: 10.1016/j.patcog.2014.02.012 [3] Xia X H, Song X Y, Luan F G, Zheng J G, Chen Z L, Ma X F. Discriminative feature selection for on-line signature verification. Pattern Recognition, 2018, 74: 422?433 doi: 10.1016/j.patcog.2017.09.033 [4] 鄒杰, 孫寶林, 於俊. 基于筆畫(huà)特征的在線(xiàn)筆跡匹配算法. 自動(dòng)化學(xué)報, 2016, 42(11): 1744?1757Zou Jie, Sun Bao-Lin, Yu Jun. Online handwriting matching algorithm based on stroke features. Acta Automatica Sinica, 2016, 42(11): 1744?1757 [5] Guerbai Y, Chibani Y, Hadjadji B. The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters. Pattern Recognition, 2015, 48(1): 103?113 doi: 10.1016/j.patcog.2014.07.016 [6] Hu J, Chen Y B. Offline signature verification using real adaboost classifier combination of Pseudo-dynamic features. In: Proceedings of the 12th International Conference on Document Analysis and Recognition. Washington, USA: IEEE, 2013. 1345?1349 [7] Kumar R, Sharma J D, Chanda B. Writer-independent off-line signature verification using surroundedness feature. Pattern Recognition Letters, 2012, 33(3): 301?308 doi: 10.1016/j.patrec.2011.10.009 [8] Hafemann L G, Oliveira L S, Sabourin R. Fixed-sized representation learning from offline handwritten signatures of different sizes. International Journal on Document Analysis and Recognition (IJDAR), 2018, 21(3): 219?232 doi: 10.1007/s10032-018-0301-6 [9] Hafemann L G, Sabourin R, Oliveira L S. Learning features for offline handwritten signature verification using deep convolutional neural networks. Pattern Recognition, 2017, 70: 163?176 doi: 10.1016/j.patcog.2017.05.012 [10] Okawa M. Synergy of foreground-background images for feature extraction: Offline signature verification using Fisher vector with fused KAZE features. Pattern Recognition, 2018, 79: 480?489 doi: 10.1016/j.patcog.2018.02.027 [11] Xing Z J, Yin F, Wu Y C, Liu C L. Offline signature verification using convolution Siamese network. In: Proceedings of SPIE 10615, 9th International Conference on Graphic and Image Processing (ICGIP). Qingdao, China: SPIE, 2017. 415?423 [12] Soleimani A, Araabi B N, Fouladi K. Deep multitask metric learning for offline signature verification. Pattern Recognition Letters, 2016, 80: 84?90 doi: 10.1016/j.patrec.2016.05.023 [13] Jain A K, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1): 4?20 [14] Kalera M K, Srihari S, Xu A H. Offline signature verification and identification using distance statistics. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(7): 1339?1360 doi: 10.1142/S0218001404003630 [15] Ferrer M A, Alonso J B, Travieso C M. Offline geometric parameters for automatic signature verification using fixed-point arithmetic. IEEE Transactions on Pattern Analysis And Machine Intelligence, 2005, 27(6): 993?997 doi: 10.1109/TPAMI.2005.125 [16] Pal S, Alaei A, Pal U, Blumenstein M. Performance of an off-line signature verification method based on texture features on a large Indic-script signature dataset. In: Proceedings of the 12th IAPR workshop on Document Analysis Systems (DAS). Santorini, Greece: IEEE, 2016. 72?77 [17] Zhang P R, Jiang J J, Liu Y L, Jin L W. MSDS: A large-scale Chinese signature and token digit string dataset for handwriting verification. In: Proceedings of the 36th International Conference on Neural Information Processings Systems. New Orleans, USA: 2022. 36507?36519 [18] Yan K H, Zhang Y, Tang H R, Ren C K, Zhang J, Wang G A, et al. Signature detection, restoration, and verification: A novel Chinese document signature forgery detection benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New Orleans, USA: IEEE, 2022. 5163?5172 [19] Nagel R N, Rosenfeld A. Steps toward handwritten signature verification. In: Proceedings of the 1st International Joint Conference on Pattern Recognition. 1973. 59?66 [20] Herbst N M, Liu C N. Automatic signature verification based on accelerometry. IBM Journal of Research and Development, 1977, 21(3): 245?253 doi: 10.1147/rd.213.0245 [21] 劉成林, 劉迎建, 戴汝為. 基于多通道分解與匹配的筆跡鑒別研究. 自動(dòng)化學(xué)報, 1997, 23(1): 56?63Liu Cheng-Lin, Liu Ying-Jian, Dai Ru-Wei. Writer identification by multichannel decomposition and matching. Acta Automatica Sinica, 1997, 23(1): 56?63 [22] 朱勇, 譚鐵牛, 王蘊紅. 基于筆跡的身份鑒別. 自動(dòng)化學(xué)報, 2001, 27(2): 229?234Zhu Yong, Tan Tie-Niu, Wang Yun-Hong. Writer identification based on texture analysis. Acta Automatica Sinica, 2001, 27(2): 229?234 [23] Dey S, Dutta A, Toledo J I, Ghosh S K, Llados J, Pal U. SigNet: Convolutional Siamese network for writer independent offline signature verification. arXiv preprint arXiv: 1707.02131, 2017. [24] Li C, Lin F, Wang Z Y, Yu G, Yuan L, Wang H Q. DeepHSV: User-independent offline signature verification using two-channel CNN. In: Proceedings of the International Conference on Document Analysis and Recognition (ICDAR). Sydney, Australia: IEEE, 2019. 166?171 [25] Wei P, Li H, Hu P. Inverse discriminative networks for handwritten signature verification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 5764?5772 [26] Li H, Wei P, Ma Z Y, Li C K, Zheng N N. Offline signature verification with transformers. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME). Taipei, China: IEEE, 2022. 1?6 [27] Cairang X M, Zhaxi D J, Yang X L, Hou Y, Zhao Q J, Gao D G, et al. Learning generalisable representations for offline signature verification. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN). Padua, Italy: IEEE, 2022. 1?7 [28] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 6000?6010 [29] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, et al. An image is worth 16×16 words: Transformers for image recognition at scale. In: Proceedings of the 9th International Conference on Learning Representations. Austria: OpenReview.net, 2021. [30] Pan X R, Ge C J, Lu R, Song S J, Chen G F, Huang Z Y, et al. On the integration of self-attention and convolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 815?825 [31] Bromley J, Guyon I, LeCun Y, S?ckinger E, Shah R. Signature verification using a “Siamese” time delay neural network. In: Proceedings of the 6th International Conference on Neural Information Processing Systems. Denver, Colorado: Morgan Kaufmann Publishers Inc., 1993. 737?744 [32] Liu L, Huang L L, Yin F, Chen Y B. Offline signature verification using a region based deep metric learning network. Pattern Recognition, 2021, 118: Article No. 108009 doi: 10.1016/j.patcog.2021.108009 [33] Zagoruyko S, Komodakis N. Learning to compare image patches via convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015. 4353?4361 [34] Bhattacharya I, Ghosh P, Biswas S. Offline signature verification using pixel matching technique. Procedia Technology, 2013, 10: 970?977 doi: 10.1016/j.protcy.2013.12.445 [35] Li H, Wei P, Hu P. Static-dynamic interaction networks for offline signature verification. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2021. 1893?1901 [36] Chattopadhyay S, Manna S, Bhattacharya S, Pal U. SURDS: Self-supervised attention-guided reconstruction and dual triplet loss for writer independent offline signature verification. In: Proceedings of the 26th International Conference on Pattern Recognition (ICPR). Montreal, Canada: IEEE, 2022. 1600?1606 [37] Ren J X, Xiong Y J, Zhan H J, Huang B. 2C2S: A two-channel and two-stream transformer based framework for offline signature verification. Engineering Applications of Artificial Intelligence, 2023, 118: Article No. 105639 doi: 10.1016/j.engappai.2022.105639