Knowledge-data-driven Cooperative Optimal Control for Wastewater Treatment Denitrification Process
-
摘要: 為有效提升城市污水處理過程的脫氮效果, 提出一種知識和數據驅動的反硝化脫氮過程協同優化控制(Knowledge-data-driven cooperative optimal control, KDDCOC). 所提方法主要有以下兩個方面: 首先, 建立一種基于自適應知識核函數的協同優化控制目標模型, 動態描述出水水質(Effluent quality, EQ)以及泵送能耗(Pumping energy consumption, PE)、關鍵變量的協同關系; 其次, 提出一種知識引導的協同優化算法(Knowledge guide-based cooperative optimization algorithm, KGCO), 快速準確求解硝態氮(Nitrate nitrogen, SNO)優化設定值, 提高KDDCOC的響應速度. KDDCOC利用比例?積分?微分(Proportional-integral-derivative, PID)控制器對硝態氮優化設定值進行跟蹤, 將提出的KDDCOC應用于城市污水處理過程基準仿真模型 1 號(Benchmark simulation model 1, BSM1); 實驗結果表明, 該方法能夠提高出水水質, 降低運行能耗, 有效改善脫氮效果.
-
關鍵詞:
- 反硝化脫氮過程 /
- 知識和數據驅動 /
- 協同優化控制 /
- 自適應知識核函數 /
- 知識引導的協同優化算法
Abstract: In order to effectively improve the performance of the wastewater treatment denitrification process, a knowledge-data-driven cooperative optimal control (KDDCOC) is proposed. The main work of this paper includes the following two points: First, a cooperative optimal control objective model, based on adaptive knowledge kernel function, is designed to dynamically describe the cooperative relationship between effluent quality (EQ), pumping energy consumption (PE), and key variables; Second, a knowledge guide-based cooperative optimization algorithm (KGCO) is proposed to quickly and accurately obtain the optimum set points of nitrate nitrogen and improve the response speed of KDDCOC. A proportional-integral-derivative controller is used to track the optimum set points of nitrate nitrogen. The proposed KDDCOC is applied to the benchmark simulation model 1 for wastewater treatment process. The experimental results indicate that KDDCOC can improve the effluent quality, reduce the energy consumption, and effectively improve the removal of nitrogen. -
表 1 干燥天氣下不同優化控制方法的詳細性能
Table 1 Detailed performance of different optimal control methods in dry weather
表 2 暴雨天氣下不同優化控制方法的詳細性能
Table 2 Detailed performance of different optimal control methods in storm weather
亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 韓紅桂, 張璐, 盧薇, 喬俊飛. 城市污水處理過程動態多目標智能優化控制研究. 自動化學報, 2021, 47(3): 620?629Han Hong-Gui, Zhang Lu, Lu Wei, Qiao Jun-Fei. Research on dynamic multiobjective intelligent optimal control for municipal wastewater treatment process. Acta Automatica Sinica, 2021, 47(3): 620?629 [2] 杜睿, 彭永臻. 城市污水生物脫氮技術變革: 厭氧氨氧化的研究與實踐新進展. 中國科學: 技術科學, 2022, 52(3): 389?402 doi: 10.1360/SST-2020-0407Du Rui, Peng Yong-Zhen. Technical revolution of biological nitrogen removal from municipal wastewater: recent advances in anammox research and application. Scientia Sinica Technologica, 2022, 52(3): 389?402 doi: 10.1360/SST-2020-0407 [3] 韓紅桂, 張琳琳, 伍小龍, 喬俊飛. 數據和知識驅動的城市污水處理過程多目標優化控制. 自動化學報, 2021, 47(11): 2538?2546Han Hong-Gui, Zhang Lin-Lin, Wu Xiao-Long, Qiao Jun-Fei. Data-knowledge driven multiobjective optimal control for municipal wastewater treatment process. Acta Automatica Sinica, 2021, 47(11): 2538?2546 [4] 楊翠麗, 武戰紅, 韓紅桂, 喬俊飛. 城市污水處理過程優化設定方法研究進展. 自動化學報, 2020, 46(10): 2092?2108Yang Cui-Li, Wu Zhan-Hong, Han Hong-Gui, Qiao Jun-Fei. Perspectives on optimal setting methods for municipal wastewater treatment processes. Acta Automatica Sinica, 2020, 46(10): 2092?2108 [5] 陽春華, 孫備, 李勇剛, 黃科科, 桂衛華. 復雜生產流程協同優化與智能控制. 自動化學報, 2023, 49(3): 528?539Yang Chun-Hua, Sun Bei, Li Yong-Gang, Huang Ke-Ke, Gui Wei-Hua. Cooperative optimization and intelligent control of complex production processes. Acta Automatica Sinica, 2023, 49(3): 528?539 [6] 韓紅桂, 秦晨輝, 孫浩源, 喬俊飛. 城市污水處理過程自適應滑??刂? 自動化學報, 2023, 49(5): 1010?1018Han Hong-Gui, Qin Chen-Hui, Sun Hao-Yuan, Qiao Jun-Fei. Adaptive sliding mode control for municipal wastewater treatment process. Acta Automatica Sinica, 2023, 49(5): 1010?1018 [7] Borja S, Albert G, Xavier F, Ulf J, Juan A B. A plant-wide model describing GHG emissions and nutrient recovery options for water resource recovery facilities. Water Research, 2022, 215: Article No. 118223 doi: 10.1016/j.watres.2022.118223 [8] Reifsnyder S, Garrido-Baserba M, Cecconi F, Wong L, Ackman P, Melitas N, et al. Relationship between manual air valve positioning, water quality and energy usage in activated sludge processes. Water Research, 2020, 173: Article No. 115537 doi: 10.1016/j.watres.2020.115537 [9] Plosz B G. Optimization of the activated sludge anoxic reactor configuration as a means to control nutrient removal kinetically. Water Research, 2007, 41(8): 1763?1773 doi: 10.1016/j.watres.2007.01.007 [10] Borzooei S, Campo G, Cerutti A, Meucci L, Panepinto D, Riggio V, et al. Optimization of the wastewater treatment plant: From energy saving to environmental impact mitigation. Science of the Total Environment, 2019, 691: 1182?1189 doi: 10.1016/j.scitotenv.2019.07.241 [11] Abba S I, Pham Q B, Usman A G, Linh N T T, Aliyu D S, Nguyen Q, et al. Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant. Journal of Water Process Engineering, 2020, 33: Article No. 101081 doi: 10.1016/j.jwpe.2019.101081 [12] Feng J, Song W Z, Zhang H G, Wang W. Data-driven robust iterative learning consensus tracking control for MIMO multiagent systems under fixed and iteration-switching topologies. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 1331?1344 doi: 10.1109/TSMC.2020.3017289 [13] Santoso F, Finn A. A data-driven cyber–physical system using deep-learning convolutional neural networks: study on false-data injection attacks in an unmanned ground vehicle under fault-tolerant conditions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(1): 346?356 doi: 10.1109/TSMC.2022.3170071 [14] Zhang H, Yang C, Shi X Q, Liu H B. Effluent quality prediction in papermaking wastewater treatment processes using dynamic Bayesian networks. Journal of Cleaner Production, 2021, 282: Article No. 125396 doi: 10.1016/j.jclepro.2020.125396 [15] Zeng Y H, Zhang Z J, Kusiak A, Tang F, Wei X P. Optimizing wastewater pumping system with data-driven models and a greedy electromagnetism-like algorithm. Stochastic Environmental Research and Risk Assessment, 2016, 30: 1263?1275 doi: 10.1007/s00477-015-1115-4 [16] Han H G, Chen C, Sun H Y, Qiao J F. Multiobjective integrated optimal control for nonlinear systems. IEEE Transactions on Cybernetics, 2023, 53(12): 7712?7722 doi: 10.1109/TCYB.2022.3204030 [17] 王凌, 王晶晶. 考慮運輸時間的分布式綠色柔性作業車間調度協同群智能優化. 中國科學: 技術科學, 2023, 53(02): 243?257 doi: 10.1360/SST-2021-0355Wang Lin, Wang Jing-Jing. A cooperative memetic algorithm for the distributed green flexible job shop with transportation time. Scientia Sinica Technologica, 2023, 53(02): 243?257 doi: 10.1360/SST-2021-0355 [18] Santín I, Pedret C, Vilanova R, Meneses M. Advanced decision control system for effluent violations removal in wastewater treatment plants. Control Engineering Practice, 2016, 49: 60?75 doi: 10.1016/j.conengprac.2016.01.005 [19] Han H G, Zhang L, Qiao J F. Dynamic optimal control for wastewater treatment process under multiple operating conditions. IEEE Transactions on Automation Science and Engineering, 2023, 20(3): 1907?1919 doi: 10.1109/TASE.2022.3189048 [20] Han H G, Liu Z, Lu W, Hou Y, Qiao J F. Dynamic MOPSO-based optimal control for wastewater treatment process. IEEE Transactions on Cybernetics, 2021, 51(5): 2518?2528 doi: 10.1109/TCYB.2019.2925534 [21] Qiao J F, Zhang W. Dynamic multi-objective optimization control for wastewater treatment process. Neural Computing and Applications, 2018, 29: 1261?1271 doi: 10.1007/s00521-016-2642-8 [22] 張偉, 黃衛民. 基于種群分區的多策略自適應多目標粒子群算法. 自動化學報, 2022, 48(10): 2585?2599Zhang Wei, Huang Wei-Min. Multi-strategy adaptive multi-objective particle swarm optimization algorithm based on swarm partition. Acta Automatica Sinica, 2022, 48(10): 2585?2599 [23] Watari D, Taniguchi I, Goverde H, Manganiello P, Shirazi E, Catthoor F, et al. Multi-time scale energy management framework for smart PV systems mixing fast and slow dynamics. Applied Energy, 2021, 289: Article No. 116671 doi: 10.1016/j.apenergy.2021.116671 [24] Han H G, Fu S J, Sun H Y, Qiao J F. Data-driven model-predictive control for nonlinear systems with stochastic sampling interval. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(5): 3019?3030 doi: 10.1109/TSMC.2022.3220550 [25] Jiang Y, Li X Y, Qin C W, Xing X Y, Chen Z Y. Improved particle swarm optimization based selective harmonic elimination and neutral point balance control for three-level inverter in low-voltage ride-through operation. IEEE Transactions on Industrial Informatics, 2022, 18(1): 642?652 doi: 10.1109/TII.2021.3062625 [26] Han H G, Zhang L, Liu H X, Yang C L, Qiao J F. Intelligent optimal control system with flexible objective functions and its applications in wastewater treatment process. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(6): 3464?3476 [27] Song M, Sun W, Shahidehpour M, Yan M Y, Cao C C. Multi-time scale coordinated control and scheduling of inverter-based TCLs with variable wind generation. IEEE Transactions on Sustainable Energy, 2021, 12(1): 46?57 doi: 10.1109/TSTE.2020.2971271 [28] Han H G, Zhang L, Zhang L L, He Z, Qiao J F. Cooperative optimal controller and its application to activated sludge process. IEEE Transactions on Cybernetics, 2021, 51(8): 3938?3951 doi: 10.1109/TCYB.2019.2925143 [29] Zhou P, Wang X, Chai T Y. Multiobjective operation optimization of wastewater treatment process based on reinforcement self-learning and knowledge guidance. IEEE Transactions on Cybernetics, 2023, 53(11): 6896?6909 doi: 10.1109/TCYB.2022.3164476 [30] 桂衛華, 曾朝暉, 陳曉方, 謝永芳, 孫玉波. 知識驅動的流程工業智能制造. 中國科學: 信息科學, 2020, 50(9): 1345?1360 doi: 10.1360/SSI-2020-0211Gui Wei-Hua, Zeng Zhao-Hui, Chen Xiao-Fang, Xie Yong-Fang, Sun Yu-Bo. Knowledge-driven process industry smart manufacturing. Scientia Sinica Informationis, 2020, 50(9): 1345?1360 doi: 10.1360/SSI-2020-0211 [31] Ji M D, Wang J, Samir K K, Wang S Q, Zhang J, Liang S, et al. Water-energy-greenhouse gas nexus of a novel high-rate activated sludge-two-stage vertical up-flow constructed wetland system for low-carbon wastewater treatment. Water Research, 2023, 229: Article No. 119491 doi: 10.1016/j.watres.2022.119491 [32] Han H G, Liu Z, Liu H X, Qiao J F. Knowledge- data-driven model predictive control for a class of nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4492?4504 doi: 10.1109/TSMC.2019.2937002
計量
- 文章訪問數: 96
- HTML全文瀏覽量: 45
- 被引次數: 0