1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              基于Retinex先驗引導的低光照圖像快速增強方法

              何磊 易遵輝 謝永芳 陳超洋 盧明

              何磊, 易遵輝, 謝永芳, 陳超洋, 盧明. 基于Retinex先驗引導的低光照圖像快速增強方法. 自動(dòng)化學(xué)報, 2024, 50(5): 1035?1046 doi: 10.16383/j.aas.c230585
              引用本文: 何磊, 易遵輝, 謝永芳, 陳超洋, 盧明. 基于Retinex先驗引導的低光照圖像快速增強方法. 自動(dòng)化學(xué)報, 2024, 50(5): 1035?1046 doi: 10.16383/j.aas.c230585
              He Lei, Yi Zun-Hui, Xie Yong-Fang, Chen Chao-Yang, Lu Ming. Fast enhancement method for low light images guided by Retinex prior. Acta Automatica Sinica, 2024, 50(5): 1035?1046 doi: 10.16383/j.aas.c230585
              Citation: He Lei, Yi Zun-Hui, Xie Yong-Fang, Chen Chao-Yang, Lu Ming. Fast enhancement method for low light images guided by Retinex prior. Acta Automatica Sinica, 2024, 50(5): 1035?1046 doi: 10.16383/j.aas.c230585

              基于Retinex先驗引導的低光照圖像快速增強方法

              doi: 10.16383/j.aas.c230585
              基金項目: 國家重點(diǎn)研發(fā)計劃“政府間國際創(chuàng )新合作”重點(diǎn)專(zhuān)項(2019YFE0118700), 國家自然科學(xué)基金(62222306, 61973110, 62203164), 湖南省教育廳科學(xué)研究項目(22A0349, 21B0499)資助
              詳細信息
                作者簡(jiǎn)介:

                何磊:湖南科技大學(xué)信息與電氣工程學(xué)院講師. 2017年和2023年分別獲得山東大學(xué)學(xué)士學(xué)位和中南大學(xué)博士學(xué)位. 主要研究方向為視覺(jué)檢測, 圖像處理和深度學(xué)習. E-mail: helei_xb@hnust.edu.cn

                易遵輝:湖南科技大學(xué)信息與電氣工程學(xué)院講師. 2017年和2023年分別獲得山東大學(xué)學(xué)士學(xué)位和中南大學(xué)博士學(xué)位. 主要研究方向為光學(xué)成像, 圖像處理和視覺(jué)檢測. 本文通信作者. E-mail: yizunhui@hnust.edu.cn

                謝永芳:中南大學(xué)自動(dòng)化學(xué)院教授. 1999年獲得中南工業(yè)大學(xué)博士學(xué)位. 主要研究方向為分散控制與魯棒控 制, 過(guò)程控制, 工業(yè)大數據和知識自動(dòng)化. E-mail: yfxie@csu.edu.cn

                陳超洋:湖南科技大學(xué)信息與電氣工程學(xué)院教授. 2014年獲得華中科技大學(xué)博士學(xué)位. 主要研究方向為群機器人系統協(xié)同控制, 復雜網(wǎng)絡(luò )研究. E-mail: ouzk@163.com

                盧明:湖南科技大學(xué)信息與電氣工程學(xué)院教授. 2014年獲得中南大學(xué)博士學(xué)位. 主要研究方向為流程工業(yè)工況識別與智能優(yōu)化控制, 機器視覺(jué)與智能機器人. E-mail: mlu@hnust.edu.cn

              Fast Enhancement Method for Low Light Images Guided by Retinex Prior

              Funds: Supported by National Key Research and Development Program of China for International Scientific and Technological Cooperation Projects (2019YFE0118700), National Natural Science Foundation of China (62222306, 61973110, 62203164), and Scientific Research Fund of Hunan Provincial Education Department (22A0349, 21B0499)
              More Information
                Author Bio:

                HE Lei Lecturer at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his bachelor degree from Shandong University in 2017 and Ph.D. degree from Central South University in 2023. His research interest covers vision-based measurement, image processing, and deep learning

                YI Zun-Hui Lecturer at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his bachelor degree from Shandong University in 2017 and Ph.D. degree from Central South University in 2023. His research interest covers optical imaging, image processing, and vision-based measurement. Corresponding author of this paper

                XIE Yong-Fang Professor at the School of Automation, Central South University. He received his Ph.D. degree from Central South University in 1999. His research interest covers decentralized control and robust control, process control, industrial big data, and knowledge automation

                CHEN Chao-Yang Professor at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his Ph.D. degree from Huazhong University of Science and Technology in 2014. His research interest covers cooperative control of swarm robot systems and complex network research

                LU Ming Professor at the School of Information and Electrical Engineering, Hunan University of Science and Technology. He received his Ph.D. degree from Central South University in 2014. His research interest covers working condition recognition and intelligent optimization control of process industry, machine vision and intelligent robot

              • 摘要: 低光照圖像增強旨在提高在低光照環(huán)境下所采集圖像的視覺(jué)質(zhì)量. 然而, 現有的低光照圖像增強方法難以在計算效率與增強性能之間達到很好的平衡, 為此, 提出一種基于Retinex先驗引導的低光照圖像快速增強方法, 將Retinex模型與Gamma校正相結合, 快速輸出具有對比度高、視覺(jué)效果好和低噪聲的圖像. 為獲取具有良好光照的圖像以引導確定與輸入圖像尺寸大小一致的Gamma校正圖, 提出基于Retinex模型的先驗圖像生成方法. 針對所提先驗圖像生成方法在極低光照區域中存在顏色失真的問(wèn)題, 提出一種基于融合的Gamma校正圖估計方法, 采用反正切變換恢復極低光照區域的顏色和對比度, 以提升Gamma校正圖在極低光照區域的增強性能. 為抑制輸出圖像的噪聲, 考慮到完全平滑的Gamma校正圖不會(huì )平滑細節紋理的特點(diǎn), 提出基于域變換遞歸濾波的Gamma校正圖優(yōu)化方法, 降低輸出圖像噪聲的同時(shí)保持顏色和對比度. 實(shí)驗結果表明, 所提方法不僅在主客觀(guān)圖像質(zhì)量評價(jià)上優(yōu)于現有大多數主流算法, 而且在計算效率上具有十分顯著(zhù)的優(yōu)勢.
                1)  11 https://sites.google.com/site/vonikakis/datasets
              • 圖  1  不同方法的低光照增強結果

                Fig.  1  Low light enhancement results of different methods

                圖  2  所提方法的算法流程框架

                Fig.  2  The algorithm flow framework of the proposed method

                圖  3  獲取先驗圖像的示例

                Fig.  3  Example of obtaining the prior image

                圖  4  先驗圖像與增強圖像之間優(yōu)勢和劣勢的可視化

                Fig.  4  Visualization of advantages and disadvantages between prior image and enhanced image

                圖  5  不同$ \alpha $取值下的權重函數曲線(xiàn)

                Fig.  5  Weight function curves with different values of $ \alpha $

                圖  6  室內場(chǎng)景下不同方法的低光照圖像增強結果

                Fig.  6  Low light image enhancement results of different methods in indoor scene

                圖  7  室外場(chǎng)景下不同方法的低光照圖像增強結果

                Fig.  7  Low light image enhancement results of different methods in outdoor scene

                圖  8  黑夜環(huán)境下不同方法的低光照圖像增強結果

                Fig.  8  Low light image enhancement results of different methods under dark night environment

                圖  9  針對真實(shí)高噪聲低光照圖像下不同方法的增強結果

                Fig.  9  Enhancement results of different methods for real high-noise low light image

                圖  10  所提方法不同模塊的消融研究

                Fig.  10  Ablation studies of different modules of the proposed method

                表  1  不同方法在不同低光照數據集中的CEIQ值

                Table  1  CEIQ values of different methods in different low light datasets

                NPEA[34]LIME[8]MF[9]LECARM[35]STAR[36]SCI[16]所提方法
                DCIM3.3993.3583.1453.1093.1623.1853.063
                Fusion3.4053.3993.4283.4053.3873.3403.358
                NPE3.7843.4783.4993.4973.4843.5233.429
                VV3.4853.5123.3423.3213.3163.3453.258
                LIME3.4263.4903.1813.1843.0463.1932.990
                Darkface3.1983.2462.7792.7162.4382.4072.496
                平均值3.4493.4133.2293.2053.1393.1653.099
                下載: 導出CSV

                表  2  不同方法在不同低光照數據集中的LOE值

                Table  2  LOE values of different methods in different low light datasets

                NPEA[34]LIME[8]MF[9]LECARM[35]STAR[36]SCI[16]所提方法
                DCIM753.2857.5782.2770.0590.9777.6581.0
                Fusion564.9803.6614.2681.7527.4703.1523.0
                NPE731.2847.6750.1845.2549.3849.7588.1
                VV563.3799.3517.3596.5369.3619.8347.6
                LIME540.9608.8661.0687.4537.9678.1557.1
                Darkface955.8942.1883.9428.6621.8458.9260.8
                平均值684.9809.9701.4668.2532.7681.2476.2
                下載: 導出CSV

                表  3  不同方法在不同低光照數據集中的NL值

                Table  3  NL values of different methods in different low light datasets

                NPEA[34]LIME[8]MF[9]LECARM[35]STAR[36]SCI[16]所提方法
                DCIM1.1561.7070.5780.4850.4911.0990.358
                Fusion0.5610.7150.5090.5990.5970.5100.325
                NPE0.7780.9080.6900.6850.6880.6230.526
                VV0.7640.8360.5490.6370.6630.5390.459
                LIME1.0361.0740.8720.7330.7220.7440.619
                Darkface2.0192.5861.5851.1571.1471.0840.789
                平均值1.0521.3040.7970.7160.7180.7660.512
                下載: 導出CSV

                表  4  不同方法處理不同圖像尺寸的運行時(shí)間 (s)

                Table  4  Running time for different image sizes processed by different methods (s)

                NPEA[34]LIME[8]MF[9]LECARM[35]STAR[36]所提方法
                480×3203.710.1200.2640.1014.860.096
                640×4807.190.2730.3350.21410.120.161
                960×72016.250.5270.5160.39221.410.325
                1280×720 18.010.6770.6030.46324.630.417
                1920×108048.331.3481.3210.98964.320.935
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] 徐少平, 張貴珍, 林珍玉, 劉婷云, 李崇禧. 一種多圖像局部結構化融合的低照度圖像增強算法. 自動(dòng)化學(xué)報, 2022, 48(12): 2981?2995

                        Xu Shao-Ping, Zhang Gui-Zhen, Lin Zhen-Yu, Liu Ting-Yun, Li Chong-Xi. A multi-image local structured fusion-based low-light image enhancement algorithm. Acta Automatica Sinica, 2022, 48(12): 2981?2995
                        [2] 鞠明, 李成, 高山, 穆舉國, 畢篤彥. 基于向心自動(dòng)波交叉皮質(zhì)模型的非均勻光照圖像增強. 自動(dòng)化學(xué)報, 2011, 37(7): 800?810

                        Ju Ming, Li Cheng, Gao Shan, Mu Ju-Guo, Bi Du-Yan. Non uniform-lighting image enhancement based on centripetal autowave intersecting cortical model. Acta Automatica Sinica, 2011, 37(7): 800?810
                        [3] Kim T, Paik J. Adaptive contrast enhancement using gain-controllable clipped histogram equalization. IEEE Transactions on Consumer Electronics, 2008, 54(4): 1803?1810 doi: 10.1109/TCE.2008.4711238
                        [4] Arici T, Dikbas S, Altunbasak Y. A histogram modifcation framework and its application for image contrast enhancement. IEEE Transactions on Image Processing, 2009, 18(9): 1921?1935 doi: 10.1109/TIP.2009.2021548
                        [5] Farid H. Blind inverse gamma correction. IEEE Transactions on Image Processing, 2001, 10(10): 1428?1433 doi: 10.1109/83.951529
                        [6] Huang S C, Cheng F C, Chiu Y S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Transactions on Image Processing, 2013, 22(3): 1032?1041
                        [7] Land E H, McCann J J. Lightness and Retinex theory. Journal of the Optical Society of America, 1971, 61(1): 1?11 doi: 10.1364/JOSA.61.000001
                        [8] Guo X J, Li Y, Ling H B. LIME: Low-light image enhancement via illumination map estimation. IEEE Transactions on Image Processing, 2017, 26(2): 982?993 doi: 10.1109/TIP.2016.2639450
                        [9] Fu X Y, Zeng D L, Huang Y, Liao Y H, Ding X H, Paisley J. A fusion-based enhancing method for weakly illuminated images. Signal Processing, 2016, 129: 82?96 doi: 10.1016/j.sigpro.2016.05.031
                        [10] Li M D, Liu J Y, Yang W H, Sun X Y, Guo Z M. Structure-revealing low-light image enhancement via robust Retinex model. IEEE Transactions on Image Processing, 2018, 27(6): 2828?2841 doi: 10.1109/TIP.2018.2810539
                        [11] Li J J, Feng X M, Hua Z. Low-light image enhancement via progressive-recursive network. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11): 4227?4240 doi: 10.1109/TCSVT.2021.3049940
                        [12] Lv F F, Li Y, Lu F. Attention guided low-light image enhancement with a large scale low-light simulation dataset. International Journal of Computer Vision, 2021, 129: 2175?2193 doi: 10.1007/s11263-021-01466-8
                        [13] Lu K, Zhang L H. TBEFN: A two-branch exposure-fusion network for low-light image enhancement. IEEE Transactions on Multimedia, 2021, 23: 4093?4105
                        [14] Guo C L, Li C Y, Guo J C, Loy C C, Hou J H, Kwong S, et al. Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020. 1777?1786
                        [15] Zhao Z J, Xiong B S, Wang L, Ou Q F, Yu L, Kuang F. RetinexDIP: A unified deep framework for low-light image enhancement. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1076?1088 doi: 10.1109/TCSVT.2021.3073371
                        [16] Ma L, Ma T Y, Liu R S, Fan X, Luo Z X. Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 5627?5636
                        [17] Xu H T, Zhai G T, Wu X L, Yang X K. Generalized equalization model for image enhancement. IEEE Transactions on Multimedia, 2014, 16(1): 68?82 doi: 10.1109/TMM.2013.2283453
                        [18] Pisano E D, Zong S Q, Hemminger B M, DeLuca M, Johnston R E. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital Imaging, 1998, 11: Article No. 193 doi: 10.1007/BF03178082
                        [19] Rahman S, Rahman M M, Abdullah-Al-Wadud M, Al-Quaderi G D, Shoyaib M. An adaptive gamma correction for image enhancement. EURASIP Journal on Image and Video Processing, 2016, 2016(1): Article No. 35
                        [20] Yang K F, Li H, Kuang H L, Li C Y, Li Y J. An adaptive method for image dynamic range adjustment. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(3): 640?652
                        [21] Jeong I, Lee C. An optimization-based approach to gamma correction parameter estimation for low-light image enhancement. Multimedia Tools and Applications, 2021, 80: 18027?18042 doi: 10.1007/s11042-021-10614-8
                        [22] Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround Retinex. IEEE Transactions on Image Processing, 1997, 6(3): 451?462
                        [23] Jobson D J, Rahman Z, Woodell G A. A multi-scale Retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 1997, 6(7): 965?976 doi: 10.1109/83.597272
                        [24] Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2007, 16(8): 2080?2095 doi: 10.1109/TIP.2007.901238
                        [25] Fu X Y, Zeng D L, Huang Y, Zhang X P, Ding X H. A weighted variational model for simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 2782?2790
                        [26] Ren W Q, Liu S F, Ma L, Xu Q Q, Xu X Y, Cao X C, et al. Low-light image enhancement via a deep hybrid network. IEEE Transactions on Image Processing, 2019, 28(9): 4364?4375 doi: 10.1109/TIP.2019.2910412
                        [27] Lore K G, Akintayo A, Sarkar S. LLNet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recognition, 2017, 61: 650?662 doi: 10.1016/j.patcog.2016.06.008
                        [28] Lv F F, Lu F, Wu J H, Lim C. MBLLEN: Low-light image/video enhancement using CNNs. In: Proceedings of the 29th British Machine Vision Conference. Newcastle, UK: BMVA, 2018. 1?13
                        [29] Li C Y, Guo J C, Porikli F, Pang Y W. LightenNet: A convolutional neural network for weakly illuminated image enhancement. Pattern Recognition Letters, 2018, 104: 15?22 doi: 10.1016/j.patrec.2018.01.010
                        [30] Jiang Y F, Gong X Y, Liu D, Cheng Y, Fang C, Shen X H, et al. EnlightenGAN: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing, 2021, 30: 2340?2349 doi: 10.1109/TIP.2021.3051462
                        [31] Fan G D, Fan B, Gan M, Chen G Y, Chen C L P. Multiscale low-light image enhancement network with illumination constraint. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7403?7417 doi: 10.1109/TCSVT.2022.3186880
                        [32] Lempitsky V, Vedaldi A, Ulyanov D. Deep image prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 9446?9454
                        [33] Gastal E S L, Oliveira M M. Domain transform for edge-aware image and video processing. In: Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference. Vancouver, Canada: ACM, 2011. 1–12
                        [34] Wang S H, Zheng J, Hu H M, Li B. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Transactions on Image Processing, 2013, 22(9): 3538?3548 doi: 10.1109/TIP.2013.2261309
                        [35] Ren Y R, Ying Z Q, Li T H, Li G. LECARM: Low-light image enhancement using the camera response model. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(4): 968?981 doi: 10.1109/TCSVT.2018.2828141
                        [36] Xu J, Hou Y K, Ren D W, Liu L, Zhu F, Yu M Y, et al. STAR: A structure and texture aware Retinex model. IEEE Transactions on Image Processing, 2020, 29: 5022?5037 doi: 10.1109/TIP.2020.2974060
                        [37] Yang W H, Yuan Y, Ren W Q, Liu J Y, Scheirer W J, Wang Z Y, et al. Advancing image understanding in poor visibility environments: A collective benchmark study. arXiv preprint arXiv: 1904.04474, 2019.
                        [38] Yan J, Li J, Fu X. No-reference quality assessment of contrast-distorted images using contrast enhancement. arXiv preprint arXiv: 1904.08879, 2019.
                        [39] Dong L, Zhou J T, Tang Y Y. Noise level estimation for natural images based on scale-invariant kurtosis and piecewise stationarity. IEEE Transactions on Image Processing, 2017, 26(2): 1017?1030 doi: 10.1109/TIP.2016.2639447
                      2. 加載中
                      3. 圖(10) / 表(4)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  654
                        • HTML全文瀏覽量:  319
                        • PDF下載量:  170
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2023-09-19
                        • 錄用日期:  2024-01-08
                        • 網(wǎng)絡(luò )出版日期:  2024-03-08
                        • 刊出日期:  2024-05-29

                        目錄

                          /

                          返回文章
                          返回