可回收火箭大氣層內動(dòng)力下降的多階段魯棒優(yōu)化制導方法
doi: 10.16383/j.aas.c230552
-
1.
中國科學(xué)院大學(xué)數學(xué)科學(xué)學(xué)院 北京 100049
-
2.
中國科學(xué)院數學(xué)與系統科學(xué)研究院系統控制重點(diǎn)實(shí)驗室 北京 100190
-
3.
北京航空航天大學(xué)宇航學(xué)院 北京 100191
A Multi-stage Robust Optimization Guidance Method for Endoatmospheric Powered Descent of Reusable Rockets
-
1.
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049
-
2.
The Key Laboratory of Systems and Control, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190
-
3.
School of Astronautics, Beihang University, Beijing 100191
-
摘要: 針對大氣層內可回收火箭的動(dòng)力下降問(wèn)題, 提出一種多階段的魯棒優(yōu)化(Robust optimization, RO)方法. 由于大氣層內存在未知風(fēng)場(chǎng), 如何在火箭下降段考慮這種不確定性具有十分重要的意義. 首先, 建立一個(gè)關(guān)于高度的不確定風(fēng)場(chǎng)模型, 在該風(fēng)場(chǎng)下給出火箭動(dòng)力下降的魯棒最優(yōu)控制問(wèn)題. 為了求解該問(wèn)題, 使用一種對不等式約束采取一階近似并將一階項作為安全裕量加入約束的魯棒優(yōu)化方法, 得到一個(gè)可以求解的單階段魯棒優(yōu)化算法. 其次, 定量給出安全裕量的上界, 基于該上界提出一種多階段魯棒優(yōu)化算法, 避免單階段魯棒優(yōu)化算法中安全裕量可能過(guò)大導致無(wú)法求解的問(wèn)題. 最后, 通過(guò)仿真對比各個(gè)算法在多個(gè)實(shí)際風(fēng)場(chǎng)下的性能, 結果表明所提出的多階段魯棒優(yōu)化方法同時(shí)具有較高的落點(diǎn)精度和對于不同風(fēng)場(chǎng)的魯棒性.
-
關(guān)鍵詞:
- 大氣層內動(dòng)力下降 /
- 魯棒優(yōu)化 /
- 可回收火箭 /
- 制導與控制 /
- 不確定風(fēng)場(chǎng)
Abstract: This paper proposes a multi-stage robust optimization (RO) method for the endoatmospheric powered descent problem of reusable rockets. Due to the unknown wind field in the atmosphere, it is of great significance to consider this uncertainty during the rocket descent phase. Firstly, a model of uncertain wind field with respect to altitude is established, and a robust optimal control problem for rocket powered descent is formulated under this wind field. To solve this problem, a tractable single-stage RO algorithm is developed by approximating the inequality constraints using a first-order expansion and incorporating the first-order term as a safety margin. Secondly, an upper bound on the safety margin is quantitatively derived. Based on this upper bound, a multi-stage RO algorithm is proposed, which avoids the infeasibility problem caused by the excessively large safety margin in the single-stage RO algorithm. Finally, simulation results are presented to compare the performance of each algorithm under various actual wind fields. The results demonstrate that the proposed multi-stage RO method achieves both high landing accuracy and robustness against different wind fields. -
圖 2 $ y$軸的六個(gè)實(shí)際風(fēng)場(chǎng)和一個(gè)標稱(chēng)風(fēng)場(chǎng)
Fig. 2 Six actual wind fields and one nominal wind field on the y-axis
圖 3 實(shí)際風(fēng)場(chǎng)參數與標稱(chēng)風(fēng)場(chǎng)參數的距離
Fig. 3 Distances between parameters of actual wind fields and parameters of nominal wind field
圖 5 單階段RO算法和多階段RO算法在不同風(fēng)場(chǎng)下的最終位置誤差
Fig. 5 The terminal position errors of single-stage RO algorithm and multi-stage RO algorithm under different wind fields
圖 6 單階段RO算法和多階段RO算法在不同風(fēng)場(chǎng)下的最終速度誤差
Fig. 6 The terminal velocity errors of single-stage RO algorithm and multi-stage RO algorithm under different wind fields
圖 7 單階段RO算法和多階段RO算法在各個(gè)實(shí)際風(fēng)場(chǎng)下的軌跡
Fig. 7 The trajectories of single-stage RO algorithm and multi-stage RO algorithm under each actual wind field
圖 10 單階段RO算法在不同風(fēng)場(chǎng)下的最終位置與約束范圍
Fig. 10 The terminal position and its constraint range of single-stage RO algorithm under different wind fields
圖 11 單階段RO算法在不同風(fēng)場(chǎng)下的最終速度與約束范圍
Fig. 11 The terminal velocity and its constraint range of single-stage RO algorithm under different wind fields
圖 12 多階段RO算法在不同風(fēng)場(chǎng)下的最終位置與約束范圍
Fig. 12 The terminal position and its constraint range of multi-stage RO algorithm under different wind fields
圖 13 多階段RO算法在不同風(fēng)場(chǎng)下的最終速度與約束范圍
Fig. 13 The terminal velocity and its constraint range of multi-stage RO algorithm under different wind fields
圖 14 單階段RO算法與NO算法在不同風(fēng)場(chǎng)下的最終位置誤差
Fig. 14 The terminal position errors of single-stage RO algorithm and NO algorithm under different wind fields
表 1 仿真參數值
Table 1 Simulation parameter values
參數 取值 初始狀態(tài) ${\boldsymbol{r}}_0=\left[2~968~{\rm{m}},263~{\rm{m}},4~326~{\rm{m}}\right]^{\rm{T}} $, ${\boldsymbol{v}}_0 = \left[-295~{\rm{m/s}},27~{\rm{m/s}},-296~{\rm{m/s}}\right]^{\rm{T}}$, $m_0=48~185$ kg 期望落點(diǎn)狀態(tài) ${\boldsymbol{r}}_f =\left[0~{\rm{m}},0~{\rm{m}},0~{\rm{m}}\right]^{\rm{T}}$, $ {\boldsymbol{v}}_f =\left[0~{\rm{m/s}},0~{\rm{m/s}},0~{\rm{m/s}}\right]^{\rm{T}}$ 火箭燃料消耗常數 $\kappa=2~975$ 火箭參考面積 $S_{{{\rm{ref}}}}=8.814\ {\rm{m}}^2 $ 空氣動(dòng)力學(xué)阻力系數 $C_D=4.5$ 標稱(chēng)風(fēng)場(chǎng)參數 $\hat{{\boldsymbol{s}}}=\left[-0.073,4.460,5.230\right]^{\rm{T}},\ \mu=2~234,\ \sigma=1~635$, $ k=2.16\times{10}^{-3}, b=0.35$ ${\boldsymbol{S}}_\tau $中的參數 $\tau=1,\ {\boldsymbol{D}}=\text{ diag}\left\{0.83,\ 1.20,\ 2.66\right\}$ 終端約束范圍 單階段RO算法${\boldsymbol{L}}=\left[L_{rx},L_{ry},L_{rz},L_{vx},L_{vy},L_{vz}\right]=\left[7,35,7,35,35,35\right]$
多階段RO算法${\boldsymbol{L}}=\left[4,20,4,4,4,4 \right]$多階段RO算法的階段數 2 下載: 導出CSV表 2 單階段RO算法和多階段RO算法的運行時(shí)間
Table 2 Running time of single-stage RO algorithm and multi-stage RO algorithm
算法 運行時(shí)間(s) 單階段RO算法 6.61 多階段RO算法 13.14 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] McCurdy D, Roche J. Structural sizing of a horizontal take-off launch vehicle with an air collection and enrichment system. In: Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, USA: AIAA, 2004. Article No. 3394 [2] Reynolds T, Malyuta D, Mesbahi M, Acikmese B, Carson J M. Funnel synthesis for the 6-DOF powered descent guidance problem. In: Proceedings of the AIAA Scitech 2021 Forum. Virtual Event: AIAA, 2021. Article No. 0504 [3] Scharf D P, Acikmese B, Dueri D, Benito J, Casoliva J. Implementation and experimental demonstration of onboard powered-descent guidance. Journal of Guidance, Control, and Dynamics, 2017, 40(2): 213-229 doi: 10.2514/1.G000399 [4] Klumpp A R. Apollo lunar descent guidance. Automatica, 1974, 10(2): 133-146 doi: 10.1016/0005-1098(74)90019-3 [5] McInnes C R. Direct adaptive control for gravity-turn descent. Journal of Guidance, Control, and Dynamics, 1999, 22(2): 373-375 doi: 10.2514/2.4392 [6] Zhou L Y, Xia Y Q. Improved ZEM/ZEV feedback guidance for Mars powered descent phase. Advances in Space Research, 2014, 54(11): 2446-2455 doi: 10.1016/j.asr.2014.08.011 [7] Liu Y H, Wang H L, Fan J X, Wu J F, Wu T C. Control-oriented UAV highly feasible trajectory planning: A deep learning method. Aerospace Science and Technology, 2021, 110: Article No.106435 doi: 10.1016/j.ast.2020.106435 [8] You S X, Wan C H, Dai R, Rea J R. Learning-based onboard guidance for fuel-optimal powered descent. Journal of Guidance, Control, and Dynamics, 2021, 44(3): 601-613 doi: 10.2514/1.G004928 [9] 周宏宇, 王小剛, 單永志, 趙亞麗, 崔乃剛. 基于改進(jìn)粒子群算法的飛行器協(xié)同軌跡規劃. 自動(dòng)化學(xué)報, 2022, 48(11): 2670-2676Zhou Hong-Yu, Wang Xiao-Gang, Shan Yong-Zhi, Zhao Ya-li, Cui Nai-Gang. Synergistic path planning for multiple vehicles based on an improved particle swarm optimization method. Acta Automatica Sinica, 2022, 48(11): 2670-2676 [10] Wei H L, Shi Y. MPC-based motion planning and control enables smarter and safer autonomous marine vehicles: Perspectives and a tutorial survey. IEEE/CAA Journal of Automatica Sinica, 2023, 10(1): 8-24 doi: 10.1109/JAS.2022.106016 [11] Lawden D F. Optimal Trajectories for Space Navigation. London: Butter Worths, 1963. 42?51 [12] Lu P. Propellant-optimal powered descent guidance. Journal of Guidance, Control, and Dynamics, 2018, 41(4): 813-826 doi: 10.2514/1.G003243 [13] Acikmese B, Ploen S R. Convex programming approach to powered descent guidance for Mars landing. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1353-1366 doi: 10.2514/1.27553 [14] Acikmese B, Blackmore L. Lossless convexification of a class of optimal control problems with non-convex control constraints. Automatica, 2011, 47(2): 341-347 doi: 10.1016/j.automatica.2010.10.037 [15] Harris M W, Acikmese B. Lossless convexification of non-convex optimal control problems for state constrained linear systems. Automatica, 2014, 50(9): 2304-2311 doi: 10.1016/j.automatica.2014.06.008 [16] Liu X F, Lu P. Solving nonconvex optimal control problems by convex optimization. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 750-765 doi: 10.2514/1.62110 [17] Liu X, Li S, Xin M. Mars entry trajectory planning with range discretization and successive convexification. Journal of Guidance, Control, and Dynamics, 2022, 45(4): 755-763 doi: 10.2514/1.G006237 [18] Szmuk M, Reynolds T P, Acikmese B. Successive convexification for real-time six-degree-of-freedom powered descent guidance with state-triggered constraints. Journal of Guidance, Control, and Dynamics, 2020, 43(8): 1399-1413 doi: 10.2514/1.G004549 [19] 王祝, 徐廣通, 龍騰. 基于定制內點(diǎn)法的多無(wú)人機協(xié)同軌跡規劃. 自動(dòng)化學(xué)報, 2023, 49(11): 2374-2385Wang Zhu, Xu Guang-Tong, Long Teng. Customized interior-point method for cooperative trajectory planning of unmanned aerial vehicles. Acta Automatica Sinica, 2023, 49(11): 2374-2385 [20] Boscariol P, Richiedei D. Robust point-to-point trajectory planning for nonlinear underactuated systems: Theory and experimental assessment. Robotics and Computer-Integrated Manufacturing, 2018, 50: 256-265 doi: 10.1016/j.rcim.2017.10.001 [21] Chen X L, Zhang R, Xue W C, Li H F. Robust neighboring optimal guidance for endoatmospheric powered descent under uncertain wind fields. In: Proceedings of the 34th Chinese Control and Decision Conference (CCDC). Hefei, China: IEEE, 2022. 1491?1496 [22] Brault P, Delamare Q, Giordano P R. Robust trajectory planning with parametric uncertainties. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Xi'an, China: IEEE, 2021. 11095?11101 [23] Zhang Y. General robust-optimization formulation for nonlinear programming. Journal of Optimization Theory and Applications, 2007, 132: 111-124 doi: 10.1007/s10957-006-9082-z [24] Prabhakar A, Fisher J, Bhattacharya R. Polynomial chaos-Based analysis of probabilistic uncertainty in hypersonic flight dynamics. Journal of Guidance Control and Dynamics, 2010, 33(1): 222-234 doi: 10.2514/1.41551 [25] Wang F G, Yang S X, Xiong F F, Lin Q Z, Song J M. Robust trajectory optimization using polynomial chaos and convex optimization. Aerospace Science and Technology, 2019, 92: 314-325 doi: 10.1016/j.ast.2019.06.011 [26] Jiang X Q, Li S, Furfaro R, Wang Z B, Ji Y D. High-dimensional uncertainty quantification for Mars atmospheric entry using adaptive generalized polynomial chaos. Aerospace Science and Technology, 2020, 107: Article No.106240 doi: 10.1016/j.ast.2020.106240 [27] Zhang W, Wang Q, Zeng F Z, Yan C. An adaptive sequential enhanced PCE approach and its application in aerodynamic uncertainty quantification. Aerospace Science and Technology, 2021, 117: Article No.106911 doi: 10.1016/j.ast.2021.106911