干擾條件下無(wú)人艇編隊有限時(shí)間同步控制
doi: 10.16383/j.aas.c230550
-
1.
皖西學(xué)院電氣與光電工程學(xué)院 六安 237012
-
2.
北京航空航天大學(xué)網(wǎng)絡(luò )空間安全學(xué)院 北京 100191
-
3.
大連海事大學(xué)輪機工程學(xué)院 大連 116026
Finite Time Synchronized Formation Control of Unmanned Surface Vehicles With External Disturbances
-
1.
College of Electrical and Photo electronic Engineering, West Anhui University, Lu'an 237012
-
2.
School of Cyber Science and Technology, Beihang University, Beijing 100191
-
3.
College of Marine Engineering, Dalian Maritime University, Dalian 116026
-
摘要: 針對有限時(shí)間控制中各狀態(tài)分量收斂時(shí)間不同問(wèn)題, 提出一種無(wú)人艇編隊有限時(shí)間同步控制框架, 在此框架下設計的有限時(shí)間同步編隊控制方法可巧妙地達到無(wú)人艇所有自由度編隊誤差在同一時(shí)刻收斂到平衡點(diǎn). 首先, 針對現有干擾觀(guān)測器與時(shí)間同步穩定框架不兼容問(wèn)題, 設計有限時(shí)間同步干擾觀(guān)測器; 然后, 利用比例保持特性設計有限時(shí)間同步編隊控制器, 并驗證了所提控制方法的穩定性; 最后, 通過(guò)3艘無(wú)人艇編隊進(jìn)行仿真實(shí)驗, 實(shí)驗結果驗證了所提控制方法的有效性和優(yōu)越性. 所提控制方法對有限時(shí)間同步控制需求的航海、航空航天和工業(yè)領(lǐng)域具有現實(shí)意義.
-
關(guān)鍵詞:
- 時(shí)間同步控制 /
- 無(wú)人艇 /
- 編隊 /
- 有限時(shí)間控制 /
- 干擾觀(guān)測器
Abstract: A finite time synchronization control framework for unmanned surface vehicles is proposed to address the issue of different convergence times of various states in finite time control. The finite time synchronization formation control method designed under this framework can cleverly achieve that all degrees of freedom errors of unmanned surface vehicles converge to an equilibrium point at the same time. Firstly, to address the issue of incompatibility between existing disturbance observers and time synchronization stabilization frameworks, a finite time synchronization disturbance observer is designed. Furthermore, utilizing the ratio persistence property, a finite time synchronous formation controller is designed, and the stability of the proposed control algorithm is demonstrated. Finally, simulation research was conducted on three unmanned surface vehicles, and the results verified the effectiveness and superiority of the proposed control algorithm. The control method proposed in this article has practical significance for the fields of navigation, aerospace, and industry that require time-synchronous control. -
圖 1 北-東坐標系的無(wú)人艇編隊運動(dòng)曲線(xiàn)
Fig. 1 Unmanned surface vehicles' moving curve in the north-east frame
圖 5 各無(wú)人艇位置和艏向角變化曲線(xiàn)
Fig. 5 Position and heading variation curve of each unmanned surface vehicles
圖 7 無(wú)人艇編隊位姿誤差在同一時(shí)刻收斂曲線(xiàn)
Fig. 7 Formation position and attitude-error convergence curve of all degrees of freedom formation errors at the same time
圖 8 跟隨者 1 在 3 個(gè)自由度方向的外界環(huán)境干擾和模型不確定性實(shí)際值與估計值
Fig. 8 Actual and estimated-values of external disturbances and model uncertainties for follower 1 in three degrees of freedom
圖 9 改變初始值編隊位姿誤差收斂曲線(xiàn)
Fig. 9 Formation position and attitude-error convergence curve in the situation of the initial values changed
圖 10 基于符號函數的有限時(shí)間非線(xiàn)性滑??刂凭庩犖蛔苏`差收斂曲線(xiàn)[25]
Fig. 10 Formation position and attitude-error convergence curve of finite time nonlinear sliding mode control error based on sign function[25]
圖 11 線(xiàn)性滑??刂频木庩犖蛔苏`差收斂曲線(xiàn)
Fig. 11 Formation position and attitude-error convergence curve of linear sliding mode control
亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 張衛東, 劉笑成, 韓鵬. 水上無(wú)人系統研究進(jìn)展及其面臨的挑戰. 自動(dòng)化學(xué)報, 2020, 46(5): 847?857Zhang Wei-Dong, Liu Xiao-Cheng, Han Peng. Progress and challenges of overwater unmanned systems. Acta Automatica Sinica, 2020, 46(5): 847?857 [2] 謝少榮, 劉堅堅, 張丹. 復雜海況無(wú)人艇集群控制技術(shù)研究現狀與發(fā)展. 水下無(wú)人系統學(xué)報, 2020, 28(6): 584?596 doi: 10.11993/j.issn.2096-3920.2020.06.001Xie Shao-Rong, Liu Jian-Jian, Zhang Dan. Current development of control technology for unmanned surface vessel clusters under complex sea conditions. Journal of Unmanned Undersea Systems, 2020, 28(6): 584?596 doi: 10.11993/j.issn.2096-3920.2020.06.001 [3] Wu G, Xu T, Sun Y, Zhang J. Review of multiple unmanned surface vessels collaborative search and hunting based on swarm intelligence. International Journal of Advanced Robotic Systems, 2022, 19(2): 1729?1735 [4] Liu H, Zhang H, Meng D, Su H. Scanning-Chain formation control for multiple unmanned surface vessels to pass through water channels. IEEE Transactions on Cybernetics, 2022, 52(3): 1850?1861 doi: 10.1109/TCYB.2020.2997833 [5] Liu Z, Hou H, Wang Y. Formation-containment control of multiple underactuated surface vessels with sampling communication via hierarchical sliding mode approach. ISA Transactions, 2022, 124: 458?467 doi: 10.1016/j.isatra.2019.12.003 [6] Liang X, Qu X, Hou Y, Li Y, Zhang R. Distributed coordinated tracking control of multiple unmanned surface vehicles under complex marine environments. Ocean Engineering, 2020, 205: Article No. 107328 doi: 10.1016/j.oceaneng.2020.107328 [7] 李賀, 王寧, 薛皓原. 水面無(wú)人艇領(lǐng)航——跟隨固定時(shí)間編隊控制. 中國艦船研究, 2020, 15(2): 111?118Li He, Wang Ning, Xue Hao-Yuan. Leader-follower fixed-time formation control of unmanned surface vehicles. Chinese Journal of Ship Research, 2020, 15(2): 111?118 [8] Guo G, Gao Z, Dong K. Prescribed-time formation control of surface vessels with asymmetric constraints on LOS range and bearing angles. Nonlinear Dynamics, 2021, 104: 3701?3712 doi: 10.1007/s11071-021-06462-8 [9] Han Z, Wang Y, Sun Q. Straight-path following and formation control of USVs using distributed deep reinforcement learning and adaptive neural network. IEEE/CAA Journal of Automatica Sinica, 2023, 10(2): 572?574 doi: 10.1109/JAS.2023.123255 [10] Li D, Ge S, Lee T. Simultaneous arrival to origin convergence: sliding-mode control through the norm-normalized sign function. IEEE Transactions on Automatic Control, 2021, 67(4): 1966?1972 [11] Sanyal A, Bohn J. Finite-time stabilisation of simple mechanical systems using continuous feedback. International Journal of Control, 2015, 88(4): 783?791 doi: 10.1080/00207179.2014.974675 [12] Mung N, Golestani M. Energy-efficient disturbance observer-based attitude tracking control with fixed-time convergence for spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3659?3668 doi: 10.1109/TAES.2022.3229290 [13] Jiang Y, Hu W. Fixed-time-synchronized consensus tracking of multi-agent systems. In: Proceedings of the 5th International Conference on Intelligent Autonomous Systems. Dalian, China: IEEE, 2022. 345?350 [14] Du J, Hu X, Krsti? M, Sun Y. Robust dynamic positioning of ships with disturbances under input saturation. Automatica, 2016, 73: 207?214 doi: 10.1016/j.automatica.2016.06.020 [15] Do K. Practical control of underactuated ships. Ocean Engineering, 2010, 37(13): 1111?1119 doi: 10.1016/j.oceaneng.2010.04.007 [16] Dai S, He S, Ma Y, Yuan C. Distributed cooperative learning control of uncertain multiagent systems with prescribed performance and preserved connectivity. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(7): 3217?3229 doi: 10.1109/TNNLS.2020.3010690 [17] Moreno J A, Osorio M. Strict Lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 2012, 57(4): 1035?1040 doi: 10.1109/TAC.2012.2186179 [18] Chen Q, Xu L, Zhou Y, Li S. Finite time observer-based super-twisting sliding mode control for vehicle platoons with guaranteed strong string stability. IET Intelligent Transport Systems, 2022, 16(12): 1726?1737 doi: 10.1049/itr2.12178 [19] 王寧, 王仁慧, 魯挺. 推進(jìn)器飽和約束的水面無(wú)人艇固定時(shí)間精準跟蹤控制. 控制理論與應用, 2023, 40(1): 55?64Wang Ning, Wang Ren-Hui, Lu Ting. Fixed-time precision tracking control of an unmanned surface vehicle constrained by thruster saturations. Control Theory & Applications, 2023, 40(1): 55?64 [20] Xia G, Zhang Y, Zhang W, Zhang K, Yang H. Robust adaptive super-twisting sliding mode formation controller for homing of multi-underactuated AUV recovery system with uncertainties. ISA Transactions, 2022, 130: 136?151 doi: 10.1016/j.isatra.2022.04.010 [21] Li D, Tee K, Xie L, Yu H. Time-synchronized control for disturbed systems. IEEE Transactions on Cybernetics, 2022, 52(9): 8703?8715 doi: 10.1109/TCYB.2021.3054589 [22] Ouyang Y, Liu J, Sun C. Time-synchronized control for an uncertain marine vessel system with external disturbance. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(8): 2929?2933 [23] Liu Z, Wang Y, Wang T. Incremental predictive control-based output consensus of networked unmanned surface vehicle formation systems. Information Sciences, 2018, 457?458: 166?181 doi: 10.1016/j.ins.2018.03.011 [24] Li H, Li X. Distributed consensus of heterogeneous linear time-varying systems on UAVs–USVs coordination. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(7): 1264?1268 [25] Li T, Zhao R, Chen C, Fang L, Liu C. Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Transactions on Cybernetics, 2018, 48(11): 3243? 3253 doi: 10.1109/TCYB.2018.2794968 [26] Li M, Guo C, Yu H. Line-of-sight-based global finite-time stable path following control of unmanned surface vehicles with actuator saturation. ISA Transactions, 2022, 125: 306?317 doi: 10.1016/j.isatra.2021.07.009 [27] Er M, Li Z. Formation control of unmanned surface vehicles using fixed-time non-singular terminal sliding mode strategy. Journal of Marine Science and Engineering, 2022, 10(9): Article No. 1308 doi: 10.3390/jmse10091308 [28] Shen H, Yin Y, Qian X. Fixed-time formation control for unmanned surface vehicles with parametric uncertainties and complex disturbance. Journal of Marine Science and Engineering, 2022, 10(9): 1246?1257 doi: 10.3390/jmse10091246 [29] Wu W, Tong S. Fixed-time formation fault tolerant control for unmanned surface vehicle systems with intermittent actuator faults. Ocean Engineering, 2023, 281: Aticle No. 114813 doi: 10.1016/j.oceaneng.2023.114813 [30] 王洪斌, 高靜, 蘇博, 王躍靈. 基于事件觸發(fā)的AUVs固定時(shí)間編隊控制. 自動(dòng)化學(xué)報, 2022, 48(9): 2277?2287Wang Hong-Bin, Gao Jing, Su Bo, Wang Yue-Ling. Fixed-time formation of AUVs based on event-triggered control. Acta Automatica Sinica, 2022, 48(9): 2277?2287 [31] 高振宇, 郭戈. 基于擾動(dòng)觀(guān)測器的AUVs固定時(shí)間編隊控制. 自動(dòng)化學(xué)報, 2019, 45(6): 1094?1102Gao Zhen-Yu, Guo Ge. Fixed-time formation control of AUVs based on a disturbance observer. Acta Automatica Sinica, 2019, 45(6): 1094?1102 [32] Li D, Yu H, Tee K P, Wu Y, Ge S S, Lee T H. On time-synchronized stability and control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(4): 2450?2463 [33] 尹曌, 賀威, 鄒堯, 穆新星, 孫長(cháng)銀. 基于“雁陣效應”的撲翼飛行機器人高效集群編隊研究. 自動(dòng)化學(xué)報, 2021, 47(6): 1355?1367Yin Zhao, He Wei, Zou Yao, Mu Xin-Xing, Sun Chang-Yin. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect. Acta Automatica Sinica, 2021, 47(6): 1355?1367 [34] Xiao B, Dong Q, Ye D, Liu L, Huo X. A general tracking control framework for uncertain systems with exponential convergence performance. IEEE/ASME Transactions on Mechatronics, 2017, 23(1): 111?120