1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              干擾條件下無(wú)人艇編隊有限時(shí)間同步控制

              王端松 李東禹 梁曉玲

              王端松, 李東禹, 梁曉玲. 干擾條件下無(wú)人艇編隊有限時(shí)間同步控制. 自動(dòng)化學(xué)報, 2024, 50(5): 1047?1058 doi: 10.16383/j.aas.c230550
              引用本文: 王端松, 李東禹, 梁曉玲. 干擾條件下無(wú)人艇編隊有限時(shí)間同步控制. 自動(dòng)化學(xué)報, 2024, 50(5): 1047?1058 doi: 10.16383/j.aas.c230550
              Wang Duan-Song, Li Dong-Yu, Liang Xiao-Ling. Finite time synchronized formation control of unmanned surface vehicles with external disturbances. Acta Automatica Sinica, 2024, 50(5): 1047?1058 doi: 10.16383/j.aas.c230550
              Citation: Wang Duan-Song, Li Dong-Yu, Liang Xiao-Ling. Finite time synchronized formation control of unmanned surface vehicles with external disturbances. Acta Automatica Sinica, 2024, 50(5): 1047?1058 doi: 10.16383/j.aas.c230550

              干擾條件下無(wú)人艇編隊有限時(shí)間同步控制

              doi: 10.16383/j.aas.c230550
              基金項目: 國家自然科學(xué)基金(62103028, 52301417), 皖西學(xué)院科研啟動(dòng)基金(WGKQ2022050), 浙江省自然科學(xué)基金(LGG22F030018)資助
              詳細信息
                作者簡(jiǎn)介:

                王端松:皖西學(xué)院高級工程師. 2020年獲得哈爾濱工程大學(xué)博士學(xué)位. 主要研究方向為智能船舶編隊控制, 農業(yè)智能裝備控制技術(shù). E-mail: dswangsd@126.com

                李東禹:北京航空航天大學(xué)副教授. 2019年獲得哈爾濱工業(yè)大學(xué)博士學(xué)位. 主要研究方向為航天器集群協(xié)同, 空間態(tài)勢感知和星座組網(wǎng)安全. 本文通信作者. E-mail: dongyuli@buaa.edu.cn

                梁曉玲:大連海事大學(xué)講師. 2015年獲得哈爾濱工業(yè)大學(xué)博士學(xué)位. 主要研究方向為船舶制導與智能控制技術(shù). E-mail: lxldmu2016@163.com

              Finite Time Synchronized Formation Control of Unmanned Surface Vehicles With External Disturbances

              Funds: Supported by National Natural Science Foundation of China (62103028, 52301417), Startup Fund for Distinguished Scholars of West Anhui University (WGKQ2022050), and Natural Science Foundation of Zhejiang Province (LGG22F030018)
              More Information
                Author Bio:

                WANG Duan-Song Senior engineer at West Anhui University. He received his Ph.D. degree from Harbin Engineering University in 2020. His research interest covers intelligent ship formation control and agricultural intelligent equipment control technology

                LI Dong-Yu Associate professor at Beihang University. He received his Ph.D. degree from Harbin Institute of Technology in 2019. His research interest covers spacecraft cluster collaboration, space situational awareness, and constellation networking security. Corresponding author of this paper

                LIANG Xiao-Ling Lecturer at Dalian Maritime University. She received her Ph.D. degree from Harbin Institute of Technology in 2015. Her research interest covers guidance and intelligent control technology for marine vehicles

              • 摘要: 針對有限時(shí)間控制中各狀態(tài)分量收斂時(shí)間不同問(wèn)題, 提出一種無(wú)人艇編隊有限時(shí)間同步控制框架, 在此框架下設計的有限時(shí)間同步編隊控制方法可巧妙地達到無(wú)人艇所有自由度編隊誤差在同一時(shí)刻收斂到平衡點(diǎn). 首先, 針對現有干擾觀(guān)測器與時(shí)間同步穩定框架不兼容問(wèn)題, 設計有限時(shí)間同步干擾觀(guān)測器; 然后, 利用比例保持特性設計有限時(shí)間同步編隊控制器, 并驗證了所提控制方法的穩定性; 最后, 通過(guò)3艘無(wú)人艇編隊進(jìn)行仿真實(shí)驗, 實(shí)驗結果驗證了所提控制方法的有效性和優(yōu)越性. 所提控制方法對有限時(shí)間同步控制需求的航海、航空航天和工業(yè)領(lǐng)域具有現實(shí)意義.
              • 圖  1  北-東坐標系的無(wú)人艇編隊運動(dòng)曲線(xiàn)

                Fig.  1  Unmanned surface vehicles' moving curve in the north-east frame

                圖  2  無(wú)人艇間的通信關(guān)系

                Fig.  2  The communication relationship of unmanned surface vehicles

                圖  3  北?東坐標系下編隊運動(dòng)曲線(xiàn)

                Fig.  3  Formation moving curve in the north-east frame

                圖  4  各無(wú)人艇運動(dòng)速度曲線(xiàn)

                Fig.  4  Velocity curve of unmanned surface vehicles

                圖  5  各無(wú)人艇位置和艏向角變化曲線(xiàn)

                Fig.  5  Position and heading variation curve of each unmanned surface vehicles

                圖  6  各無(wú)人艇的編隊誤差曲線(xiàn)

                Fig.  6  Formation error curve of unmanned surface vehicles

                圖  7  無(wú)人艇編隊位姿誤差在同一時(shí)刻收斂曲線(xiàn)

                Fig.  7  Formation position and attitude-error convergence curve of all degrees of freedom formation errors at the same time

                圖  8  跟隨者 1 在 3 個(gè)自由度方向的外界環(huán)境干擾和模型不確定性實(shí)際值與估計值

                Fig.  8  Actual and estimated-values of external disturbances and model uncertainties for follower 1 in three degrees of freedom

                圖  9  改變初始值編隊位姿誤差收斂曲線(xiàn)

                Fig.  9  Formation position and attitude-error convergence curve in the situation of the initial values changed

                圖  10  基于符號函數的有限時(shí)間非線(xiàn)性滑??刂凭庩犖蛔苏`差收斂曲線(xiàn)[25]

                Fig.  10  Formation position and attitude-error convergence curve of finite time nonlinear sliding mode control error based on sign function[25]

                圖  11  線(xiàn)性滑??刂频木庩犖蛔苏`差收斂曲線(xiàn)

                Fig.  11  Formation position and attitude-error convergence curve of linear sliding mode control

                圖  12  超螺旋干擾觀(guān)測器觀(guān)測值與實(shí)際值[21]

                Fig.  12  Observe and actual value of the super-twisting disturbance observer proposed[21]

                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] 張衛東, 劉笑成, 韓鵬. 水上無(wú)人系統研究進(jìn)展及其面臨的挑戰. 自動(dòng)化學(xué)報, 2020, 46(5): 847?857

                        Zhang Wei-Dong, Liu Xiao-Cheng, Han Peng. Progress and challenges of overwater unmanned systems. Acta Automatica Sinica, 2020, 46(5): 847?857
                        [2] 謝少榮, 劉堅堅, 張丹. 復雜海況無(wú)人艇集群控制技術(shù)研究現狀與發(fā)展. 水下無(wú)人系統學(xué)報, 2020, 28(6): 584?596 doi: 10.11993/j.issn.2096-3920.2020.06.001

                        Xie Shao-Rong, Liu Jian-Jian, Zhang Dan. Current development of control technology for unmanned surface vessel clusters under complex sea conditions. Journal of Unmanned Undersea Systems, 2020, 28(6): 584?596 doi: 10.11993/j.issn.2096-3920.2020.06.001
                        [3] Wu G, Xu T, Sun Y, Zhang J. Review of multiple unmanned surface vessels collaborative search and hunting based on swarm intelligence. International Journal of Advanced Robotic Systems, 2022, 19(2): 1729?1735
                        [4] Liu H, Zhang H, Meng D, Su H. Scanning-Chain formation control for multiple unmanned surface vessels to pass through water channels. IEEE Transactions on Cybernetics, 2022, 52(3): 1850?1861 doi: 10.1109/TCYB.2020.2997833
                        [5] Liu Z, Hou H, Wang Y. Formation-containment control of multiple underactuated surface vessels with sampling communication via hierarchical sliding mode approach. ISA Transactions, 2022, 124: 458?467 doi: 10.1016/j.isatra.2019.12.003
                        [6] Liang X, Qu X, Hou Y, Li Y, Zhang R. Distributed coordinated tracking control of multiple unmanned surface vehicles under complex marine environments. Ocean Engineering, 2020, 205: Article No. 107328 doi: 10.1016/j.oceaneng.2020.107328
                        [7] 李賀, 王寧, 薛皓原. 水面無(wú)人艇領(lǐng)航——跟隨固定時(shí)間編隊控制. 中國艦船研究, 2020, 15(2): 111?118

                        Li He, Wang Ning, Xue Hao-Yuan. Leader-follower fixed-time formation control of unmanned surface vehicles. Chinese Journal of Ship Research, 2020, 15(2): 111?118
                        [8] Guo G, Gao Z, Dong K. Prescribed-time formation control of surface vessels with asymmetric constraints on LOS range and bearing angles. Nonlinear Dynamics, 2021, 104: 3701?3712 doi: 10.1007/s11071-021-06462-8
                        [9] Han Z, Wang Y, Sun Q. Straight-path following and formation control of USVs using distributed deep reinforcement learning and adaptive neural network. IEEE/CAA Journal of Automatica Sinica, 2023, 10(2): 572?574 doi: 10.1109/JAS.2023.123255
                        [10] Li D, Ge S, Lee T. Simultaneous arrival to origin convergence: sliding-mode control through the norm-normalized sign function. IEEE Transactions on Automatic Control, 2021, 67(4): 1966?1972
                        [11] Sanyal A, Bohn J. Finite-time stabilisation of simple mechanical systems using continuous feedback. International Journal of Control, 2015, 88(4): 783?791 doi: 10.1080/00207179.2014.974675
                        [12] Mung N, Golestani M. Energy-efficient disturbance observer-based attitude tracking control with fixed-time convergence for spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3659?3668 doi: 10.1109/TAES.2022.3229290
                        [13] Jiang Y, Hu W. Fixed-time-synchronized consensus tracking of multi-agent systems. In: Proceedings of the 5th International Conference on Intelligent Autonomous Systems. Dalian, China: IEEE, 2022. 345?350
                        [14] Du J, Hu X, Krsti? M, Sun Y. Robust dynamic positioning of ships with disturbances under input saturation. Automatica, 2016, 73: 207?214 doi: 10.1016/j.automatica.2016.06.020
                        [15] Do K. Practical control of underactuated ships. Ocean Engineering, 2010, 37(13): 1111?1119 doi: 10.1016/j.oceaneng.2010.04.007
                        [16] Dai S, He S, Ma Y, Yuan C. Distributed cooperative learning control of uncertain multiagent systems with prescribed performance and preserved connectivity. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(7): 3217?3229 doi: 10.1109/TNNLS.2020.3010690
                        [17] Moreno J A, Osorio M. Strict Lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 2012, 57(4): 1035?1040 doi: 10.1109/TAC.2012.2186179
                        [18] Chen Q, Xu L, Zhou Y, Li S. Finite time observer-based super-twisting sliding mode control for vehicle platoons with guaranteed strong string stability. IET Intelligent Transport Systems, 2022, 16(12): 1726?1737 doi: 10.1049/itr2.12178
                        [19] 王寧, 王仁慧, 魯挺. 推進(jìn)器飽和約束的水面無(wú)人艇固定時(shí)間精準跟蹤控制. 控制理論與應用, 2023, 40(1): 55?64

                        Wang Ning, Wang Ren-Hui, Lu Ting. Fixed-time precision tracking control of an unmanned surface vehicle constrained by thruster saturations. Control Theory & Applications, 2023, 40(1): 55?64
                        [20] Xia G, Zhang Y, Zhang W, Zhang K, Yang H. Robust adaptive super-twisting sliding mode formation controller for homing of multi-underactuated AUV recovery system with uncertainties. ISA Transactions, 2022, 130: 136?151 doi: 10.1016/j.isatra.2022.04.010
                        [21] Li D, Tee K, Xie L, Yu H. Time-synchronized control for disturbed systems. IEEE Transactions on Cybernetics, 2022, 52(9): 8703?8715 doi: 10.1109/TCYB.2021.3054589
                        [22] Ouyang Y, Liu J, Sun C. Time-synchronized control for an uncertain marine vessel system with external disturbance. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(8): 2929?2933
                        [23] Liu Z, Wang Y, Wang T. Incremental predictive control-based output consensus of networked unmanned surface vehicle formation systems. Information Sciences, 2018, 457?458: 166?181 doi: 10.1016/j.ins.2018.03.011
                        [24] Li H, Li X. Distributed consensus of heterogeneous linear time-varying systems on UAVs–USVs coordination. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(7): 1264?1268
                        [25] Li T, Zhao R, Chen C, Fang L, Liu C. Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Transactions on Cybernetics, 2018, 48(11): 3243? 3253 doi: 10.1109/TCYB.2018.2794968
                        [26] Li M, Guo C, Yu H. Line-of-sight-based global finite-time stable path following control of unmanned surface vehicles with actuator saturation. ISA Transactions, 2022, 125: 306?317 doi: 10.1016/j.isatra.2021.07.009
                        [27] Er M, Li Z. Formation control of unmanned surface vehicles using fixed-time non-singular terminal sliding mode strategy. Journal of Marine Science and Engineering, 2022, 10(9): Article No. 1308 doi: 10.3390/jmse10091308
                        [28] Shen H, Yin Y, Qian X. Fixed-time formation control for unmanned surface vehicles with parametric uncertainties and complex disturbance. Journal of Marine Science and Engineering, 2022, 10(9): 1246?1257 doi: 10.3390/jmse10091246
                        [29] Wu W, Tong S. Fixed-time formation fault tolerant control for unmanned surface vehicle systems with intermittent actuator faults. Ocean Engineering, 2023, 281: Aticle No. 114813 doi: 10.1016/j.oceaneng.2023.114813
                        [30] 王洪斌, 高靜, 蘇博, 王躍靈. 基于事件觸發(fā)的AUVs固定時(shí)間編隊控制. 自動(dòng)化學(xué)報, 2022, 48(9): 2277?2287

                        Wang Hong-Bin, Gao Jing, Su Bo, Wang Yue-Ling. Fixed-time formation of AUVs based on event-triggered control. Acta Automatica Sinica, 2022, 48(9): 2277?2287
                        [31] 高振宇, 郭戈. 基于擾動(dòng)觀(guān)測器的AUVs固定時(shí)間編隊控制. 自動(dòng)化學(xué)報, 2019, 45(6): 1094?1102

                        Gao Zhen-Yu, Guo Ge. Fixed-time formation control of AUVs based on a disturbance observer. Acta Automatica Sinica, 2019, 45(6): 1094?1102
                        [32] Li D, Yu H, Tee K P, Wu Y, Ge S S, Lee T H. On time-synchronized stability and control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(4): 2450?2463
                        [33] 尹曌, 賀威, 鄒堯, 穆新星, 孫長(cháng)銀. 基于“雁陣效應”的撲翼飛行機器人高效集群編隊研究. 自動(dòng)化學(xué)報, 2021, 47(6): 1355?1367

                        Yin Zhao, He Wei, Zou Yao, Mu Xin-Xing, Sun Chang-Yin. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect. Acta Automatica Sinica, 2021, 47(6): 1355?1367
                        [34] Xiao B, Dong Q, Ye D, Liu L, Huo X. A general tracking control framework for uncertain systems with exponential convergence performance. IEEE/ASME Transactions on Mechatronics, 2017, 23(1): 111?120
                      2. 加載中
                      3. 圖(12)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  527
                        • HTML全文瀏覽量:  169
                        • PDF下載量:  226
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2023-09-04
                        • 錄用日期:  2024-02-07
                        • 網(wǎng)絡(luò )出版日期:  2024-03-24
                        • 刊出日期:  2024-05-29

                        目錄

                          /

                          返回文章
                          返回