1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              疊層模型驅動(dòng)的書(shū)法文字識別方法研究

              麻斯亮 許勇

              麻斯亮, 許勇. 疊層模型驅動(dòng)的書(shū)法文字識別方法研究. 自動(dòng)化學(xué)報, 2024, 50(5): 947?957 doi: 10.16383/j.aas.c230460
              引用本文: 麻斯亮, 許勇. 疊層模型驅動(dòng)的書(shū)法文字識別方法研究. 自動(dòng)化學(xué)報, 2024, 50(5): 947?957 doi: 10.16383/j.aas.c230460
              Ma Si-Liang, Xu Yong. Calligraphy character recognition method driven by stacked model. Acta Automatica Sinica, 2024, 50(5): 947?957 doi: 10.16383/j.aas.c230460
              Citation: Ma Si-Liang, Xu Yong. Calligraphy character recognition method driven by stacked model. Acta Automatica Sinica, 2024, 50(5): 947?957 doi: 10.16383/j.aas.c230460

              疊層模型驅動(dòng)的書(shū)法文字識別方法研究

              doi: 10.16383/j.aas.c230460
              基金項目: 國家自然科學(xué)基金(62072188)資助
              詳細信息
                作者簡(jiǎn)介:

                麻斯亮:華南理工大學(xué)計算機科學(xué)與工程學(xué)院博士研究生. 主要研究方向為機器學(xué)習, 文字圖像處理. E-mail: 202010107394@mail.scut.edu.cn

                許勇:華南理工大學(xué)計算機科學(xué)與工程學(xué)院教授. 主要研究方向為機器學(xué)習, 視覺(jué)計算, 大數據. 本文通信作者. E-mail: yxu@scut.edu.cn

              Calligraphy Character Recognition Method Driven by Stacked Model

              Funds: Supported by National Natural Science Foundation of China (62072188)
              More Information
                Author Bio:

                MA Si-Liang Ph.D. candidate at the School of Computer Science and Engineering, South China University of Technology. His research interest covers machine learning and text image processing

                XU Yong Professor at the School of Computer Science and Engineering, South China University of Technology. His research interest covers machine learning, visual computing, and big data. Corresponding author of this paper

              • 摘要: 基于二維圖像的書(shū)法文字識別是指利用計算機視覺(jué)技術(shù)對書(shū)法文字單字圖像進(jìn)行識別, 在古籍研究和文化傳播中具有重要應用. 目前書(shū)法文字識別技術(shù)已經(jīng)取得了相當不錯的進(jìn)展, 但依舊面臨很多挑戰, 比如復雜多變的字形可能導致的識別誤差, 漢字本身又存在較多形近字, 且漢字字符類(lèi)別數與其他語(yǔ)言文字相比更多, 書(shū)法文字圖像普遍存在類(lèi)內差距大、類(lèi)間差距小的問(wèn)題. 為解決這些問(wèn)題, 提出疊層模型驅動(dòng)的書(shū)法文字識別方法(Stacked-model driven character recognition, SDCR), 通過(guò)使用數據預處理、節點(diǎn)分離策略和疊層模型對現有單一分類(lèi)模型進(jìn)行改進(jìn), 按照字體類(lèi)別對同一類(lèi)別不同字體風(fēng)格的文字進(jìn)行二次劃分; 針對類(lèi)間差距小的問(wèn)題, 根據書(shū)法文字訓練集圖像識別置信度對形近字進(jìn)行子集劃分, 針對子集進(jìn)行嵌套模型增強訓練, 在測試階段利用疊層模型對形近字進(jìn)行二次識別, 提升形近字的識別準確率. 為了驗證該方法的魯棒性, 在自主生成的SCUT_Calligraphy數據集和CASIA-HWDB 1.1, CASIA-AHCDB公開(kāi)數據集上進(jìn)行訓練和測試, 實(shí)驗結果表明該方法在上述數據集的識別準確率均有較大幅度提升, 在CASIA-HWDB 1.1、CASIA-AHCDB和自建數據集SCUT_Calligraphy上測試準確率分別達到96.33%、99.51%和99.90%, 證明了該方法的有效性.
              • 圖  1  中國書(shū)法作品樣例

                Fig.  1  Samples of Chinese calligraphy works

                圖  2  書(shū)法文字中同一類(lèi)字不同字形及形近字示例

                Fig.  2  Examples of different glyphs and close shapes of the same type of characters in calligraphy text

                圖  3  本文所述部分數據集圖像示例

                Fig.  3  Part of images from datasets mentioned in this paper

                圖  4  疊層模型驅動(dòng)的書(shū)法文字識別方法架構圖

                Fig.  4  Architecture of calligraphy character recognition method driven by stacked model

                圖  5  節點(diǎn)分離訓練策略流程圖(以“即”字為例)

                Fig.  5  Flowchart of nodes separation training strategy (Take the character “JI” as an example)

                圖  6  疊層模型驅動(dòng)的書(shū)法文字識別測試階段流程圖

                Fig.  6  Flowchart of the test phase of calligraphy character recognition driven by stacked model

                圖  7  輸入圖像分辨率與書(shū)法文字識別準確率變化關(guān)系

                Fig.  7  The relationship between input image resolution and calligraphy character recognition accuracy

                表  1  實(shí)驗數據集詳細屬性

                Table  1  Detailed properties of experimental datasets

                數據集名稱(chēng)類(lèi)別數訓練集規模測試集規模
                CASIA-AHCDBStyle-1 BC2 353828 969253 990
                Style-1 EC3 20188 87036 143
                Style-2 BC2 353725 240202 404
                Style-2 EC74066 69017 741
                CASIA-HWDB 1.13 755847 466223 991
                SCUT_Calligraphy3 767251 66426 106
                下載: 導出CSV

                表  2  疊層模型驅動(dòng)的書(shū)法文字識別消融實(shí)驗結果

                Table  2  Ablation experimental results of calligraphy character recognition driven by stacked model

                測試數據集數據預處理節點(diǎn)分離疊層模型驅動(dòng)Precision (%)Recall (%)F1-Score (%)
                CASIA-HWDB 1.1×××89.6488.9589.29
                $\surd$××90.3489.3589.84
                $\surd$$\surd$×91.2689.5690.40
                $\surd$$\surd$$\surd$96.3392.1094.16
                CASIA-AHCDB (Style-1 BC)×××94.5095.1094.79
                $\surd$××98.9298.3498.62
                $\surd$$\surd$×99.1999.1499.16
                $\surd$$\surd$$\surd$99.5199.2199.35
                SCUT_Calligraphy×××91.3390.4590.88
                $\surd$××98.3898.2298.30
                $\surd$$\surd$×98.8598.3698.60
                $\surd$$\surd$$\surd$99.9098.9699.42
                下載: 導出CSV

                表  3  單模型和疊層模型驅動(dòng)模型識別可視化結果對比

                Table  3  Comparison of visualization results for single model and stacked precision neural network model recognition

                輸入圖片標簽單模型預測值疊層模型預測值
                下載: 導出CSV

                表  4  不同子集書(shū)法文字圖像使用單模型和疊層模型驅動(dòng)模型識別結果對比

                Table  4  Comparison of recognition results of different calligraphy character images subsets using single model and stacked model

                子集字符類(lèi)別子集規模單模型錯誤數疊層模型錯誤數準確率提升(%)
                日目白自向冶治囚曰沼7411310.81
                大己已木犬片斤火本巳83532.40
                力工巾王勿古右布句希76946.57
                巨予主矛母吉臣吝圭毋86734.65
                夫云去央塵尖伏伐亥矢69727.24
                士土千比午北白自血皿76743.94
                去式戒赤坊束辰來(lái)妨展68727.35
                助忍駁玩抵忽振玖肋駿64744.68
                下載: 導出CSV

                表  5  不同方法在CASIA-AHCDB, CASIA-HWDB 1.1和SCUT_Calligraphy數據集上的測試結果對比 (%)

                Table  5  The performance of comparison different methods test on the CASIA-AHCDB, CASIA-HWDB 1.1 and SCUT_Calligraphy (%)

                方法數據集
                CASIA-AHCDBCASIA-HWDB 1.1SCUT_Calligraphy
                Style-1 BCStyle-1 BC&ECStyle-2 BCStyle-2 BC&ECStyle-1 BC (train) Style-2 BC (test)
                LW-ViT[34]95.80
                CPN[35]98.5096.9594.4291.9974.7495.4598.70
                RAN[36]82.3969.61
                RPN83.6569.63
                RAN + CRA[36]85.5471.02
                RPN + CRA[37]86.9172.06
                SDCR + JD99.5198.2398.7497.0186.1596.3399.90
                注: SDCR + JD指同時(shí)使用疊層模型驅動(dòng)和節點(diǎn)分離訓練策略.
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Zhang H N, Dong B, Zheng Q H, Feng B Q, Xu B, Wu H Y. All-content text recognition method for financial ticket images. Multimedia Tools and Applications, 2022, 81(20): 28327?28346 doi: 10.1007/s11042-022-12741-2
                        [2] Kabiraj A, Pal D, Ganguly D, Chatterjee K, Roy S. Number plate recognition from enhanced super-resolution using generative adversarial network. Multimedia Tools and Applications, 2023, 82(9): 13837?13853 doi: 10.1007/s11042-022-14018-0
                        [3] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 770–778
                        [4] Bhunia A K, Ghose S, Kumar A, Chowdhury P N, Sain A, Song Y Z. MetaHTR: Towards writer-adaptive handwritten text recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 15825–15834
                        [5] Wang X H, Wu K, Zhang Y, Xiao Y, Xu P F. A GAN-based denoising method for Chinese stele and rubbing calligraphic image. The Visual Computer, 2023, 39(4): 1351?1362
                        [6] Fang S C, Xie H T, Wang Y X, Mao Z D, Zhang Y D. Read like humans: Autonomous, bidirectional and iterative language modeling for scene text recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 7094–7103
                        [7] Cire?an D, Meier U. Multi-column deep neural networks for offline handwritten Chinese character classification. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN). Killarney, Ireland: IEEE, 2015. 1–6
                        [8] Yin F, Wang Q F, Zhang X Y, Liu C L. ICDAR 2013 Chinese handwriting recognition competition. In: Proceedings of the 12th International Conference on Document Analysis and Recognition. Washington, USA: IEEE, 2013. 1464–1470
                        [9] Zhong Z Y, Jin L W, Xie Z C. High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps. In: Proceedings of the 13th International Conference on Document Analysis and Recognition (ICDAR). Tunis, Tunisia: IEEE, 2015. 846–850
                        [10] Chen L, Wang S, Fan W, Sun J, Naoi S. Beyond human recognition: A CNN-based framework for handwritten character recognition. In: Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition (ACPR). Kuala Lumpur, Malaysia: IEEE, 2015. 695–699
                        [11] Zhong Z, Zhang X Y, Yin F, Liu C L. Handwritten Chinese character recognition with spatial transformer and deep residual networks. In: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico: IEEE, 2016. 3440–3445
                        [12] Li Z Y, Teng N J, Jin M, Lu H X. Building efficient CNN architecture for offline handwritten Chinese character recognition. International Journal on Document Analysis and Recognition (IJDAR), 2018, 21(4): 233?240 doi: 10.1007/s10032-018-0311-4
                        [13] Bi N, Chen J H, Tan J. The handwritten Chinese character recognition uses convolutional neural networks with the GoogLeNet. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(11): Article No. 1940016 doi: 10.1142/S0218001419400160
                        [14] Zhang X Y, Liu C L. Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition. Pattern Recognition, 2013, 46(9): 2599?2611 doi: 10.1016/j.patcog.2013.01.036
                        [15] Dan Y P, Zhu Z N, Jin W S, Li Z. PF-VIT: Parallel and fast vision transformer for offline handwritten Chinese character recognition. Computational Intelligence and Neuroscience, 2022, 2022: Article No. 8255763
                        [16] Cao Z, Lu J, Cui S, Zhang C S. Zero-shot handwritten Chinese character recognition with hierarchical decomposition embedding. Pattern Recognition, 2020, 107: Article No. 107488 doi: 10.1016/j.patcog.2020.107488
                        [17] Diao X L, Shi D Q, Tang H, Shen Q, Li Y Z, Wu L, et al. RZCR: Zero-shot character recognition via radical-based reasoning. In: Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI). Macao, China: ijcai.org, 2023. 654–662
                        [18] Wang T W, Xie Z C, Li Z, Jin L W, Chen X L. Radical aggregation network for few-shot offline handwritten Chinese character recognition. Pattern Recognition Letters, 2019, 125: 821?827 doi: 10.1016/j.patrec.2019.08.005
                        [19] Wang W C, Zhang J S, Du J, Wang Z R, Zhu Y X. DenseRAN for offline handwritten Chinese character recognition. In: Proceedings of the 16th International Conference on Frontiers in Handwriting Recognition (ICFHR). Niagara Falls, USA: IEEE, 2018. 104–109
                        [20] Chen J Y, Li B, Xue X Y. Zero-shot Chinese character recognition with stroke-level decomposition. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI). Montreal, Canada: ijcai.org, 2021. 615–621
                        [21] Liu C, Yang C, Qin H B, Zhu X B, Liu C L, Yin X C. Towards open-set text recognition via label-to-prototype learning. Pattern Recognition, 2023, 134: Article No. 109109 doi: 10.1016/j.patcog.2022.109109
                        [22] Huang Y H, Jin L W, Peng D Z. Zero-shot Chinese text recognition via matching class embedding. In: Proceedings of the 16th International Conference on Document Analysis and Recognition (ICDAR). Lausanne, Switzerland: Springer, 2021. 127–141
                        [23] Jalali A, Kavuri S, Lee M. Low-shot transfer with attention for highly imbalanced cursive character recognition. Neural Networks, 2021, 143: 489?499 doi: 10.1016/j.neunet.2021.07.003
                        [24] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 2818–2826
                        [25] Huang J D, Cheng G J, Zhang J H, Miao W. Recognition method for stone carved calligraphy characters based on a convolutional neural network. Neural Computing and Applications, 2023, 35(12): 8723?8732
                        [26] Dan Y P, Li Z. Particle swarm optimization-based convolutional neural network for handwritten Chinese character recognition. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2023, 27(2): 165?172 doi: 10.20965/jaciii.2023.p0165
                        [27] Liu C L, Yin F, Wang D H, Wang Q F. Online and offline handwritten Chinese character recognition: Benchmarking on new databases. Pattern Recognition, 2013, 46(1): 155?162 doi: 10.1016/j.patcog.2012.06.021
                        [28] Peng D Z, Jin L W, Liu Y L, Luo C J, Lai S X. PageNet: Towards end-to-end weakly supervised page-level handwritten Chinese text recognition. International Journal of Computer Vision, 2022, 130(11): 2623?2645 doi: 10.1007/s11263-022-01654-0
                        [29] Xu Y, Yin F, Wang D H, Zhang X Y, Zhang Z X, Liu C L. CASIA-AHCDB: A large-scale Chinese ancient handwritten characters database. In: Proceedings of the International Conference on Document Analysis and Recognition (ICDAR). Sydney, Australia: IEEE, 2019. 793–798
                        [30] Qu X W, Wang W Q, Lu K, Zhou J S. Data augmentation and directional feature maps extraction for in-air handwritten Chinese character recognition based on convolutional neural network. Pattern Recognition Letters, 2018, 111: 9?15 doi: 10.1016/j.patrec.2018.04.001
                        [31] Su T H, Pan W, Yu L J. HITHCD-2018: Handwritten Chinese character database of 21K-category. In: Proceedings of the International Conference on Document Analysis and Recognition (ICDAR). Sydney, Australia: IEEE, 2019. 1378–1383
                        [32] Luo C J, Zhu Y Z, Jin L W, Li Z, Peng D Z. SLOGAN: Handwriting style synthesis for arbitrary-length and out-of-vocabulary text. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 8503?8515 doi: 10.1109/TNNLS.2022.3151477
                        [33] Wang P C, Xiong H, He H X. Bearing fault diagnosis under various conditions using an incremental learning-based multi-task shared classifier. Knowledge-Based Systems, 2023, 266: Article No. 110395 doi: 10.1016/j.knosys.2023.110395
                        [34] Geng S Y, Zhu Z N, Wang Z D, Dan Y P, Li H Y. LW-VIT: The lightweight vision transformer model applied in offline handwritten Chinese character recognition. Electronics, 2023, 12(7): Article No. 1693 doi: 10.3390/electronics12071693
                        [35] Yang H M, Zhang X Y, Yin F, Liu C L. Robust classification with convolutional prototype learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 3474–3482
                        [36] Zhang J S, Du J, Dai L R. Radical analysis network for learning hierarchies of Chinese characters. Pattern Recognition, 2020, 103: Article No. 107305 doi: 10.1016/j.patcog.2020.107305
                        [37] Luo G F, Yin H Y, Wang D H, Zhang X Y, Zhu S Z. Critical radical analysis network for Chinese character recognition. In: Proceedings of the 26th International Conference on Pattern Recognition (ICPR). Montreal, Canada: IEEE, 2022. 2878–2884
                      2. 加載中
                      3. 圖(7) / 表(5)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  505
                        • HTML全文瀏覽量:  328
                        • PDF下載量:  127
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2023-08-02
                        • 錄用日期:  2023-11-30
                        • 網(wǎng)絡(luò )出版日期:  2023-12-25
                        • 刊出日期:  2024-05-29

                        目錄

                          /

                          返回文章
                          返回