疊層模型驅動(dòng)的書(shū)法文字識別方法研究
doi: 10.16383/j.aas.c230460
-
1.
華南理工大學(xué)計算機科學(xué)與工程學(xué)院 廣州 510006
-
2.
鵬城實(shí)驗室 深圳 518000
Calligraphy Character Recognition Method Driven by Stacked Model
-
1.
School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006
-
2.
Pengcheng Laboratory, Shenzhen 518000
-
摘要: 基于二維圖像的書(shū)法文字識別是指利用計算機視覺(jué)技術(shù)對書(shū)法文字單字圖像進(jìn)行識別, 在古籍研究和文化傳播中具有重要應用. 目前書(shū)法文字識別技術(shù)已經(jīng)取得了相當不錯的進(jìn)展, 但依舊面臨很多挑戰, 比如復雜多變的字形可能導致的識別誤差, 漢字本身又存在較多形近字, 且漢字字符類(lèi)別數與其他語(yǔ)言文字相比更多, 書(shū)法文字圖像普遍存在類(lèi)內差距大、類(lèi)間差距小的問(wèn)題. 為解決這些問(wèn)題, 提出疊層模型驅動(dòng)的書(shū)法文字識別方法(Stacked-model driven character recognition, SDCR), 通過(guò)使用數據預處理、節點(diǎn)分離策略和疊層模型對現有單一分類(lèi)模型進(jìn)行改進(jìn), 按照字體類(lèi)別對同一類(lèi)別不同字體風(fēng)格的文字進(jìn)行二次劃分; 針對類(lèi)間差距小的問(wèn)題, 根據書(shū)法文字訓練集圖像識別置信度對形近字進(jìn)行子集劃分, 針對子集進(jìn)行嵌套模型增強訓練, 在測試階段利用疊層模型對形近字進(jìn)行二次識別, 提升形近字的識別準確率. 為了驗證該方法的魯棒性, 在自主生成的SCUT_Calligraphy數據集和CASIA-HWDB 1.1, CASIA-AHCDB公開(kāi)數據集上進(jìn)行訓練和測試, 實(shí)驗結果表明該方法在上述數據集的識別準確率均有較大幅度提升, 在CASIA-HWDB 1.1、CASIA-AHCDB和自建數據集SCUT_Calligraphy上測試準確率分別達到96.33%、99.51%和99.90%, 證明了該方法的有效性.
-
關(guān)鍵詞:
- 書(shū)法文字識別 /
- 模型驅動(dòng) /
- 節點(diǎn)分離 /
- 疊層模型 /
- 精度學(xué)習
Abstract: Calligraphy character recognition based on two-dimensional images means to recognize single calligraphy character based on computer vision, which has important applications in ancient book research and cultural dissemination. At present, calligraphy character recognition has made considerable progress, but still faces many challenges, such as recognition errors caused by complex and variable font shapes, the existence of many similar characters in Chinese, and the number of Chinese character categories is extremely large. Calligraphy character images generally have large intra class differences and small inter class differences. In order to tackle these issues, we proposed a calligraphy character recognition method based on stacked model (SDCR). By using data preprocessing, node separation strategy and stacked model, and the characters with different font styles in the same category is subdivided according to the font style. To address the issue of small inter class differences, the calligraphy character training set image recognition confidence level is used to divide the characters with similar style into subsets. Nested model enhancement training is conducted on the subsets, and in the testing stage, a stacked model is used for secondary recognition of characters with similar style to improve the recognition accuracy of shape near characters. In order to verify the robustness of our proposed method, we train and test on self-generated dataset SCUT_Calligraphy and publicly available datasets CASIA-HWDB 1.1, CASIA-AHCDB. The experimental results showed that the proposed method significantly improved the recognition accuracy of the datasets mentioned above. The testing accuracy on CASIA-HWDB 1.1, CASIA-AHCDB and SCUT_Calligraphy reached 96.33%, 99.51%, and 99.90%, respectively, which proves the effectiveness of the method described in this article.-
Key words:
- Calligraphy character recognition /
- model driven /
- nodes separation /
- stacked model /
- precision learning
-
圖 2 書(shū)法文字中同一類(lèi)字不同字形及形近字示例
Fig. 2 Examples of different glyphs and close shapes of the same type of characters in calligraphy text
圖 4 疊層模型驅動(dòng)的書(shū)法文字識別方法架構圖
Fig. 4 Architecture of calligraphy character recognition method driven by stacked model
圖 5 節點(diǎn)分離訓練策略流程圖(以“即”字為例)
Fig. 5 Flowchart of nodes separation training strategy (Take the character “JI” as an example)
圖 6 疊層模型驅動(dòng)的書(shū)法文字識別測試階段流程圖
Fig. 6 Flowchart of the test phase of calligraphy character recognition driven by stacked model
圖 7 輸入圖像分辨率與書(shū)法文字識別準確率變化關(guān)系
Fig. 7 The relationship between input image resolution and calligraphy character recognition accuracy
表 1 實(shí)驗數據集詳細屬性
Table 1 Detailed properties of experimental datasets
數據集名稱(chēng) 類(lèi)別數 訓練集規模 測試集規模 CASIA-AHCDB Style-1 BC 2 353 828 969 253 990 Style-1 EC 3 201 88 870 36 143 Style-2 BC 2 353 725 240 202 404 Style-2 EC 740 66 690 17 741 CASIA-HWDB 1.1 3 755 847 466 223 991 SCUT_Calligraphy 3 767 251 664 26 106 下載: 導出CSV表 2 疊層模型驅動(dòng)的書(shū)法文字識別消融實(shí)驗結果
Table 2 Ablation experimental results of calligraphy character recognition driven by stacked model
測試數據集 數據預處理 節點(diǎn)分離 疊層模型驅動(dòng) Precision (%) Recall (%) F1-Score (%) CASIA-HWDB 1.1 × × × 89.64 88.95 89.29 $\surd$ × × 90.34 89.35 89.84 $\surd$ $\surd$ × 91.26 89.56 90.40 $\surd$ $\surd$ $\surd$ 96.33 92.10 94.16 CASIA-AHCDB (Style-1 BC) × × × 94.50 95.10 94.79 $\surd$ × × 98.92 98.34 98.62 $\surd$ $\surd$ × 99.19 99.14 99.16 $\surd$ $\surd$ $\surd$ 99.51 99.21 99.35 SCUT_Calligraphy × × × 91.33 90.45 90.88 $\surd$ × × 98.38 98.22 98.30 $\surd$ $\surd$ × 98.85 98.36 98.60 $\surd$ $\surd$ $\surd$ 99.90 98.96 99.42 下載: 導出CSV表 3 單模型和疊層模型驅動(dòng)模型識別可視化結果對比
Table 3 Comparison of visualization results for single model and stacked precision neural network model recognition
輸入圖片 標簽 單模型預測值 疊層模型預測值 自 白 自 巾 力 力 王 工 王 勿 句 勿 右 古 右 右 芯 芯 王 己 己 布 希 布 布 常 常 下載: 導出CSV表 4 不同子集書(shū)法文字圖像使用單模型和疊層模型驅動(dòng)模型識別結果對比
Table 4 Comparison of recognition results of different calligraphy character images subsets using single model and stacked model
子集字符類(lèi)別 子集規模 單模型錯誤數 疊層模型錯誤數 準確率提升(%) 日目白自向冶治囚曰沼 74 11 3 10.81 大己已木犬片斤火本巳 83 5 3 2.40 力工巾王勿古右布句希 76 9 4 6.57 巨予主矛母吉臣吝圭毋 86 7 3 4.65 夫云去央塵尖伏伐亥矢 69 7 2 7.24 士土千比午北白自血皿 76 7 4 3.94 去式戒赤坊束辰來(lái)妨展 68 7 2 7.35 助忍駁玩抵忽振玖肋駿 64 7 4 4.68 下載: 導出CSV表 5 不同方法在CASIA-AHCDB, CASIA-HWDB 1.1和SCUT_Calligraphy數據集上的測試結果對比 (%)
Table 5 The performance of comparison different methods test on the CASIA-AHCDB, CASIA-HWDB 1.1 and SCUT_Calligraphy (%)
方法 數據集 CASIA-AHCDB CASIA-HWDB 1.1 SCUT_Calligraphy Style-1 BC Style-1 BC&EC Style-2 BC Style-2 BC&EC Style-1 BC (train) Style-2 BC (test) LW-ViT[34] — — — — — 95.80 — CPN[35] 98.50 96.95 94.42 91.99 74.74 95.45 98.70 RAN[36] 82.39 — 69.61 — — — — RPN 83.65 — 69.63 — — — — RAN + CRA[36] 85.54 — 71.02 — — — — RPN + CRA[37] 86.91 — 72.06 — — — — SDCR + JD 99.51 98.23 98.74 97.01 86.15 96.33 99.90 注: SDCR + JD指同時(shí)使用疊層模型驅動(dòng)和節點(diǎn)分離訓練策略. 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Zhang H N, Dong B, Zheng Q H, Feng B Q, Xu B, Wu H Y. All-content text recognition method for financial ticket images. Multimedia Tools and Applications, 2022, 81(20): 28327?28346 doi: 10.1007/s11042-022-12741-2 [2] Kabiraj A, Pal D, Ganguly D, Chatterjee K, Roy S. Number plate recognition from enhanced super-resolution using generative adversarial network. Multimedia Tools and Applications, 2023, 82(9): 13837?13853 doi: 10.1007/s11042-022-14018-0 [3] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 770–778 [4] Bhunia A K, Ghose S, Kumar A, Chowdhury P N, Sain A, Song Y Z. MetaHTR: Towards writer-adaptive handwritten text recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 15825–15834 [5] Wang X H, Wu K, Zhang Y, Xiao Y, Xu P F. A GAN-based denoising method for Chinese stele and rubbing calligraphic image. The Visual Computer, 2023, 39(4): 1351?1362 [6] Fang S C, Xie H T, Wang Y X, Mao Z D, Zhang Y D. Read like humans: Autonomous, bidirectional and iterative language modeling for scene text recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 7094–7103 [7] Cire?an D, Meier U. Multi-column deep neural networks for offline handwritten Chinese character classification. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN). Killarney, Ireland: IEEE, 2015. 1–6 [8] Yin F, Wang Q F, Zhang X Y, Liu C L. ICDAR 2013 Chinese handwriting recognition competition. In: Proceedings of the 12th International Conference on Document Analysis and Recognition. Washington, USA: IEEE, 2013. 1464–1470 [9] Zhong Z Y, Jin L W, Xie Z C. High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps. In: Proceedings of the 13th International Conference on Document Analysis and Recognition (ICDAR). Tunis, Tunisia: IEEE, 2015. 846–850 [10] Chen L, Wang S, Fan W, Sun J, Naoi S. Beyond human recognition: A CNN-based framework for handwritten character recognition. In: Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition (ACPR). Kuala Lumpur, Malaysia: IEEE, 2015. 695–699 [11] Zhong Z, Zhang X Y, Yin F, Liu C L. Handwritten Chinese character recognition with spatial transformer and deep residual networks. In: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR). Cancun, Mexico: IEEE, 2016. 3440–3445 [12] Li Z Y, Teng N J, Jin M, Lu H X. Building efficient CNN architecture for offline handwritten Chinese character recognition. International Journal on Document Analysis and Recognition (IJDAR), 2018, 21(4): 233?240 doi: 10.1007/s10032-018-0311-4 [13] Bi N, Chen J H, Tan J. The handwritten Chinese character recognition uses convolutional neural networks with the GoogLeNet. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(11): Article No. 1940016 doi: 10.1142/S0218001419400160 [14] Zhang X Y, Liu C L. Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition. Pattern Recognition, 2013, 46(9): 2599?2611 doi: 10.1016/j.patcog.2013.01.036 [15] Dan Y P, Zhu Z N, Jin W S, Li Z. PF-VIT: Parallel and fast vision transformer for offline handwritten Chinese character recognition. Computational Intelligence and Neuroscience, 2022, 2022: Article No. 8255763 [16] Cao Z, Lu J, Cui S, Zhang C S. Zero-shot handwritten Chinese character recognition with hierarchical decomposition embedding. Pattern Recognition, 2020, 107: Article No. 107488 doi: 10.1016/j.patcog.2020.107488 [17] Diao X L, Shi D Q, Tang H, Shen Q, Li Y Z, Wu L, et al. RZCR: Zero-shot character recognition via radical-based reasoning. In: Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI). Macao, China: ijcai.org, 2023. 654–662 [18] Wang T W, Xie Z C, Li Z, Jin L W, Chen X L. Radical aggregation network for few-shot offline handwritten Chinese character recognition. Pattern Recognition Letters, 2019, 125: 821?827 doi: 10.1016/j.patrec.2019.08.005 [19] Wang W C, Zhang J S, Du J, Wang Z R, Zhu Y X. DenseRAN for offline handwritten Chinese character recognition. In: Proceedings of the 16th International Conference on Frontiers in Handwriting Recognition (ICFHR). Niagara Falls, USA: IEEE, 2018. 104–109 [20] Chen J Y, Li B, Xue X Y. Zero-shot Chinese character recognition with stroke-level decomposition. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI). Montreal, Canada: ijcai.org, 2021. 615–621 [21] Liu C, Yang C, Qin H B, Zhu X B, Liu C L, Yin X C. Towards open-set text recognition via label-to-prototype learning. Pattern Recognition, 2023, 134: Article No. 109109 doi: 10.1016/j.patcog.2022.109109 [22] Huang Y H, Jin L W, Peng D Z. Zero-shot Chinese text recognition via matching class embedding. In: Proceedings of the 16th International Conference on Document Analysis and Recognition (ICDAR). Lausanne, Switzerland: Springer, 2021. 127–141 [23] Jalali A, Kavuri S, Lee M. Low-shot transfer with attention for highly imbalanced cursive character recognition. Neural Networks, 2021, 143: 489?499 doi: 10.1016/j.neunet.2021.07.003 [24] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 2818–2826 [25] Huang J D, Cheng G J, Zhang J H, Miao W. Recognition method for stone carved calligraphy characters based on a convolutional neural network. Neural Computing and Applications, 2023, 35(12): 8723?8732 [26] Dan Y P, Li Z. Particle swarm optimization-based convolutional neural network for handwritten Chinese character recognition. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2023, 27(2): 165?172 doi: 10.20965/jaciii.2023.p0165 [27] Liu C L, Yin F, Wang D H, Wang Q F. Online and offline handwritten Chinese character recognition: Benchmarking on new databases. Pattern Recognition, 2013, 46(1): 155?162 doi: 10.1016/j.patcog.2012.06.021 [28] Peng D Z, Jin L W, Liu Y L, Luo C J, Lai S X. PageNet: Towards end-to-end weakly supervised page-level handwritten Chinese text recognition. International Journal of Computer Vision, 2022, 130(11): 2623?2645 doi: 10.1007/s11263-022-01654-0 [29] Xu Y, Yin F, Wang D H, Zhang X Y, Zhang Z X, Liu C L. CASIA-AHCDB: A large-scale Chinese ancient handwritten characters database. In: Proceedings of the International Conference on Document Analysis and Recognition (ICDAR). Sydney, Australia: IEEE, 2019. 793–798 [30] Qu X W, Wang W Q, Lu K, Zhou J S. Data augmentation and directional feature maps extraction for in-air handwritten Chinese character recognition based on convolutional neural network. Pattern Recognition Letters, 2018, 111: 9?15 doi: 10.1016/j.patrec.2018.04.001 [31] Su T H, Pan W, Yu L J. HITHCD-2018: Handwritten Chinese character database of 21K-category. In: Proceedings of the International Conference on Document Analysis and Recognition (ICDAR). Sydney, Australia: IEEE, 2019. 1378–1383 [32] Luo C J, Zhu Y Z, Jin L W, Li Z, Peng D Z. SLOGAN: Handwriting style synthesis for arbitrary-length and out-of-vocabulary text. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 8503?8515 doi: 10.1109/TNNLS.2022.3151477 [33] Wang P C, Xiong H, He H X. Bearing fault diagnosis under various conditions using an incremental learning-based multi-task shared classifier. Knowledge-Based Systems, 2023, 266: Article No. 110395 doi: 10.1016/j.knosys.2023.110395 [34] Geng S Y, Zhu Z N, Wang Z D, Dan Y P, Li H Y. LW-VIT: The lightweight vision transformer model applied in offline handwritten Chinese character recognition. Electronics, 2023, 12(7): Article No. 1693 doi: 10.3390/electronics12071693 [35] Yang H M, Zhang X Y, Yin F, Liu C L. Robust classification with convolutional prototype learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 3474–3482 [36] Zhang J S, Du J, Dai L R. Radical analysis network for learning hierarchies of Chinese characters. Pattern Recognition, 2020, 103: Article No. 107305 doi: 10.1016/j.patcog.2020.107305 [37] Luo G F, Yin H Y, Wang D H, Zhang X Y, Zhu S Z. Critical radical analysis network for Chinese character recognition. In: Proceedings of the 26th International Conference on Pattern Recognition (ICPR). Montreal, Canada: IEEE, 2022. 2878–2884