1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              快速刀具伺服系統位置域重復控制設計及其數字實現

              周蘭 楊秦 潘昌忠 肖文彬 李美柳

              周蘭, 楊秦, 潘昌忠, 肖文彬, 李美柳. 快速刀具伺服系統位置域重復控制設計及其數字實現. 自動化學報, 2024, 50(6): 1?13 doi: 10.16383/j.aas.c230381
              引用本文: 周蘭, 楊秦, 潘昌忠, 肖文彬, 李美柳. 快速刀具伺服系統位置域重復控制設計及其數字實現. 自動化學報, 2024, 50(6): 1?13 doi: 10.16383/j.aas.c230381
              Zhou Lan, Yang Qin, Pan Chang-Zhong, Xiao Wen-Bin, Li Mei-Liu. Design and digital implementation of spatial repetitive control for fast tool servo system. Acta Automatica Sinica, 2024, 50(6): 1?13 doi: 10.16383/j.aas.c230381
              Citation: Zhou Lan, Yang Qin, Pan Chang-Zhong, Xiao Wen-Bin, Li Mei-Liu. Design and digital implementation of spatial repetitive control for fast tool servo system. Acta Automatica Sinica, 2024, 50(6): 1?13 doi: 10.16383/j.aas.c230381

              快速刀具伺服系統位置域重復控制設計及其數字實現

              doi: 10.16383/j.aas.c230381
              基金項目: 國家自然科學基金(62373145, 62173138), 湖南省重點研發計劃項目(2023GK2027), 湖南省自然科學基金(2021JJ30006, 2023JJ40297, 2023JJ40295), 湖南省教育廳科研項目(21A0321, 22B0468, 22C0244), 湖南省研究生科研創新項目(CX20221055)資助
              詳細信息
                作者簡介:

                周蘭:湖南科技大學信息與電氣工程學院教授. 主要研究方向為非線性系統, 魯棒控制和重復控制理論及應用. 本文通信作者. E-mail: zhoulan75@163.com

                楊秦:湖南科技大學信息與電氣工程學院碩士研究生. 主要研究方向為重復控制, 數控加工及機電系統設計. E-mail: YangQin7699@163.com

                潘昌忠:湖南科技大學信息與電氣工程學院教授. 主要研究方向為非線性控制理論與應用, 機電系統與機器人控制和智能控制. E-mail: pancz@hnust.edu.cn

                肖文彬:湖南科技大學信息與電氣工程學院講師. 主要研究方向為非線性系統自適應控制和多智能體系統分布式控制. E-mail: xiaowb992@163.com

                李美柳:湖南科技大學信息與電氣工程學院講師. 主要研究方向為網絡化系統, 擾動估計與補償和時滯系統魯棒控制. E-mail: limeiliu@hnust.edu.cn

              Design and Digital Implementation of Spatial Repetitive Control for Fast Tool Servo System

              Funds: Supported by National Natural Science Foundation of China (62373145, 62173138), the Key Research and Development Programs of Department of Science and Technology of Hunan Province (2023GK2027), the Natural Science Foundation of Hunan Province (2021JJ30006, 2023JJ40297, 2023JJ40295), the Scientific Research Fund of Hunan Provincial Education Department (21A0321, 22B0468, 22C0244), and the Graduate Scientific Research Innovation Project of Hunan Province (CX20221055)
              More Information
                Author Bio:

                ZHOU Lan Professor at the School of Information and Electrical Engineering, Hunan University of Science and Technology. Her research interest covers nonlinear system, robust control and theory and application of repetitive control. Corresponding author of this paper

                YANG Qin Master student at the School of Information and Electrical Engineering, Hunan University of Science and Technology. His research interest covers repetitive control, numerical control machining and electromechanical system design

                PAN Chang-Zhong Professor at the School of Information and Electrical Engineering, Hunan University of Science and Technology. His research interest covers nonlinear control theory and applications, mechatronics and robot control, and intelligent control

                XIAO Wen-Bin Lecturer at the School of Information and Electrical Engineering, Hunan University of Science and Technology. Her research interest covers adaptive control for nonlinear systems and distributed control for multi-agent systems

                LI Mei-Liu Lecturer at the School of Information and Electrical Engineering, Hunan University of Science and Technology. Her research interest covers networked control systems, disturbance estimation and rejection, and robust control in time-delay systems

              • 摘要: 在非圓零件車削過程中, 快速刀具伺服(Fast tool servo, FTS)的運動精度直接影響零件的加工質量. 主軸變速加工使得FTS的參考目標信號周期時變而不確定, 這對實現其漸近跟蹤提出了極大的挑戰. 本文利用FTS的位置域周期特性, 提出一種基于位置域重復控制和時域速度反饋鎮定的FTS系統復合控制設計方法, 并給出位置域改進型重復控制器(Spatial modified repetitive controller, SMRC)的數字實現算法, 實現對時變周期參考目標信號的高精度跟蹤. 首先, 建立包含位置相關時變周期參考目標信號內模的SMRC, 并引入位置域相位超前裝置對鎮定補償器引起的相位滯后進行補償, 在此基礎上構建復合控制律. 然后應用小增益定理和算子理論, 推導出閉環系統的穩定性條件, 在保持系統采樣頻率不變的條件下, 應用插值法建立SMRC的數字實現算法, 確保位置域重復控制和時域鎮定控制器的同步執行. 最后, 通過仿真驗證所設計的FTS控制系統具有滿意的時變周期跟蹤性能和魯棒性, 并通過與其他位置域重復控制方法的比較, 說明所提方法同時具有更好的暫態和穩態性能.
              • 圖  1  橢圓零件加工示意圖

                Fig.  1  Elliptical workpiece machining schematic

                圖  2  基于位置域改進型重復控制的FTS系統框圖

                Fig.  2  Block diagram of SMRC-based FTS system

                圖  3  位置域基本重復控制器和改進型重復控制器的零極點分布圖和幅值特性曲線

                Fig.  3  Zero-pole map and Bode plots of spatial basic repetitive controller and SMRC

                圖  4  $r(t)=0$時FTS控制系統的等價形式

                Fig.  4  Equivalent form of FTS system when $r(t)=0$

                圖  5  時域純時滯環節的數字實現

                Fig.  5  Digital implementation of the pure time-delay link in the time domain

                圖  6  位置域時滯單元輸入輸出曲線

                Fig.  6  Input and output curves of the delay element in position domain

                圖  7  位置相關周期信號等時采樣示意圖

                Fig.  7  Diagram of isochronous sampling of a position-dependent periodic signal

                圖  8  位置域改進型重復控制器數字實現算法流程圖

                Fig.  8  Flowchart of the digital implementation algorithm for SMRC

                圖  9  參考信號在時間域和位置域的曲線

                Fig.  9  Reference signal curves in the time and position domains

                圖  10  $Q_{{{m}}}(s)$和$1+G(s)$的伯德圖

                Fig.  10  Bode plots of $Q_{{{m}}}(s)$ and $1+G(s)$

                圖  11  基于SMRC方法的FTS系統輸出響應

                Fig.  11  Output response of the SMRC-based FTS

                圖  12  不同相位補償因子的跟蹤誤差對比

                Fig.  12  Tracking errors with different phase compensation factors

                圖  13  存在參數攝動時的誤差曲線

                Fig.  13  Tracking error with parameter perturbation

                圖  14  無速度反饋時的$Q_{{{m}}}(s)$和$1+G^{\prime}(s)$伯德圖

                Fig.  14  Bode plots of $Q_{{{m}}}(s)$ and $1+G^{\prime}(s)$ without velocity feedback

                圖  15  本文方法與傳統定周期時域重復控制方法的對比

                Fig.  15  Comparison of our method with the conventional fixed-period time-domain repetitive control method

                圖  16  本文方法與Liu等[32]和Yao等[33]的跟蹤誤差對比

                Fig.  16  Comparison of the tracking error between our method and the methods proposed by Liu et al.[32] and Yao et al.[33]

                表  1  音圈式直線電機相關參數

                Table  1  Parameters of the voice coil type linear motor

                參數 符號 單位 數值
                彈簧剛度 $ K $ ${\rm{N/m }} $ 4 980
                阻尼系數 $ C $ ${\rm{N\cdot s\cdot m^{-1}}}$ 14.51
                動子質量 $ M $ ${\rm{Kg }} $ 0.32
                電機力常數 $ K_{m} $ ${\rm{N/A }} $ 12.325
                放大器增益 $ K_a $ ${\rm{A/v}} $ 1.6
                下載: 導出CSV

                表  2  性能指標對比

                Table  2  Comparison of performance indices

                控制方法 $\max|e(t)|_{0<t\leq 20}$ $e_{pp}\;(0 < t\leq 20)$ $\max|e(t)|_{t>20} $ $e_{pp}\;(t > 20)$
                CRC $8.744\times10^{-2} $ $17.393\times10^{-2} $ $9.707\times10^{-3} $ $1.580\times10^{-2} $
                Liu等[32] $3.246\times10^{-2} $ $5.993\times10^{-2} $ $1.006\times10^{-3} $ $1.992\times10^{-3} $
                Yao等[33] $2.315\times10^{-2} $ $3.684\times10^{-2} $ $6.737\times10^{-3} $ $1.347\times10^{-2} $
                本文方法 2.315 × 10?2 3.665 × 10?2 6.759 × 10?4 1.334 × 10?3
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Zhu Z H, Huang P, To S, Zhu L M, Zhu Z W. Fast-tool-servo-controlled shear-thickening micropolishing. International Journal of Machine Tools & Manufacture, 2023, (184): Article No. 103968
                        [2] Zhao D P, Zhu Z H, Huang P, Guo P, Zhu L M, Zhu Z W. Development of a piezoelectrically actuated dual-stage fast tool servo. Mechanical Systems and Signal Processing, 2020, 144: Article No. 106873
                        [3] Ding F, Luo X C, Zhong W B, Chang W L. Design of a new fast tool positioning system and systematic study on its positioning stability. International Journal of Machine Tools and Manufacture, 2019, 142: 54?65 doi: 10.1016/j.ijmachtools.2019.04.008
                        [4] 吳丹, 趙彤, 陳懇. 快速刀具伺服系統自抗擾控制的研究與實踐. 控制理論與應用, 2013, 30(12): 1534?1542

                        Wu Dan, Zhao Tong, Chen Ken. Research and industrial applications of active disturbance rejection control to fast tool servos. Control Theory & Applications, 2013, 30(12): 1534?1542
                        [5] 吳丹, 王先逵, 易旺民, 高楊. 重復控制及其在變速非圓車削中的應用. 中國機械工程, 2004, 15(5): 446?449

                        Wu Dan, Wang Xian-Kui, Yi Wang-Min, Gao Yang. Repetitive control and its applications to variable spindle speed noncircular turning. China Mechanical Engineering, 2004, 15(5): 446?449
                        [6] Qin X B, Wan M, Zhang W H, Yang Y. Chatter suppression with productivity improvement by scheduling a C3 continuous feedrate to match spindle speed variation. Mechanical Systems and Signal Processing, 2023, 118: Article No. 110021
                        [7] Dong X F, Shen X H, Fu Z F. Stability analysis in turning with variable spindle speed based on the reconstructed semi-discretization method. The International Journal of Advanced Manufacturing Technology, 2021, 117(11): 3393?3403
                        [8] Zhu W L, Yang X, Duan F, Zhu Z W, Ju B F. Design and adaptive terminal sliding mode control of a fast tool servo system for diamond machining of freeform surfaces. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4912?4922 doi: 10.1109/TIE.2017.2786281
                        [9] Huang W W, Guo P, Hu C X, Zhu L M. High-performance control of fast tool servos with robust disturbance observer and modified H control. Mechatronics, 2022, 84: Article No. 102781
                        [10] Zhou L, Liao C C, She J H, He Y, Li H Y. Command-filtered backstepping repetitive control for a class of uncertain nonlinear systems based on additive state decomposition. IEEE Transactions on Industrial Electronics, 2023, 70(5): 5150?5160 doi: 10.1109/TIE.2022.3186332
                        [11] 吳敏, 周蘭, 佘錦華, 何勇. 一類不確定線性系統的輸出反饋魯棒重復控制設計. 中國科學: 信息科學, 2010, 40(1): 54?62

                        Wu Min, Zhou Lan, She Jin-Hua, He Yong. Design of robust output-feedback repetitive controller for class of linear systems with uncertainties. Science China Information Sciences, 2010, 40(1): 54?62
                        [12] Ye J, Liu L G, Xu J B, Shen A W. Frequency adaptive proportional-repetitive control for grid-connected inverters. IEEE Transactions on Industrial Electronics, 2021, 68(9): 7965?7974 doi: 10.1109/TIE.2020.3016247
                        [13] Lu C J, Zhou B, Meng F S, Chang Q Y. Control scheme based on improved odd-harmonic repetitive control for third-harmonic injection two-stage matrix converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(4): 3839?3852 doi: 10.1109/JESTPE.2023.3279414
                        [14] Tian M H, Wang B, Yu Y, Dong Q H, Xu D G. Discrete-time repetitive control-based ADRC for current loop disturbances suppression of PMSM drives. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3138?3149 doi: 10.1109/TII.2021.3107635
                        [15] Kurniawan E, Harno H G, Wang H, Prakosa J A, Sirenden B H, Septanto H, et al. Robust adaptive repetitive control for unknown linear systems with odd-harmonic periodic disturbances. Science China Information Sciences, 2022, 65(12): Article No. 222202
                        [16] Huang W W, Zhang X Q, Zhu L M. Band-stop-filter-based repetitive control of fast tool servos for diamond turning of micro-structured functional surfaces. Precision Engineering, 2023, 83: 124?133 doi: 10.1016/j.precisioneng.2023.05.008
                        [17] Zhou L, Gao D X, She J H. Tracking control for a position-dependent periodic signal in a variable-speed rotational system. Automatica, 2023, 158: Article No. 111282
                        [18] Steinbuch M, Weiland S, Singh T. Design of noise and period-time robust high-order repetitive control, with application to optical storage. Automatica, 2007, 43(12): 2086?2095 doi: 10.1016/j.automatica.2007.04.011
                        [19] Zhou K L, Tang C, Chen Y X, Zhang B, Lu W Z. A generic multi-frequency repetitive control scheme for power converters. IEEE Transactions on Industrial Electronics, 2023, 70(12): 12680?12688 doi: 10.1109/TIE.2023.3239855
                        [20] Wu Y L, Song X D, Li H, Chen B D. Suppression of harmonic current in permanent magnet synchronous motors using improved repetitive controller. Electronics Letters, 2019, 55(1): 47?49 doi: 10.1049/el.2018.7035
                        [21] Liu Z C, Zhou K L, Yang Y H, Wang J C, Zhang B. Frequency-adaptive virtual variable sampling-based selective harmonic repetitive control of power inverters. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11339?11347 doi: 10.1109/TIE.2020.3031452
                        [22] Kurniawan E, Cao Z W, Man Z H. Digital design of adaptive repetitive control of linear systems with time-varying periodic disturbances. IET Control Theory & Applications, 2014, 8(17): 1995?2003
                        [23] Wu C, Nian H, Pang B, Cheng P. Adaptive repetitive control of DFIG-DC system considering stator frequency variation. IEEE Transactions on Power Electronics, 2019, 34(4): 3302?3312 doi: 10.1109/TPEL.2018.2854261
                        [24] Olm J M, Ramos G A, Costa-Castelló R. Stability analysis of digital repetitive control systems under time-varying sampling period. IET Control Theory & Applications, 2011, 5(1): 29?37
                        [25] 陳強, 胡如海, 胡軼. 一類非參數不確定運動系統的自適應空間重復學習控制. 高技術通訊, 2022, 32(6): 565?575

                        Chen Qiang, Hu Ru-Hai, Hu Yi. Adaptive spatial repetitive learning control for a class of nonparametric uncertain motion systems. Chinese High Technology Letters, 2022, 32(6): 565?575
                        [26] Nakano M, She J H, Mastuo Y, Hino T. Elimination of position-dependent disturbances in constant-speed-rotation control systems. Control Engineering Practice, 1996, 4(9): 1241?1248 doi: 10.1016/0967-0661(96)00130-X
                        [27] Huo X, Wang M Y, Liu K Z, Tong X G. Attenuation of position-dependent periodic disturbance for rotary machines by improved spatial repetitive control with frequency alignment. IEEE/ASME Transactions on Mechatronics, 2020, 25(1): 339?348 doi: 10.1109/TMECH.2019.2946675
                        [28] Chen C L, Chiu G T C. Spatially periodic disturbance rejection with spatially sampled robust repetitive control. Journal of Dynamic Systems, Measurement, and Control, 2008, 130(2): Article No. 021002
                        [29] Castro R S, Flores J V, Salton A T. Robust discrete-time spatial repetitive controller. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2696?2702 doi: 10.1109/TCST.2018.2866978
                        [30] Kolluri S, Gorla N B Y, Sapkota R, Panda S K. A new control architecture with spatial comb filter and spatial repetitive controller for circulating current harmonics elimination in a droop-regulated modular multilevel converter for wind farm application. IEEE Transactions on Power Electronics, 2019, 34(11): 10509?10523 doi: 10.1109/TPEL.2019.2897150
                        [31] Chen C L, Yang Y H. Position-dependent disturbance rejection using spatial-based adaptive feedback linearization repetitive control. International Journal of Robust and Nonlinear Control, 2009, 19(12): 1337?1363 doi: 10.1002/rnc.1382
                        [32] Liu Q Q, Huo X, Liu K Z, Zhao H. Accurate cycle aligned repetitive control for the rejection of spatially cyclic disturbances. IEEE Transactions on Industrial Electronics, 2022, 69(6): 6173?6181 doi: 10.1109/TIE.2021.3086705
                        [33] Yao W S, Tsai M C, Yamamoto Y. Implementation of repetitive controller for rejection of position-based periodic disturbances. Control Engineering Practice, 2013, 21(9): 1226?1237 doi: 10.1016/j.conengprac.2013.04.010
                        [34] Tang M, Gaeta A, Formentini A, Zanchetta P. A fractional delay variable frequency repetitive control for torque ripple reduction in PMSMs. IEEE Transactions on Industry Applications, 2017, 53(6): 5553?5562 doi: 10.1109/TIA.2017.2725824
                        [35] Mahawan B, Luo Z H. Repetitive control of tracking systems with time-varying periodic references. International Journal of Control, 2000, 73(1): 1?10 doi: 10.1080/002071700219885
                        [36] 鄧中亮, 王先逵. 基于傅里葉級數的非圓截面車削進給運動特征分析. 機械工程學報, 1999, 35(2): 10?14

                        Deng Zhong-Liang, Wang Xian-Kui. Analyses on feed kinematic behaviors in turning of noncircular sectional element based on Fourier series. Chinese Journal of Mechanical Engineering, 1999, 35(2): 10?14
                        [37] Hara S, Yamamoto Y, Omata T, Nakano M. Repetitive control system: A new type servo system for periodic exogenous signals. IEEE Transactions on Automatic Control, 1988, 33(7): 659?668 doi: 10.1109/9.1274
                        [38] 黃科元, 周滔滔, 黃守道, 黃慶. 含前饋補償和微分反饋的數控位置伺服系統. 中國機械工程, 2014, 25(15): 2017?2023

                        Huang Ke-Yuan, Zhou Tao-Tao, Huang Shou-Dao, Huang Qing. CNC position servo system with feedforward compensation and differential feedback. China Mechanical Engineering, 2014, 25(15): 2017?2023
                        [39] Khalil H K. Nonlinear Systems (Third edition). Upper Saddle River: Patience Hall, 2002.
                        [40] Du Z Q, Zhou Z D, Ai W, Chen Y P. A linear drive system for the dynamic focus module of SLS machines. The International Journal of Advanced Manufacturing Technology, 2007, 32(11): 1211?1217
                      2. 加載中
                      3. 計量
                        • 文章訪問數:  305
                        • HTML全文瀏覽量:  127
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2023-06-19
                        • 錄用日期:  2023-09-08
                        • 網絡出版日期:  2023-10-25

                        目錄

                          /

                          返回文章
                          返回