1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              基于漸進高斯濾波融合的多視角人體姿態估計

              楊旭升 吳江宇 胡佛 張文安

              楊旭升, 吳江宇, 胡佛, 張文安. 基于漸進高斯濾波融合的多視角人體姿態估計. 自動化學報, 2024, 50(3): 607?616 doi: 10.16383/j.aas.c230316
              引用本文: 楊旭升, 吳江宇, 胡佛, 張文安. 基于漸進高斯濾波融合的多視角人體姿態估計. 自動化學報, 2024, 50(3): 607?616 doi: 10.16383/j.aas.c230316
              Yang Xu-Sheng, Wu Jiang-Yu, Hu Fo, Zhang Wen-An. Multi-view human pose estimation based on progressive Gaussian filtering fusion. Acta Automatica Sinica, 2024, 50(3): 607?616 doi: 10.16383/j.aas.c230316
              Citation: Yang Xu-Sheng, Wu Jiang-Yu, Hu Fo, Zhang Wen-An. Multi-view human pose estimation based on progressive Gaussian filtering fusion. Acta Automatica Sinica, 2024, 50(3): 607?616 doi: 10.16383/j.aas.c230316

              基于漸進高斯濾波融合的多視角人體姿態估計

              doi: 10.16383/j.aas.c230316
              基金項目: 浙江省“尖兵”“領雁”研發攻關計劃(2022C03114), 浙江省自然科學基金(LY23F030006)資助
              詳細信息
                作者簡介:

                楊旭升:浙江工業大學信息工程學院副教授. 主要研究方向為信息融合估計, 人體姿態估計和目標定位. 本文通信作者. E-mail: xsyang@zjut.edu.cn

                吳江宇:浙江工業大學信息工程學院碩士研究生. 主要研究方向為人體姿態估計和信息融合估計. E-mail: wujiangyu@zjut.edu.cn

                胡佛:浙江工業大學信息工程學院助理研究員. 主要研究方向為人機交互, 情感計算和人工智能. E-mail: fohu@zjut.edu.cn

                張文安:浙江工業大學信息工程學院教授. 主要研究方向為多源信息融合估計及應用. E-mail: wazhang@zjut.edu.cn

              Multi-view Human Pose Estimation Based on Progressive Gaussian Filtering Fusion

              Funds: Supported by Zhejiang Province “Pioneer” and “Leading Goose” Research and Development Project (2022C03114) and Natural Science Foundation of Zhejiang Province (LY23F030006)
              More Information
                Author Bio:

                YANG Xu-Sheng Associate professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers information fusion estimation, human pose estimation, and target positioning. Corresponding author of this paper

                WU Jiang-Yu Master student at the College of Information Engineering, Zhejiang University of Technology. His research interest covers human pose estimation and information fusion estimation

                HU Fo Assistant researcher at the College of Information Engineering, Zhejiang University of Technology. His research interest covers human machine interaction, emotional computing, and artificial intelligence

                ZHANG Wen-An Professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers multi-sensor information fusion estimation and its applications

              • 摘要: 針對視覺遮擋引起的人體姿態估計(Human pose estimation, HPE)性能下降問題, 提出基于漸進高斯濾波(Progressive Gaussian filtering, PGF)融合的人體姿態估計方法. 首先, 設計分層性能評估方法對多視覺量測進行分類處理, 以適應視覺遮擋引起的量測不確定性問題. 其次, 構建分布式漸進貝葉斯濾波融合框架, 以及設計一種分層分類融合估計方法來提升復雜量測融合的魯棒性和準確性. 特別地, 針對量測統計特性變化問題, 利用局部估計間的交互信息來引導漸進量測更新, 從而隱式地補償量測不確定性. 最后, 仿真與實驗結果表明, 相比于現有的方法, 所提的人體姿態估計方法具有更高的準確性和魯棒性.
              • 圖  1  多視覺人體姿態估計示意圖

                Fig.  1  Schematic diagram of multi-vision human pose estimation

                圖  2  量測相容性分析

                Fig.  2  Measurement compatibility analysis

                圖  3  方法框圖

                Fig.  3  Method block diagram

                圖  4  不同濾波融合方法下的位置誤差

                Fig.  4  Position error under different filtering fusion methods

                圖  5  人體姿態估計實驗平臺

                Fig.  5  Human pose estimation experimental platform

                圖  6  不同濾波融合方法下的累積位置誤差

                Fig.  6  Cumulative position error under different filtering fusion methods

                表  1  累積誤差均值統計(mm)

                Table  1  Cumulative error mean statistics (mm)

                實驗方法腕關節肘關節肩關節
                觀測融合166.44124.4496.56
                CF157.55118.0095.00
                AMFKF147.81113.8593.08
                CI127.63117.8599.62
                IWCF153.12113.2192.53
                PGFFwoC151.77114.1292.83
                PGFFwC119.47108.9884.11
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Desmarais Y, Mottet D, Slangen P, Montesinos P. A review of 3D human pose estimation algorithms for markerless motion capture. Computer Vision and Image Understanding, 2021, 212: Article No. 103275 doi: 10.1016/j.cviu.2021.103275
                        [2] Yang X, Yin S, Zhang W A, Hu F, Yu L, Asynchronous Gaussian filtering fusion for human motion estimation based on RGB-D cameras. IEEE Sensors Journal, 2023, 23(22): 28044-28054 doi: 10.1109/JSEN.2023.3323869
                        [3] 杜惠斌, 趙憶文, 韓建達, 趙新剛, 王爭, 宋國立. 基于集員濾波的雙Kinect人體關節點數據融合. 自動化學報, 2016, 42(12): 1886-1898

                        Du Hui-bin, Zhao Yi-wen, Han Jian-da, Zhao Xin-Gang, Wang Zheng, Song Guo-Li. Data fusion of dual Kinect human body joints based on ensemble filtering. Acta Automatica Sinica, 2022, 42(9): 2830-2837
                        [4] Wang J, Tan S, Zhen X, Xu S, Zheng F, He Z, et al. Deep 3D human pose estimation: a review. Computer Vision and Image Understanding, 2021, 210: Article No. 103225 doi: 10.1016/j.cviu.2021.103225
                        [5] 蔡興泉, 霍宇晴, 李發建, 孫海燕. 面向太極拳學習的人體姿態估計及相似度計算. 圖學學報, 2022, 43(4): 695-706

                        Cai Xing-Quan, Huo Yu-Qing, Li Fa-Jian, Sun Hai-Yan. Human posture estimation and similarity calculation for Taijiquan learning. Journal of Graphics, 2022, 43(4): 695-706
                        [6] 張鋆豪, 何百岳, 楊旭升, 張文安. 基于可穿戴式慣性傳感器的人體運動跟蹤方法綜述. 自動化學報, 2019, 45(8): 1439-1454

                        Zhang Jun-Hao, He Bai-Yue, Yang Xu-Sheng, Zhang Wen-An. A review of human motion tracking methods based on wearable inertial sensors. Acta Automatica Sinica, 2019, 45(8): 1439-1454
                        [7] Casalino A, Guzman S, Maria Zanchettin A, Rocco P. Human pose estimation in presence of occlusion using depth camera sensors, in human-robot coexistence scenarios. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018. 1?7
                        [8] Moon S, Park Y, Ko D W, Suh I H. Multiple Kinect sensor fusion for human skeleton tracking using Kalman filtering. International Journal of Advanced Robotic Systems, 2016, 13(2): 315-323
                        [9] Liu G, Tian G, Li J, Zhu X, Wang Z. Human action recognition using a distributed RGB-depth camera network. IEEE Sensors Journal, 2018, 18(18): 7570-7576 doi: 10.1109/JSEN.2018.2859268
                        [10] He H, Liu G, Zhu X, He L, Tian G. Interacting multiple model-based human pose estimation using a distributed 3D camera network. IEEE Sensors Journal, 2019, 19(22): 10584-10590 doi: 10.1109/JSEN.2019.2931603
                        [11] Ahmed F, Hossain Bari A S M, Sieu B, Sadeghi J, Scholten J, Gavrilova M L. Kalman filter-based noise reduction framework for posture estimation using depth sensor. In: Proceedings of the 18th IEEE International Conference on Cognitive Informatics and Cognitive Computing. Milan, Italy: IEEE, 2019. 150?158
                        [12] Yeung K Y, Kwok T H, Wang C C L. Improved skeleton tracking by duplex Kinects: a practical approach for real-time applications. Journal of Computing and Information Science in Engineering, 2013, 13(4): Article No. 041007
                        [13] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233 doi: 10.1109/JPROC.2006.887293
                        [14] Kalman R E, Bucy R S. New results in linear filtering and prediction theory. Journal of Basic Engineering, 1961, 83(1): 95-108 doi: 10.1115/1.3658902
                        [15] 楊旭升, 張文安, 俞立. 適用于事件觸發的分布式隨機目標跟蹤方法. 自動化學報, 2017, 43(8): 1393-1401

                        Yang Xu-Sheng, Zhang Wen-An, Yu Li. Distributed random target tracking method suitable for event triggering. Acta Automatica Sinica, 2017, 43(8): 1393-1401
                        [16] Yang X, Zhang W A, Chen M Z Q, Yu L. Hybrid sequential fusion estimation for asynchronous sensor network-based target tracking. IEEE Transactions on Control Systems Technology, 2017, 25(2): 669-676 doi: 10.1109/TCST.2016.2558632
                        [17] Yang X, Zhang W A, Yu L, Yang F. Sequential Gaussian approximation filter for target tracking with nonsynchronous measurements. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 407-418 doi: 10.1109/TAES.2018.2852398
                        [18] Coskun H, Achilles F, DiPietro R, Navab N, Tombari F. Long short-term memory Kalman filters: Recurrent neural estimators for pose regularization. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 5525?5533
                        [19] Pathirana P N, Li S, Trinh H M, Seneviratne A. Robust real-time bio-kinematic movement tracking using multiple Kinects for tele-rehabilitation. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1822-1833 doi: 10.1109/TIE.2015.2497662
                        [20] 賈曉凌, 張文安, 楊旭升. 視覺遮擋下的人體姿態魯棒估計. 高技術通訊, 2021, 31(11): 1210-1218 doi: 10.3772/j.issn.1002-0470.2021.11.011

                        Jia Xiao-Ling, Zhang Wen-An, Yang Xu-Sheng. Robust estimation of human posture under visual occlusion. High Technology Communications, 2021, 31(11): 1210-1218 doi: 10.3772/j.issn.1002-0470.2021.11.011
                        [21] 鄭婷婷, 楊旭升, 張文安, 俞立. 一種高斯漸進濾波框架下的目標跟蹤方法. 自動化學報, 2018, 44(12): 2250-2258

                        Zheng Ting-Ting, Yang Xu-Sheng, Zhang Wen-An, Yu Li. A target tracking method in Gaussian progressive filtering framework. Acta Automatica Sinica, 2018, 44(12): 2250-2258
                        [22] Yang X, Zhao C, Chen B. Progressive Gaussian approximation filter with adaptive measurement update. Measurement, 2019, 148: Article No. 106898 doi: 10.1016/j.measurement.2019.106898
                        [23] Zhang J, Yang X, Zhang W A. A progressive Bayesian filtering framework for nonlinear systems with heavy-tailed noises. IEEE Transactions on Automatic Control, 2023, 68(3): 1918-1925 doi: 10.1109/TAC.2022.3172165
                        [24] Ivorra E, Ortega Pérez M, Alcaniz Raya M L. Azure Kinect body tracking under review for the specific case of upper limb exercises. MM Science Journal (Online), 2021, 2021: 4333-4341 doi: 10.17973/MMSJ.2021_6_2021012
                        [25] Yang X, Zhang W A, Liu A, Yu L. Linear fusion estimation for range-only target tracking with nonlinear transformation. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6403-6412 doi: 10.1109/TII.2019.2955931
                        [26] Romeo L, Marani R, Malosio M, Perri A G, D'Orazio T. Performance analysis of body tracking with the Microsoft Azure Kinect. In: Proceedings of the 29th Mediterranean Conference on Control and Automation. Puglia, Italy: IEEE, 2021. 572?577
                        [27] Antico M, Balletti N, Laudato G, Lazich A, Notarantonio M, Oliveto R, et al. Postural control assessment via Microsoft Azure Kinect DK: an evaluation study. Computer Methods and Programs in Biomedicine, 2021, 209: Article No. 106324 doi: 10.1016/j.cmpb.2021.106324
                        [28] Nagymáté G, M Kiss R. Application of OptiTrack motion capture systems in human movement analysis. Recent Innovations in Mechatronics, 2018, 5(1): 1-9
                      2. 加載中
                      3. 圖(6) / 表(1)
                        計量
                        • 文章訪問數:  281
                        • HTML全文瀏覽量:  79
                        • PDF下載量:  116
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2023-05-29
                        • 錄用日期:  2023-11-03
                        • 網絡出版日期:  2024-02-21
                        • 刊出日期:  2024-03-29

                        目錄

                          /

                          返回文章
                          返回