基于數據驅動(dòng)的冗余機器人末端執行器位姿控制方案
doi: 10.16383/j.aas.c230273
-
1.
蘭州大學(xué)信息科學(xué)與工程學(xué)院 蘭州 730000
-
2.
騰訊科技(深圳)有限公司Robotics X 深圳 518057
Position and Orientation Control Scheme for End-effector of Redundant Manipulators Based on Data-driven Technology
-
1.
School of Information Science and Engineering, Lanzhou University, Lanzhou 730000
-
2.
Robotics X, Tencent Technology (Shenzhen) Company Limited, Shenzhen 518057
-
摘要: 模型未知的冗余機器人執行任務(wù)的過(guò)程中會(huì )產(chǎn)生較大的控制誤差, 其末端執行器的位置與姿態(tài)也需要針對不同任務(wù)進(jìn)行修正. 為解決該問(wèn)題, 提出一種基于數據驅動(dòng)的冗余機器人末端執行器位置與姿態(tài)控制方案. 該方案使用在線(xiàn)學(xué)習技術(shù), 能夠應用于模型未知的冗余機器人控制. 同時(shí)引入四元數表示法將控制機器人末端執行器姿態(tài)問(wèn)題轉化為基于四元數表示的控制方法. 隨后, 設計一種神經(jīng)動(dòng)力學(xué)求解器對所提方案進(jìn)行求解. 相關(guān)的理論分析、仿真及對比體現了所提方案的可行性、有效性與新穎性.
-
關(guān)鍵詞:
- 冗余機器人 /
- 數據驅動(dòng) /
- 位姿控制 /
- 軌跡跟蹤
Abstract: A redundant manipulator with unknown models produces a large control error during a task execution, and the position and orientation of its end-effector need to be corrected for different tasks. To solve this problem, a position and orientation control scheme for the end-effector of a redundant manipulator is proposed based on a data-driven technology. The proposed scheme utilizes an online learning technology, which is able to be applied to control a redundant manipulator with unknown models. By introducing the quaternion representation, the rotation matrix controlling the orientation of the end-effector of a redundant manipulator is transformed into a quaternion representation control method. In addition, a neural dynamics solver is designed to solve the proposed scheme. Theoretical analysis, simulations, and comparisons demonstrate the feasibility, validity, and novelty of the proposed scheme. -
圖 1 采用所提方案(14)實(shí)現冗余機器人末端執行器位置跟蹤與姿態(tài)保持的仿真結果
Fig. 1 Simulation results of the redundant manipulator using the proposed scheme (14) to achieve position tracking and orientation maintenance
圖 2 采用所提方案(14)實(shí)現冗余機器人位置與姿態(tài)跟蹤的仿真結果
Fig. 2 Simulation results of the redundant manipulator using the proposed scheme (14) to achieve position and orientation tracking
圖 3 基于CoppeliaSim平臺冗余機器人實(shí)現位置與姿態(tài)跟蹤的對比結果
Fig. 3 Comparison results of the redundant manipulator achieving position and orientation tracking based on CoppeliaSim platform
表 1 所提冗余機器人控制方案的符號含義
Table 1 Definitions of variables of the proposed scheme for redundant manipulators
符號 含義 $ {{\boldsymbol{\theta}}} \in {\bf{R}}^a $ 機器人關(guān)節角向量 $ \dot{\boldsymbol{\theta}}\in {\bf{R}}^a $ 機器人關(guān)節角速度向量 $ \dot{\boldsymbol{\theta}}^{-}(\dot{\boldsymbol{\theta}}^{+}) $ 關(guān)節角速度的下界(上界) $ {\boldsymbol r}\in {\bf{R}}^b $ 末端執行器的位置向量 $ \boldsymbol{r}^rf50c1hsl6\in {\bf{R}}^b $ 末端執行器的期望位置向量 $ \dot{\boldsymbol r}\in {\bf{R}}^b $ 末端執行器的速度向量 $ \dot{\hat{\boldsymbol r}}\in {\bf{R}}^b $ 末端執行器的估計速度向量 $ f(\cdot): {\bf{R}}^a \rightarrow {\bf{R}}^b $ 機器人非線(xiàn)性前向運動(dòng)學(xué)映射 $ J=\dfrac{\partial f({{\boldsymbol{\theta}}})}{\partial {{\boldsymbol{\theta}}}}\in {\bf{R}}^{b\times a} $ 機器人雅可比矩陣 $ \hat{J}\in {\bf{R}}^{b\times a} $ 機器人估計雅可比矩陣 $ {\dot{\hat{J}}}\in {\bf{R}}^{b\times a} $ 機器人估計雅可比矩陣的導數 $ M(\boldsymbol \theta)\in {\bf{R}}^{3\times 3} $ 末端執行器的方向旋轉矩陣 $ {\boldsymbol q}_{E}(\boldsymbol \theta)\in {\bf{R}}^{4} $ 末端執行器的方向四元數 $ \boldsymbol{\overline{o}}(\boldsymbol \theta)\in {\bf{R}}^{5} $ 末端執行器的方向向量 $ \tilde{\boldsymbol q}\in {\bf{R}}^{5} $ 末端執行器的期望方向向量 $ H({\boldsymbol \theta})=\dfrac{\partial{\boldsymbol q}_{E}(\boldsymbol \theta)}{\partial{\boldsymbol \theta}}\in {\bf{R}}^{4\times a} $ $ {\boldsymbol q}_{E} $ 的雅可比矩陣 $ G({\boldsymbol{\theta}})=\dfrac{\partial{\boldsymbol{\overline{o}}({\boldsymbol{\theta}}})}{\partial{{\boldsymbol{\theta}}}}\in {\bf{R}}^{5\times a} $ $ \boldsymbol{\overline{o}}({\boldsymbol{\theta}}) $的雅可比矩陣 $ \kappa(\boldsymbol q)=\dfrac{\partial{{\tilde{\boldsymbol q}}}}{\partial{\boldsymbol q}}\in {\bf{R}}^{5\times 4} $ $ \tilde{\boldsymbol q} $ 的雅可比矩陣 $ \boldsymbol{u}\in {\bf{R}}^a $ 方差為極小值的獨立同分布零均值隨機噪聲 ${\boldsymbol{u} }_{0}\in {\bf{R} }^a$ $ \boldsymbol{u} $的上界 $ \hat{\dot{{\boldsymbol{\theta}}}}\in {\bf{R}}^a $ 受噪聲驅動(dòng)的關(guān)節角速度 $ \Vert \cdot \Vert_2 $ 向量的二范數 $ \mathrm{tr(\cdot)} $ 矩陣的跡 下載: 導出CSV表 2 冗余機器人不同軌跡跟蹤控制方案對比
Table 2 Comparison of different trajectory tracking control schemes for redundant manipulators
下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 胡靜. 冗余自由度機器人的路徑規劃研究[碩士學(xué)位論文], 東南大學(xué), 中國, 2017.Hu Jing. Research on Path Planning of Redundant Robot [Master thesis], Southeast University, China, 2017. [2] 李亞昕, 王國磊, 張劍輝, 田鑫亮, 安靜, 陳懇. 基于碰撞反饋的冗余機器人避障規劃算法. 清華大學(xué)學(xué)報(自然科學(xué)版), 2022, 62(03): 408-415 doi: 10.16511/j.cnki.qhdxxb.2021.25.022Li Ya-Xin, Wang Guo-Lei, Zhang Jian-Hui, Tian Xin-Liang, An Jing, Chen Ken. Obstacle avoidance alorithm for redundant robots based on collision feedback. Journal of Tsinghua University(Science and Technology), 2022, 62(03): 408-415 doi: 10.16511/j.cnki.qhdxxb.2021.25.022 [3] 劉美嬌. 空間超冗余四足爬行機器人軌跡規劃方法研究[博士學(xué)位論文], 中國科學(xué)院大學(xué), 中國, 2023.Liu Mei-Jiao. Research on Trajectory Planning Method of Spatial Hyper-Redundant Quadruped Crawling Robot [Ph.D. dissertation], University of Chinese Academy of Sciences, China, 2023. [4] 梁旭, 蘇婷婷, 侯增廣, 劉圣達, 章杰, 何廣平. 基于變阻抗控制的冗余驅動(dòng)并聯(lián)機器人多目標內力優(yōu)化. 自動(dòng)化學(xué)報, 2023, 49(5): 1099-1115 doi: 10.16383/j.aas.c210963Liang Xu, Su Ting-Ting, Hou Zeng-Guang, Liu Sheng-Da, Zhang Jie, He Guang-Ping. A multi-objective internal preload optimization method of redundantly actuated parallel robots based on variable impedance control. Acta Automatica Sinica, 2023, 49(5): 1099-1115 doi: 10.16383/j.aas.c210963 [5] 鄺禹聰. 面向實(shí)驗教學(xué)的六自由度機器人開(kāi)發(fā)[碩士學(xué)位論文], 華南理工大學(xué), 中國, 2017.Kuang Yu-Cong. Develpment of 6-DOF Robot for Experiment Teaching [Master thesis], South China University of Technology, China, 2017. [6] Xu Zhi-Hao, Zhou Xue-Feng, Wu Hong-Min, Li Xiao-Xiao, Li Shuai. Motion planning of manipulators for simultaneous obstacle avoidance and target tracking: An RNN approach with guaranteed performance. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3887-3897 doi: 10.1109/TIE.2021.3073305 [7] Thakar Shantanu, Rajendran Pradeep, Kabir Ariyan, Gupta Satyandra. Manipulator motion planning for part pickup and transport operations from a moving base. IEEE Transactions on Automation Science and Engineering, 2022, 19(1): 191-206 doi: 10.1109/TASE.2020.3020050 [8] Xie Zheng-Tai, Jin Long, Luo Xin, Sun Zhong-Bo, Liu Mei. RNN for repetitive motion generation of redundant robot manipulators: An orthogonal projection-based scheme. IEEE Transactions on Neural Networks and Learning Systems, 2022 33(2): 615-628 doi: 10.1109/TNNLS.2020.3028304 [9] 李中奇, 周靚, 楊輝. 高速動(dòng)車(chē)組數據驅動(dòng)無(wú)模型自適應控制方法. 自動(dòng)化學(xué)報, 2023, 49(2): 437-447 doi: 10.16383/j.aas.c211068Li Zhong-Qi, Zhou Liang, Yang Hui. Data-driven model-free adaptive control method for high-speed electric multiple unit. Acta Automatica Sinica, 2023, 49(2): 437-447 doi: 10.16383/j.aas.c211068 [10] Lee Uichin, Jung Gyuwon, Ma Eun-Yeol, Kim Jin-San, Kim Heepyung, Alikhanov Jumabek, Noh Youngtae, Kim Heeyoung. Toward data-driven digital therapeutics analytics: Literature review and research directions. IEEE/CAA Journal of Automatica Sinica, 2023, 10(1): 42-66 doi: 10.1109/JAS.2023.123015 [11] 梁正平, 黃錫均, 李燊鈿, 王喜瑜, 朱澤軒. 基于剪枝堆棧泛化的離線(xiàn)數據驅動(dòng)進(jìn)化優(yōu)化. 自動(dòng)化學(xué)報, 2023, 49(6): 1306-1325 doi: 10.16383/j.aas.c220387Liang Zheng-Ping, Huang Xi-Jun, Li Shen-Tian, Wang Xi-Yu, Zhu Ze-Xuan. Offline data driven evolutionary optimization based on pruning stacked generalization. Acta Automatica Sinica, 2023, 49(6): 1306-1325 doi: 10.16383/j.aas.c220387 [12] 姜藝, 范家璐, 柴天佑. 數據驅動(dòng)的保證收斂速率最優(yōu)輸出調節. 自動(dòng)化學(xué)報, 2022, 48(4): 980-991 doi: 10.16383/j.aas.c200932Jiang Yi, Fan Jia-Lu, Chai Tian-You. Data-driven optimal output regulation with assured convergence rate. Acta Automatica Sinica, 2022, 48(4): 980-991 doi: 10.16383/j.aas.c200932 [13] Fan Jia-Liang, Jin Long, Xie Zheng-Tai, Li Shuai, Zheng Yu. Data-driven motion-force control scheme for redundant manipulators: A kinematic perspective. IEEE Transactions on Industrial Informatics, 2022, 18(8): 5338-5347 doi: 10.1109/TII.2021.3125449 [14] Xie Zheng-Tai, Jin Long, Luo Xin, Hu Bin, Li Shuai. An acceleration-level data-driven repetitive motion planning scheme for kinematic control of robots with unknown structure. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(9): 5679-5691 doi: 10.1109/TSMC.2021.3129794 [15] Jin Long, Zheng Xin. Neural dynamics for distributed collaborative control of manipulators with time delays. IEEE/CAA Journal of Automatica Sinica, 2022, 9(5): 854-863 doi: 10.1109/JAS.2022.105446 [16] Ma Bo-Yu, Xie Zong-Wu, Zhan Bo-Wen, Jiang Zai-Nan, Liu Yang, Liu Hong. Actual shape-based obstacle avoidance synthesized by velocity-acceleration minimization for redundant manipulators: An optimization perspective. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023: 1-15 doi: 10.1109/TSMC.2023.3283266, to be published [17] Zhang Zhi-Jun, He Hao-Tian, Deng Xian-Zhi. An FPGA-implemented antinoise fuzzy recurrent neural network for motion planning of redundant robot manipulators. IEEE Transactions on Neural Networks and Learning Systems, 2023: 1-13 doi: 10.1109/TNNLS.2023.3253801, to be published [18] Li Shuai, Shao Zi-Li, Guan Yong. A dynamic neural network approach for efficient control of manipulators. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(5): 932-941 doi: 10.1109/TSMC.2017.2690460 [19] Guo Kun-Lin, Su Hang, Yang Cheng-Guang. A small opening workspace control strategy for redundant manipulator based on RCM method. IEEE Transactions on Control Systems Technology, 2022, 30(6): 2717-2725 doi: 10.1109/TCST.2022.3145645 [20] 張振國, 毛建旭, 譚浩然, 王耀南, 張雪波, 江一鳴. 重大裝備制造多機器人任務(wù)分配與運動(dòng)規劃技術(shù)研究綜述. 自動(dòng)化學(xué)報, 2024, 50(1): 21?41Zhang Zhen-Guo, Mao Jian-Xu, Tan Hao-Ran, Wang Yao-Nan, Zhang Xue-Bo, Jiang Yi-Ming. A review of task allocation and motion planning for multi-robot in major equipment manufacturing. Acta Automatica Sinica, 2024, 50(1): 21?41 [21] Khail H. Nonlinear Systems 3rd Edition. Englewood Cliffs: Prentice-Hall, 2001. [22] Yan Jing-Kun, Jin Long, Yuan Zhan-Ting, Liu Zhi-Yi. RNN for receding horizon control of redundant robot manipulators. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1608-1619 doi: 10.1109/TIE.2021.3062257 [23] Zhang Zhi-Jun, Chen Si-Yuan, Zhu Xu-Peng, Yan Zi-Yi. Two hybrid end-effector posture-maintaining and obstacle-limits avoidance schemes for redundant robot manipulators. IEEE Transactions on Industrial Informatics, 2020, 16(2): 754-763 doi: 10.1109/TII.2019.2922694 [24] Jin Long, Zhang Yu-Nong. G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. IEEE Transactions on Cybernetics, 2015, 45(2): 153-164 doi: 10.1109/TCYB.2014.2321390 [25] Liu M, Shang M S. Orientation tracking incorporated multi-criteria control for redundant manipulators with dynamic neural network. IEEE Transactions on Industrial Electronics, 2014, 71(4): 3801?3810