基于深層卷積隨機配置網(wǎng)絡(luò )的電熔鎂爐工況識別方法研究
doi: 10.16383/j.aas.c230272
-
1.
合肥工業(yè)大學(xué)電氣與自動(dòng)化工程學(xué)院 合肥 230009
-
2.
中國礦業(yè)大學(xué)人工智能研究院 徐州 221116
-
3.
東北大學(xué)流程工業(yè)綜合自動(dòng)化國家重點(diǎn)實(shí)驗室 沈陽(yáng) 110819
Research on Fused Magnesium Furnace Working Condition Recognition Method Based on Deep Convolutional Stochastic Configuration Networks
-
1.
School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009
-
2.
Institute of Artificial Intelligence, China University of Mining and Technology, Xuzhou 221116
-
3.
State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819
-
摘要: 為解決電熔鎂爐工況識別模型泛化能力和可解釋性弱的缺陷, 提出一種基于深層卷積隨機配置網(wǎng)絡(luò )(Deep convolutional stochastic configuration networks, DCSCN)的可解釋性電熔鎂爐異常工況識別方法. 首先, 基于監督學(xué)習機制生成具有物理含義的高斯差分卷積核, 采用增量式方法構建深層卷積神經(jīng)網(wǎng)絡(luò )(Deep convolutional neural network, DCNN), 確保識別誤差逐級收斂, 避免反向傳播算法迭代尋優(yōu)卷積核參數的過(guò)程. 定義通道特征圖獨立系數獲取電熔鎂爐特征類(lèi)激活映射圖的可視化結果, 定義可解釋性可信度評測指標, 自適應調節深層卷積隨機配置網(wǎng)絡(luò )層級, 對不可信樣本進(jìn)行再認知以獲取最優(yōu)工況識別結果. 實(shí)驗結果表明, 所提方法較其他方法具有更優(yōu)的識別精度和可解釋性.
-
關(guān)鍵詞:
- 電熔鎂爐 /
- 深層卷積隨機配置網(wǎng)絡(luò ) /
- 高斯差分卷積核 /
- 類(lèi)激活映射圖 /
- 可解釋性
Abstract: In order to solve the defects of generalization ability and weak interpretability of fused magnesium furnace working condition recognition model, an interpretable fused magnesium furnace abnormal working condition recognition method based on deep convolutional stochastic configuration networks (DCSCN) is proposed in this paper. Firstly, based on the supervised learning mechanism to generate Gaussian differential convolution kernel with physical meaning, an incremental method is used to construct a deep convolutional neural network (DCNN) to ensure that the recognition error converges step by step, and to avoid the process that back propagation algorithm iteratively finds the optimal convolutional kernel parameters. This paper defines channel feature map independent coefficients to obtain visualization results of fused magnesium furnace feature class activation mapping map, defines interpretable credibility measure to adaptively adjust deep convolutional stochastic configuration network layers, and recognizes untrustworthy samples to obtain optimal working condition recognition results. The experimental results show that the proposed method in this paper has better recognition accuracy and interpretability than other methods. -
圖 1 基于深層卷積隨機配置網(wǎng)絡(luò )的可解釋電熔鎂爐工況識別模型結構圖
Fig. 1 Structure of interpretable fused magnesium furnace working condition recognition model based on deep convolutional stochastic configuration networks
圖 2 深層卷積隨機配置網(wǎng)絡(luò )結構圖
Fig. 2 Deep convolutional stochastic configuration networks structure diagram
圖 3 基于特征圖獨立性得分的類(lèi)激活映射示意圖
Fig. 3 Schematic diagram of the class activation mapping based on feature map independence scores
圖 6 過(guò)熱工況圖像數據增強后的結果
Fig. 6 Results after image data enhancement for superheated operating conditions
圖 8 不同卷積核大小條件下的識別精度曲線(xiàn)
Fig. 8 Recognition accuracy curves under different convolutional kernel sizes
圖 9 強化學(xué)習訓練過(guò)程的平均獎勵曲線(xiàn)
Fig. 9 Average reward curves for training process of reinforcement learning methods
圖 11 本文方法與基于強化學(xué)習的類(lèi)激活映射圖對比
Fig. 11 Comparison of the method proposed in this paper with the class activation mapping maps based on reinforcement learning
圖 12 本文方法與基于強化學(xué)習的可信識別樣本比例變化曲線(xiàn)
Fig. 12 The proportion change curves of trusted recognition samples based on reinforcement learning and the method proposed in this paper
圖 13 不同網(wǎng)絡(luò )模型的訓練樣本識別精度曲線(xiàn)
Fig. 13 Recognition accuracy curves of training samples for different network models
表 1 基于強化學(xué)習的漏診率、誤診率和精度對比 (%)
Table 1 Comparison of missed diagnosis rate, misdiagnosis rate and accuracy based on reinforcement learning (%)
模型 訓練集 測試集 漏診率 誤診率 精度 漏診率 誤診率 精度 單層 本文方法 7.61 ± 0.189 9.15 ± 0.331 83.24 ± 0.195 9.95 ± 0.216 10.30 ± 0.231 79.75 ± 0.108 強化學(xué)習 9.08 ± 0.082 10.14 ± 0.354 80.76 ± 0.228 10.51 ± 0.172 12.81 ± 0.390 76.68 ± 0.305 三層 本文方法 5.31 ± 0.239 1.96 ± 0.165 92.73 ± 0.166 5.24 ± 0.245 2.45 ± 0.203 92.31 ± 0.283 強化學(xué)習 7.36 ± 0.361 2.58 ± 0.313 90.06 ± 0.313 6.57 ± 0.361 3.61 ± 0.313 89.82 ± 0.329 下載: 導出CSV表 2 消融實(shí)驗結果 (%)
Table 2 Results of ablation experiments (%)
模型 訓練集 測試集 漏診率 誤診率 精度 漏診率 誤診率 精度 本文方法 5.31 ± 0.239 1.96 ± 0.165 92.73 ± 0.166 5.24 ± 0.245 2.45 ± 0.203 92.31 ± 0.283 未加入可解釋性模塊 5.57 ± 0.232 2.51 ± 0.223 91.92 ± 0.278 7.29 ± 0.173 1.59 ± 0.181 91.12 ± 0.347 未加入高斯卷積核 4.29 ± 0.274 4.51 ± 0.391 91.20 ± 0.264 3.45 ± 0.255 2.50 ± 0.329 90.54 ± 0.231 未加入可解釋性模塊以及高斯卷積核 6.02 ± 0.183 4.25 ± 0.231 89.73 ± 0.325 4.13 ± 0.242 6.73 ± 0.228 89.14 ± 0.179 下載: 導出CSV表 3 不同高斯噪聲的實(shí)驗結果 (%)
Table 3 Experimental results with different Gaussian noises (%)
模型 訓練集 測試集 漏診率 誤診率 精度 漏診率 誤診率 精度 本文方法($\eta=0.3$) 5.31 ± 0.239 1.96 ± 0.165 92.73 ± 0.166 5.24 ± 0.245 2.45 ± 0.203 92.31 ± 0.283 $\eta=0.6$模型 6.92 ± 0.232 2.21 ± 0.223 90.87 ± 0.206 7.19 ± 0.173 2.52 ± 0.181 90.29 ± 0.347 $\eta=0.9$模型 8.31 ± 0.423 2.29 ± 0.248 89.40 ± 0.297 7.45 ± 0.382 7.01 ± 0.274 85.54 ± 0.288 下載: 導出CSV表 4 不同模型的測試樣本漏診率、誤診率和精度對比 (%)
Table 4 Comparison of missed diagnosis rate, misdiagnosis rate and accuracy of test samples with different models (%)
模型 漏診率 誤診率 精度 SCN 14.21 ± 0.228 14.21 ± 0.228 76.14 ± 0.215 塊增量BSC 12.58 ± 0.285 10.57 ± 0.153 76.85 ± 0.233 2DSCN 6.49 ± 0.263 15.52 ± 0.303 77.99 ± 0.353 DeepSCN 9.04 ± 0.285 7.32 ± 0.075 83.64 ± 0.209 CNN 6.82 ± 0.376 5.46 ± 0.167 87.72 ± 0.231 貝葉斯網(wǎng)絡(luò )[6] 5.36 ± 0.268 4.72 ± 0.252 89.92 ± 0.256 CNN+LSTM[8] 6.91 ± 0.201 3.52 ± 0.184 89.57 ± 0.337 本文方法 5.24 ± 0.245 2.45 ± 0.203 92.31 ± 0.283 下載: 導出CSV表 5 不同識別模型的綜合性能對比
Table 5 Comprehensive performance comparison of different recognition models
下載: 導出CSV表 6 太陽(yáng)能電池板數據集實(shí)驗結果對比 (%)
Table 6 Comparison of experimental results for solar panel dataset (%)
模型 漏診率 誤診率 精度 單層 本文方法 7.31$\pm$0.187 7.86$\pm$0.259 84.83$\pm$0.245 未加入可解釋性模塊 9.87$\pm$0.252 6.94$\pm$0.243 83.19$\pm$0.279 三層 本文方法 3.45$\pm$0.213 3.51$\pm$0.169 93.04$\pm$0.323 未加入可解釋性模塊 4.13$\pm$0.192 4.22$\pm$0.257 91.65$\pm$0.236 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 盧紹文, 溫乙鑫. 基于圖像與電流特征的電熔鎂爐欠燒工況半監督分類(lèi)方法. 自動(dòng)化學(xué)報, 2021, 47(4): 891-902Lu Shao-Wen, Wen Yi-Xin. Semi-supervised classification of semi-molten working condition of fused magnesium furnace based on image and current features. Acta Automatica Sinica, 2021, 47(4): 891-902 [2] 劉強, 孔德志, 郎自強. 基于多級動(dòng)態(tài)主元分析的電熔鎂爐異常工況診斷. 自動(dòng)化學(xué)報, 2021, 47(11): 2570-2577Liu Qiang, Kong De-Zhi, Lang Zi-Qiang. Multi-level dynamic principal component analysis for abnormality diagnosis of fused magnesia furnaces. Acta Automatica Sinica, 2021, 47(11): 2570-2577 [3] Wu Z W, Wu Y J, Chai T Y, Sun J. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1703-1715 doi: 10.1109/TIE.2014.2349479 [4] 吳志偉. 嵌入式電熔鎂爐智能控制系統研究 [博士學(xué)位論文], 東北大學(xué), 中國, 2015.Wu Zhi-Wei. Embedded Intelligent Control System for Fused Magnesium Furnace [Ph.D. dissertation], Northeastern University, China, 2015. [5] 李薈, 王福利, 李鴻儒. 電熔鎂爐熔煉過(guò)程異常工況識別及自愈控制方法. 自動(dòng)化學(xué)報, 2020, 46(7): 1411-1419Li Hui, Wang Fu-Li, Li Hong-Ru. Abnormal condition identification and self-Healing control scheme for the electro-fused magnesia smelting process. Acta Automatica Sinica, 2020, 46(7): 1411-1419 [6] 閆浩, 王福利, 孫鈺灃, 何大闊. 基于貝葉斯網(wǎng)絡(luò )參數遷移學(xué)習的電熔鎂爐異常工況識別. 自動(dòng)化學(xué)報, 2021, 47(1): 197-208Yan Hao, Wang Fu-Li, Sun Yu-Feng, HE Da-Kuo. Abnormal condition identification based on bayesian network parameter transfer learning for the electro-fused magnesia. Acta Automatica Sinica, 2021, 47(1): 197-208 [7] Lu S W, Wen Y X. Semi-supervised condition monitoring and visualization of fused magnesium furnace. IEEE Transactions on Automation Science and Engineering, 2022, 19(4): 3471-3482 doi: 10.1109/TASE.2021.3124015 [8] 吳高昌, 劉強, 柴天佑, 秦泗釗. 基于時(shí)序圖像深度學(xué)習的電熔鎂爐異常工況診斷. 自動(dòng)化學(xué)報, 2019, 45(8): 1475-1485Wu Gao-Chang, Liu Qiang, Chai Tian-You, Qin Si-Zhao. Abnormal condition diagnosis through deep learning of image sequences for fused magnesium furnaces. Acta Automatica Sinica, 2019, 45(8): 1475-1485 [9] Lu S W, Gao H R. Deep learning based fusion of RGB and infrared images for the detection of abnormal condition of fused magnesium furnace. In: Proceedings of the IEEE 15th International Conference on Control and Automation (ICCA). Edinburgh, UK: IEEE, 2019. 987?993 [10] Bu K Q, Liu Y, Wang F L. Operating performance assessment based on multi-source heterogeneous information with deep learning for smelting process of electro-fused magnesium furnace. ISA Transactions, 2022, 128: 357-371 doi: 10.1016/j.isatra.2021.10.024 [11] 盧紹文, 王克棟, 吳志偉, 李鵬琦, 郭章. 基于深度卷積網(wǎng)絡(luò )的電熔鎂爐欠燒工況在線(xiàn)識別. 控制與決策, 2019, 34(7): 1537-1544Lu Shao-Wen, Wang Ke-Dong, Wu Zhi-Wei, Li Peng-Qi, Guo Zhang. Online detection of semi-molten of fused magnesium furnace based ondeep convolutional neural network. Control and Decision, 2019, 34(7): 1537-1544 [12] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In: Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland: Springer, 2014. 818?833 [13] Samek W, Binder A, Montavon G, Lapuschkin S, Müller K R. Evaluating the visualization of what a deep neural network has learned. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(11): 2660-2673 doi: 10.1109/TNNLS.2016.2599820 [14] Larsen A B L, Sonderby S K, Larochelle H, Winther O. Autoencoding beyond pixels using a learned similarity metric. In: Proceedings of the 33rd International Conference on Machine Learning. New York, USA: PMLR, 2016. 1558?1566 [15] Zhang Q S, Wu Y N, Zhu S C. Interpretable convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 8827?8836 [16] Pham H, Guan M, Zoph B, Le Q, Dean J. Efficient neural architecture search via parameters sharing. In: Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018. 4095?4104 [17] Ding Z X, Chen Y R, Li N N, Zhao D B, Sun Z Q, Chen C L P. BNAS: Efficient neural architecture search using broad scalable architecture. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 5004-5018 doi: 10.1109/TNNLS.2021.3067028 [18] Alvarez J M, Salzmann M. Learning the number of neurons in deep networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016. 2270?2278 [19] Kawaguchi K. Deep learning without poor local minima. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016. 586?594 [20] Pao Y H, Park G H, Sobajic D J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing, 1994, 6(2): 163-180 doi: 10.1016/0925-2312(94)90053-1 [21] Wang D H, Li M. Stochastic configuration networks: Fundamentals and algorithms. IEEE Transactions on Cybernetics, 2017, 47(10): 3466-3479 doi: 10.1109/TCYB.2017.2734043 [22] Li M, Wang D H. 2-D stochastic configuration networks for image data analytics. IEEE Transactions on Cybernetics, 2021, 51(1): 359-372 doi: 10.1109/TCYB.2019.2925883 [23] Wang D H, Li M. Deep stochastic configuration networks with universal approximation property. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil: IEEE, 2018. 1?8 [24] Pratama M, Wang D H. Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams. Information Sciences, 2019, 495: 150-174 doi: 10.1016/j.ins.2019.04.055 [25] Li W T, Zhang Q, Wang D H, Sun W, Li Q Y. Stochastic configuration networks for self-blast state recognition of glass insulators with adaptive depth and multi-scale representation. Information Sciences, 2022, 604: 61-79 doi: 10.1016/j.ins.2022.04.061 [26] Li W T, Deng Y L, Ding M S, Wang D H, Sun W, Li Q Y. Industrial data classification using stochastic configuration networks with self-attention learning features. Neural Computing and Applications, 2022, 34: 22047-22069 doi: 10.1007/s00521-022-07657-9 [27] Peng S Y, Ding L J, Li W T, Sun W, Li Q Y. Research on intelligent recognition method for self-blast state of glass insulator based on mixed data augmentation. High Voltage, 2023, 8(4): 668-681 doi: 10.1049/hve2.12296 [28] Zhang Q, Li W T, Li H, Wang J P. Self-blast state detection of glass insulators based on stochastic configuration networks and a feedback transfer learning mechanism. Information Sciences, 2020, 522: 259-274 doi: 10.1016/j.ins.2020.02.058 [29] Li W T, Tao H, Li H, Chen K Q, Wang J P. Greengage grading using stochastic configuration networks and a semi-supervised feedback mechanism. Information Sciences, 2019, 488: 1-12 doi: 10.1016/j.ins.2019.02.041 [30] Li W T, Chen K Q, Wang D H. Industrial image classification using a randomized neural-net ensemble and feedback mechanism. Neurocomputing, 2016, 173: 708-714 doi: 10.1016/j.neucom.2015.08.019 [31] He Y, Ding Y H, Liu P, Zhu L C, Zhang H W, Yang Y. Learning filter pruning criteria for deep convolutional neural networks acceleration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020. 2006?2015 [32] Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 1998. [33] Dai W, Li D P, Zhou P, Chai T Y. Stochastic configuration networks with block increments for data modeling in process industries. Information Sciences, 2019, 484: 367-386 doi: 10.1016/j.ins.2019.01.062 [34] LeCun Y. LeNet-5, convolutional neural networks [Online], available: http://yann.lecun.com/exdb/lenet, January 11, 2024 [35] Deitsch S, Christlein V, Berger S, Buerhop-Lutz C, Maier A, Gallwitz F, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images. Solar Energy, 2019, 185: 455-468 doi: 10.1016/j.solener.2019.02.067