高超聲速變外形飛行器建模與固定時(shí)間預設性能控制
doi: 10.16383/j.aas.c230240
-
1.
中南大學(xué)自動(dòng)化學(xué)院 長(cháng)沙 410083
Modeling and Fixed-time Prescribed Performance Control for Hypersonic Morphing Vehicle
-
1.
School of Automation, Central South University, Changsha 410083
-
摘要: 以一種折疊式高超聲速變外形飛行器(Hypersonic morphing vehicle, HMV)為研究對象, 綜合考慮變形引起的氣動(dòng)特性、動(dòng)力學(xué)特性的動(dòng)態(tài)變化和模型不確定性、外部干擾的影響, 開(kāi)展飛行器建模與固定時(shí)間預設性能控制方法研究. 首先, 建立高超聲速變外形飛行器的運動(dòng)模型和姿態(tài)控制模型; 然后, 采用固定時(shí)間干擾觀(guān)測器實(shí)現對模型不確定性和外部干擾構成的復合總擾動(dòng)的精確估計, 并設計一種新型固定時(shí)間預設性能函數以定量描述期望性能約束, 在此基礎上, 基于預設性能控制架構并結合動(dòng)態(tài)面控制技術(shù)設計預設性能姿態(tài)控制器, 利用Lyapunov穩定性理論證明閉環(huán)系統的固定時(shí)間穩定性; 最后, 通過(guò)數值仿真驗證所提出方法的有效性和魯棒性.
-
關(guān)鍵詞:
- 高超聲速變外形飛行器 /
- 固定時(shí)間 /
- 預設性能 /
- 干擾觀(guān)測器 /
- 動(dòng)態(tài)面控制
Abstract: Taking a folding hypersonic morphing vehicle (HMV) as the research object, comprehensively considering dynamic changes caused by the deformation of aerodynamic characteristics and kinetics characteristics, as well as the influence of model uncertainties and external disturbances, the research on vehicle motion modeling and fixed-time prescribed performance control method is carried out. Firstly, the motion model and attitude control model of hypersonic morphing vehicle are established. Then, a fixed-time disturbance observer is established to accurately estimate the complex disturbance composed of model uncertainties and external disturbances, a novel fixed-time prescribed performance function is designed to quantitatively describe the expected performance constraints, the attitude controller is designed by integrating the dynamic surface control technique into the prescribed performance control framework, and the fixed-time stability of the closed-loop system is proved by Lyapunov stability theory. Finally, the numerical simulation is carried out to verify the effectiveness and robustness of the proposed method. -
圖 1 高超聲速變外形飛行器氣動(dòng)外形及變形過(guò)程示意圖
Fig. 1 Aerodynamic shape and morphing process of hypersonic morphing vehicle
圖 14 仿真1氣動(dòng)力和附加力變化曲線(xiàn) (0 ~ 3 s)
Fig. 14 Curves of aerodynamic force and additional force in Simulation 1 (0 ~ 3 s)
圖 15 仿真1氣動(dòng)力和附加力變化曲線(xiàn) (5 ~ 9 s)
Fig. 15 Curves of aerodynamic force and additional force in Simulation 1 (5 ~ 9 s)
圖 16 仿真1氣動(dòng)力和附加力變化曲線(xiàn) (11 ~ 16 s)
Fig. 16 Curves of aerodynamic force and additional force in Simulation 1 (11 ~ 16 s)
圖 17 仿真1氣動(dòng)力矩和附加力矩變化曲線(xiàn) (0 ~ 3 s)
Fig. 17 Curves of aerodynamic torque and additional torque in Simulation 1 (0 ~ 3 s)
圖 18 仿真1氣動(dòng)力矩和附加力矩變化曲線(xiàn) (5 ~ 9 s)
Fig. 18 Curves of aerodynamic torque and additional torque in Simulation 1 (5 ~ 9 s)
圖 19 仿真1氣動(dòng)力矩和附加力矩變化曲線(xiàn) (11 ~ 16 s)
Fig. 19 Curves of aerodynamic torque and additional torque in Simulation 1 (11 ~ 16 s)
圖 23 仿真2總擾動(dòng)及其觀(guān)測誤差曲線(xiàn)
Fig. 23 Curves of total disturbance and its observation error in Simulation 2
表 1 氣動(dòng)模型狀態(tài)量范圍
Table 1 State quantity range of aerodynamics model
狀態(tài)量 符號 取值范圍 馬赫數 Ma $\left [ 2,18 \right ]$ 攻角 $\alpha $ $\left [ 0^{\circ},20^{\circ} \right ]$ 側滑角 $\beta $ $\left [ -2^{\circ},2^{\circ} \right ] $ 滾轉舵偏角 $\delta_x$ $ \left [ -20^{\circ},20^{\circ} \right ] $ 偏航舵偏角 $\delta_y$ $ \left [ -20^{\circ},20^{\circ} \right ] $ 俯仰舵偏角 $\delta_z$ $ \left [ -20^{\circ},20^{\circ} \right ] $ 折疊角 $\delta_f$ $\left [ -30^{\circ},155^{\circ} \right ]$ 下載: 導出CSV表 2 高超聲速變外形飛行器機體參數
Table 2 Body parameters of HMV
參量 符號 數值 單位 機身質(zhì)量 $m_f$ 2950 kg 折疊翼質(zhì)量 $m_1, m_2$ 55 kg $x$主軸轉動(dòng)慣量 $I_{xx}$ $\left [ 283,298 \right ] $ kg·m2 $y$主軸轉動(dòng)慣量 $I_{yy}$ $\left [ 2\;679,2\;722 \right ]$ kg·m2 $z$主軸轉動(dòng)慣量 $I_{zz}$ $\left [ 2\;528,2\;630 \right ]$ kg·m2 慣量積 $I_{xy}$ $\left [ 163,169 \right ] $ kg·m2 參考面積 $S_r$ 1.8 m2 參考氣動(dòng)弦長(cháng) $c_A$ 2.4 m 參考氣動(dòng)展長(cháng) $b_A$ 1.1 m 下載: 導出CSV表 3 仿真參數設置
Table 3 Setting of simulation parameters
參數類(lèi)型 參數值 初始狀態(tài)參數 $H=35$ km, $V=3\;200$ m/s $\lambda ={{120}^{\circ }}$, $\phi ={{20}^{\circ}}$, $\theta=-{{1}^{\circ}}$, ${{\psi}_{v}}={{10}^{\circ}}$ $\alpha={{8}^{\circ}}$, $\beta={{1}^{\circ}}$, $\sigma={{18}^{\circ}}$ ${{\omega}_{x}}={{\omega}_{y}}={{\omega}_{z}}=0$, ${{\delta}_{x}}={{\delta}_{y}}={{\delta}_{z}}=0$ 控制參數 ${{\boldsymbol{\rho }}_{0}}={{\left[ {{\rho }_{0,1}},{{\rho }_{0,2}},{{\rho }_{0,3}} \right]}^{\text{T}}}={{\left[ 5,3,5 \right]}^{\text{T}}}$ ${{\boldsymbol{\rho }}_{\infty }}={{\left[ {{\rho }_{\infty ,1}},{{\rho }_{\infty ,2}},{{\rho }_{\infty ,3}} \right]}^{\text{T}}}={{\left[ 0.2,0.1,0.3 \right]}^{\text{T}}}$ ${{m}_{1,i}}=3$, ${{m}_{2,i}}=5$, ${{n}_{1,i}}=5$, ${{n}_{2,i}}=7$ ${{\alpha }_{01,i}}=0.15$, ${{\alpha }_{02,i}}=0.2$, ${{\delta }_{1,i}}={{\delta }_{2,i}}=1$ ${{k}_{1,i}}={{k}_{2,i}}=2$, $\text{ }{{k}_{3,i}}={{k}_{4,i}}=4$ ${{\varepsilon }_{1,i}}=0.02$, ${{\gamma }_{1,i}}=0.6$, ${{\gamma }_{2,i}}=1.4$ ${{k}_{z1,i}}=4$, ${{k}_{z2,i}}=4$, ${{\varepsilon }_{0,i}}=0.2$ 仿真步長(cháng) d$t$= 0.01 s 外部干擾項 $\Delta {rf50c1hsl6_{1,1}}=500\left( -\cos ({\pi t}/{20})+\sin ({\pi t}/{40}) \right)\;\text{N}\cdot \text{m}$ $\Delta {rf50c1hsl6_{1,2}}=300\left( -\cos ({\pi t}/{30})+\sin ({\pi t}/{60}) \right)\;\text{N}\cdot \text{m}$ $\Delta {rf50c1hsl6_{1,3}}=1\;000\cos ({\pi t}/{30})\sin ({\pi t}/{20})\;\text{N}\cdot \text{m}$ 模型不確定項 $\Delta{{C}_{L}}=\Delta{{C}_{D}}=\Delta{{C}_{Y}}=\pm20\%$ $\Delta{{C}_{mx}}=\Delta{{C}_{my}}=\Delta{{C}_{mz}}=\pm20\%$ $\Delta{{I}_{xx}}=\Delta{{I}_{yy}}=\Delta{{I}_{zz}}=\Delta{{I}_{xy}}=\pm20\%$ $\Delta{{S}_{r}}=\Delta{_{A}}=\Delta{{c}_{A}}=\pm5\%$ 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 宋慧心, 金磊. 折疊翼飛行器的動(dòng)力學(xué)建模與穩定控制. 力學(xué)學(xué)報, 2020, 52(6): 1548-1559 doi: 10.6052/0459-1879-20-115Song Hui-Xin, Jin Lei. Dynamic modeling and stability control of folding wing aircraft. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1548-1559 doi: 10.6052/0459-1879-20-115 [2] 張遠, 黃萬(wàn)偉, 路坤鋒, 白文艷, 于江龍. 高超聲速變外形飛行器建模與有限時(shí)間控制. 北京航空航天大學(xué)學(xué)報, 2022, 48(10): 1979-1993 doi: 10.13700/j.bh.1001-5965.2021.0701Zhang Yuan, Huang Wan-Wei, Lu Kun-Feng, Bai Wen-Yan, Yu Jiang-Long. Modeling and finite-time control for hypersonic morphing flight vehicle. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993 doi: 10.13700/j.bh.1001-5965.2021.0701 [3] Bao C Y, Wang P, He R Z, Tang G J. Observer-based optimal control method combination with event-triggered strategy for hypersonic morphing vehicle. Aerospace Science and Technology, 2023, 136: 108219 doi: 10.1016/j.ast.2023.108219 [4] Liang X H, Wang Q, Xu B, Dong C Y. Back-stepping fault-tolerant control for morphing aircraft based on fixed-time observer. International Journal of Control, Automation and Systems, 2021, 19(12): 3924-3936 doi: 10.1007/s12555-020-0764-3 [5] 張康康, 周彬, 蔡光斌, 侯明哲. 高超聲速飛行器指定時(shí)間時(shí)變高增益反饋跟蹤控制. 自動(dòng)化學(xué)報, DOI: 10.16383/j.aas.c210895Zhang Kang-Kang, Zhou Bin, Cai Guang-Bin, Hou Ming-Zhe. Prescribed-time tracking control of hypersonic vehicles by time-varying high-gain feedback. Acta Automatica Sinica, DOI: 10.16383/j.aas.c210895 [6] Bu X W, Jiang B X, Lei H M. Nonfragile quantitative prescribed performance control of waverider vehicles with actuator saturation. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3538-3548 doi: 10.1109/TAES.2022.3153429 [7] Ding Y B, Yue X K, Chen G S, et al. Review of control and guidance technology on hypersonic vehicle. Chinese Journal of Aeronautics, 2022, 35(7): 1-18 doi: 10.1016/j.cja.2021.10.037 [8] Tian B L, Li Z Y, Zhao X P, Zong Q. Adaptive multivariable reentry attitude control of rlv with prescribed performance. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(10): 6674-6678 doi: 10.1109/TSMC.2022.3145508 [9] 羅世彬, 吳瑕, 魏才盛. 可重復使用飛行器的保性能姿態(tài)跟蹤控制方法. 航空學(xué)報, 2021, 42(11): 415-426Luo Shi-Bin, Wu Xia, Wei Cai-Sheng. A novel attitude tracking control with guaranteed performance for reusable launch vehicle. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 415-426 [10] Wang F, Wen L Z, Zhou C, Hua C H. Adaptive preassigned-time controller design for a hypersonic vehicle with improved performance and uncertainties. ISA Transactions, 2023, 132: 309-328 doi: 10.1016/j.isatra.2022.05.040 [11] Chu L L, Li Q, Gu F, Du X T, He Y Q, Deng Y C. Design, modeling, and control of morphing aircraft: A review. Chinese Journal of Aeronautics, 2022, 35(5): 220-246 doi: 10.1016/j.cja.2021.09.013 [12] 王鵬, 陳浩嵐, 鮑存余, 湯國建. 變形飛行器建模及控制方法研究綜述. 宇航學(xué)報, 2022, 43(7): 853-865 doi: 10.3873/j.issn.1000-1328.2022.07.002Wang Peng, Chen Hao-Lan, Bao Cun-Yu, Tang Guo-Jian. Review on modeling and control methods of morphing vehicle. Journal of Astronautics, 2022, 43(7): 853-865 doi: 10.3873/j.issn.1000-1328.2022.07.002 [13] 李新凱, 張宏立, 范文慧. 非匹配擾動(dòng)下變體無(wú)人機預設性能控制. 航空學(xué)報, 2022, 43(2): 382-397 doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202031Li Xin-Kai, Zhang Hong-Li, Fan Wen-Hui. Prescribed performance control for morphing aerospace vehicle under mismatched disturbances. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 382-397 doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202031 [14] Xu D, Hui Z, Liu Y Q, Chen G. Morphing control of a new bionic morphing UAV with deep reinforcement learning. Aerospace science and technology, 2019, 92: 232-243 doi: 10.1016/j.ast.2019.05.058 [15] Bao C Y, Wang P, Tang G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase. Chinese Journal of Aeronautics, 2021, 34(5): 535-553 doi: 10.1016/j.cja.2020.11.009 [16] Song, M S, Zhang, F, Huang, B X, Huang, P F. Anti-disturbance control for tethered aircraft system with deferred output constraints. IEEE-CAA Journal of Automatica Sinica, 2023, 10(2): 474-485 doi: 10.1109/JAS.2023.123222 [17] 王寧, 高穎, 王仁慧. 狀態(tài)測量不確定和動(dòng)力學(xué)未知的無(wú)人艇固定時(shí)間容錯控制. 自動(dòng)化學(xué)報, 2023, 49(5): 1050-1061 doi: 10.16383/j.aas.c220482Wang Ning, Gao Ying, Wang Ren-Hui. Fixed-time fault-tolerance control of an unmanned surface vehicle with uncertain measurements and unknown dynamics. Acta Automatica Sinica, 2023, 49(5): 1050-1061 doi: 10.16383/j.aas.c220482 [18] 李小華, 胡利耀. 一類(lèi)p規范型非線(xiàn)性系統預設性能有限時(shí)間H∞跟蹤控制. 自動(dòng)化學(xué)報, 2021, 47(12): 2870-2880Li Xiao-Hua, Hu Li-Yao. Prescribed performance finite-time H∞ tracking control for a class of p-normal form nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 2870-2880 [19] 陳辰. 基于擾動(dòng)補償的高超聲速飛行器再入姿態(tài)控制研究[博士學(xué)位論文], 哈爾濱工業(yè)大學(xué), 中國, 2018.Chen Chen. Research on Reentry Attitude Control for Hypersonic Vehicle Based on Disturbance Compensation [Ph.D. dissertation], Harbin Institute of Technology, China, 2018. [20] 楊炳尉. 標準大氣參數的公式表示. 宇航學(xué)報, 1983(1): 83-86.Yang Bing-Wei. Formulization of standard atmospheric parameters. Journal of Astronautics, 1983(1): 83-86 [21] Zipfel P H. Modeling and Simulation of Aerospace Vehicle Dynamics, Third Edition. Reston: AIAA Education Series, 2014. [22] 文利燕, 陶鋼, 姜斌, 楊杰. 非線(xiàn)性動(dòng)態(tài)突變系統的多模型自適應執行器故障補償設計. 自動(dòng)化學(xué)報, 2022, 48(1): 207-222Wen Li-Yan, Tao Gang, Jiang Bin, Yang Jie. A multiple-model based adaptive actuator failure compensation scheme for nonlinear systems with dynamic mutations. Acta Automatica Sinica, 2022, 48(1): 207-222 [23] Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4): 918-927 doi: 10.1016/j.automatica.2008.11.017 [24] Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Transactions Neural Networks, 2004, 15(3): 674-692 doi: 10.1109/TNN.2004.826130 [25] Ren B B, Ge S S, Tee K P, Lee T H. Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Transactions on Neural Networks, 2010, 21(8): 1339-1345 doi: 10.1109/TNN.2010.2047115 [26] Wu R, Wei C Z, Yang F, Cui N G, Zhang L. FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems. IET Control Theory and Applications, 2018, 12(18): 2459-2467 doi: 10.1049/iet-cta.2018.5455 [27] Yu L, He G, Wang X K, Zhao S L. Robust fixed-time sliding mode attitude control of tilt trirotor UAV in helicopter mode. IEEE Transactions on Industrial Electronics, 2021, 10(69): 10322-10332 doi: 10.1109/TIE.2021.3118556 [28] Fu M Y, Zhang T, Ding F G, Wang D S. Appointed-time integral barrier Lyapunov function-based trajectory tracking control for a hovercraft with performance constraints. Applied Sciences, 2020, 10(20): 1-21 [29] Liu W, Fei S Q, Ma Q, et al. Prescribed performance dynamic surface control for nonlinear systems subject to partial and full state constraints. Applied Mathematics and Computation, 2022, 431: 127318: 1-14 doi: 10.1016/j.amc.2022.127318 [30] Yin Z Y, Luo J J, Wei C S. Quasi fixed-time fault-tolerant control for nonlinear mechanical systems with enhanced performance. Applied Mathematics and Computation, 2019, 352: 157-173 doi: 10.1016/j.amc.2019.01.068 [31] 劉曉東, 黃萬(wàn)偉, 禹春梅. 含擴張狀態(tài)觀(guān)測器的高超聲速飛行器動(dòng)態(tài)面姿態(tài)控制. 宇航學(xué)報, 2015, 36(8): 916-922Liu Xiao-Dong, Huang Wan-Wei, Yu Chun-Mei. Dynamic surface attitude control for hypersonic vehicle containing ex-tended state observer. Journal of Astronautics, 2015, 36(8): 916-922 [32] Shen Z P, Li F, Cao X M, Guo C. Prescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraints. International Journal of Control, 2020, 94(11): 2945-2955