1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              高超聲速變外形飛行器建模與固定時間預設性能控制

              曹承鈺 李繁飆 廖宇新 殷澤陽 桂衛華

              曹承鈺, 李繁飆, 廖宇新, 殷澤陽, 桂衛華. 高超聲速變外形飛行器建模與固定時間預設性能控制. 自動化學報, 2024, 50(3): 486?504 doi: 10.16383/j.aas.c230240
              引用本文: 曹承鈺, 李繁飆, 廖宇新, 殷澤陽, 桂衛華. 高超聲速變外形飛行器建模與固定時間預設性能控制. 自動化學報, 2024, 50(3): 486?504 doi: 10.16383/j.aas.c230240
              Cao Cheng-Yu, Li Fan-Biao, Liao Yu-Xin, Yin Ze-Yang, Gui Wei-Hua. Modeling and fixed-time prescribed performance control for hypersonic morphing vehicle. Acta Automatica Sinica, 2024, 50(3): 486?504 doi: 10.16383/j.aas.c230240
              Citation: Cao Cheng-Yu, Li Fan-Biao, Liao Yu-Xin, Yin Ze-Yang, Gui Wei-Hua. Modeling and fixed-time prescribed performance control for hypersonic morphing vehicle. Acta Automatica Sinica, 2024, 50(3): 486?504 doi: 10.16383/j.aas.c230240

              高超聲速變外形飛行器建模與固定時間預設性能控制

              doi: 10.16383/j.aas.c230240
              基金項目: 國家優秀青年科學基金 (62222317), 國家自然科學基金 (61973319, 62003372, 62103446), 湖南省自然科學基金 (2022JJ40633), 裝備預研教育部聯合基金(8091B032134), 湖南省科技重大專項(2021GK1030), 湖南省重點研發計劃(2023GK2023), 中南大學中央高?;究蒲袠I務費專項資金(2023ZZTS0345)資助
              詳細信息
                作者簡介:

                曹承鈺:中南大學自動化學院博士研究生. 2022年獲得中南大學碩士學位. 主要研究方向為高超聲速飛行器制導與控制. E-mail: chengyu.cj@csu.edu.cn

                李繁飆:中南大學自動化學院教授. 2015年獲得哈爾濱工業大學博士學位. 主要研究方向為復雜工業過程智能控制與優化, 空天飛行器智能控制. E-mail: fanbiaoli@csu.edu.cn

                廖宇新:中南大學自動化學院副教授. 2017年獲得北京航空航天大學博士學位. 主要研究方向為空天飛行器軌跡規劃、制導和控制. 本文通信作者. E-mail: liaoyuxin@csu.edu.cn

                殷澤陽:中南大學自動化學院講師. 2020年獲得西北工業大學博士學位. 主要研究方向為空天飛行器動力學建模、智能決策及先進制導和控制. E-mail: yinzeyang@csu.edu.cn

                桂衛華:中國工程院院士, 中南大學自動化學院教授. 1981年獲得中南礦冶學院碩士學位. 主要研究方向為工業過程控制理論、技術和工程應用. E-mail: gwh@csu.edu.cn

              Modeling and Fixed-time Prescribed Performance Control for Hypersonic Morphing Vehicle

              Funds: Supported by National Science Fund for Excellent Young Scholars (62222317), National Natural Science Foundation of China (61973319, 62003372, 62103446), Natural Science Foundation of Hunan Province (2022JJ40633), Joint Fund of The Ministry of Education for Equipment Pre-Research (8091B032134), Major Science and Technology Projects in Hunan Province (2021GK1030), Key Research and Development Program of Hunan Province (2023GK2023), and Fundamental Research Funds for the Central Universities of Central South University (2023ZZTS0345)
              More Information
                Author Bio:

                CAO Cheng-Yu Ph.D. candidate at the School of Automation, Central South University. He received his master degree from Central South University in 2022. His research interest covers guidance and control of hypersonic vehicle

                LI Fan-Biao Professor at the School of Automation, Central South University. He received his Ph.D. degree from Harbin Institute of Technology in 2015. His research interest covers intelligent control and optimization of complex industrial process, intelligent control of aerospace vehicle

                LIAO Yu-Xin Associate professor at the School of Automation, Central South University. He received his Ph.D. degree from Beihang University in 2017. His research interest covers trajectory planning, guidance and control of aerospace vehicle. Corresponding author of this paper

                YIN Ze-Yang Lecturer at the School of Automation, Central South University. He received his Ph.D. degree from Northwestern Polytechnical University in 2020. His research interest covers dynamics modeling, intelligent decision-making, advanced guidance and control of aerospace vehicle

                GUI Wei-Hua Academician of the Chinese Academy of Engineering, and professor at the School of Automation, Central South University. He received his master degree from Central South Institute of Mining and Metallurgy in 1981. His research interest covers industrial process control theory, technology and engineering application

              • 摘要: 以一種折疊式高超聲速變外形飛行器(Hypersonic morphing vehicle, HMV)為研究對象, 綜合考慮變形引起的氣動特性、動力學特性的動態變化和模型不確定性、外部干擾的影響, 開展飛行器建模與固定時間預設性能控制方法研究. 首先, 建立高超聲速變外形飛行器的運動模型和姿態控制模型; 然后, 采用固定時間干擾觀測器實現對模型不確定性和外部干擾構成的復合總擾動的精確估計, 并設計一種新型固定時間預設性能函數以定量描述期望性能約束, 在此基礎上, 基于預設性能控制架構并結合動態面控制技術設計預設性能姿態控制器, 利用Lyapunov穩定性理論證明閉環系統的固定時間穩定性; 最后, 通過數值仿真驗證所提出方法的有效性和魯棒性.
              • 圖  1  高超聲速變外形飛行器氣動外形及變形過程示意圖

                Fig.  1  Aerodynamic shape and morphing process of hypersonic morphing vehicle

                圖  2  折疊翼幾何關系示意圖

                Fig.  2  Geometric relationship diagram of folding wing

                圖  3  升阻比隨攻角變化曲線

                Fig.  3  Curves of lift-drag ratio varying with angle of attack

                圖  4  升阻比隨折疊角變化曲線

                Fig.  4  Curves of lift-drag ratio varying with folding angle

                圖  5  滾轉力矩系數隨折疊角變化曲線

                Fig.  5  Curves of rolling moment coefficient varying with folding angle

                圖  6  偏航力矩系數隨折疊角變化曲線

                Fig.  6  Curves of yawing moment coefficient varying with folding angle

                圖  7  俯仰力矩系數隨折疊角變化曲線

                Fig.  7  Curves of pitching moment coefficient varying with folding angle

                圖  8  飛行器固定時間預設性能控制方案框圖

                Fig.  8  Flowchart of fixed-time prescribed performance control for HMV

                圖  9  不同預設性能函數的變化曲線

                Fig.  9  Curves of different PPF

                圖  10  仿真1姿態角跟蹤曲線

                Fig.  10  Tracking curves of attitude angle in Simulation 1

                圖  11  仿真1姿態角跟蹤誤差曲線

                Fig.  11  Curves of attitude angle tracking error in Simulation 1

                圖  12  仿真1姿態角速度變化曲線

                Fig.  12  Curves of attitude angular velocity in Simulation 1

                圖  13  仿真1折疊角變化曲線

                Fig.  13  Curves of folding angle in Simulation 1

                圖  14  仿真1氣動力和附加力變化曲線 (0 ~ 3 s)

                Fig.  14  Curves of aerodynamic force and additional force in Simulation 1 (0 ~ 3 s)

                圖  15  仿真1氣動力和附加力變化曲線 (5 ~ 9 s)

                Fig.  15  Curves of aerodynamic force and additional force in Simulation 1 (5 ~ 9 s)

                圖  16  仿真1氣動力和附加力變化曲線 (11 ~ 16 s)

                Fig.  16  Curves of aerodynamic force and additional force in Simulation 1 (11 ~ 16 s)

                圖  17  仿真1氣動力矩和附加力矩變化曲線 (0 ~ 3 s)

                Fig.  17  Curves of aerodynamic torque and additional torque in Simulation 1 (0 ~ 3 s)

                圖  18  仿真1氣動力矩和附加力矩變化曲線 (5 ~ 9 s)

                Fig.  18  Curves of aerodynamic torque and additional torque in Simulation 1 (5 ~ 9 s)

                圖  19  仿真1氣動力矩和附加力矩變化曲線 (11 ~ 16 s)

                Fig.  19  Curves of aerodynamic torque and additional torque in Simulation 1 (11 ~ 16 s)

                圖  20  仿真2攻角跟蹤曲線

                Fig.  20  Tracking curves of angle of attack in Simulation 2

                圖  21  仿真2側滑角跟蹤曲線

                Fig.  21  Tracking curves of angle of sideslip in Simulation 2

                圖  22  仿真2傾側角跟蹤曲線

                Fig.  22  Tracking curves of bank angle in Simulation 2

                圖  23  仿真2總擾動及其觀測誤差曲線

                Fig.  23  Curves of total disturbance and its observation error in Simulation 2

                圖  24  仿真2等效舵偏角變化曲線

                Fig.  24  Curves of equivalent deflection angle in Simulation 2

                圖  25  仿真2折疊角變化曲線

                Fig.  25  Curves of folding angle in Simulation 2

                圖  26  仿真2累積誤差曲線

                Fig.  26  Curves of cumulative error in Simulation 2

                表  1  氣動模型狀態量范圍

                Table  1  State quantity range of aerodynamics model

                狀態量符號取值范圍
                馬赫數Ma$\left [ 2,18 \right ]$
                攻角$\alpha $$\left [ 0^{\circ},20^{\circ} \right ]$
                側滑角$\beta $$\left [ -2^{\circ},2^{\circ} \right ] $
                滾轉舵偏角$\delta_x$$ \left [ -20^{\circ},20^{\circ} \right ] $
                偏航舵偏角$\delta_y$$ \left [ -20^{\circ},20^{\circ} \right ] $
                俯仰舵偏角$\delta_z$ $ \left [ -20^{\circ},20^{\circ} \right ] $
                折疊角$\delta_f$$\left [ -30^{\circ},155^{\circ} \right ]$
                下載: 導出CSV

                表  2  高超聲速變外形飛行器機體參數

                Table  2  Body parameters of HMV

                參量符號數值單位
                機身質量$m_f$2950kg
                折疊翼質量$m_1, m_2$55kg
                $x$主軸轉動慣量$I_{xx}$$\left [ 283,298 \right ] $kg·m2
                $y$主軸轉動慣量$I_{yy}$$\left [ 2\;679,2\;722 \right ]$kg·m2
                $z$主軸轉動慣量$I_{zz}$$\left [ 2\;528,2\;630 \right ]$kg·m2
                慣量積$I_{xy}$ $\left [ 163,169 \right ] $kg·m2
                參考面積$S_r$1.8m2
                參考氣動弦長$c_A$2.4m
                參考氣動展長$b_A$1.1m
                下載: 導出CSV

                表  3  仿真參數設置

                Table  3  Setting of simulation parameters

                參數類型參數值
                初始狀態參數$H=35$ km, $V=3\;200$ m/s
                $\lambda ={{120}^{\circ }}$, $\phi ={{20}^{\circ}}$, $\theta=-{{1}^{\circ}}$, ${{\psi}_{v}}={{10}^{\circ}}$
                $\alpha={{8}^{\circ}}$, $\beta={{1}^{\circ}}$, $\sigma={{18}^{\circ}}$
                ${{\omega}_{x}}={{\omega}_{y}}={{\omega}_{z}}=0$, ${{\delta}_{x}}={{\delta}_{y}}={{\delta}_{z}}=0$
                控制參數${{\boldsymbol{\rho }}_{0}}={{\left[ {{\rho }_{0,1}},{{\rho }_{0,2}},{{\rho }_{0,3}} \right]}^{\text{T}}}={{\left[ 5,3,5 \right]}^{\text{T}}}$
                ${{\boldsymbol{\rho }}_{\infty }}={{\left[ {{\rho }_{\infty ,1}},{{\rho }_{\infty ,2}},{{\rho }_{\infty ,3}} \right]}^{\text{T}}}={{\left[ 0.2,0.1,0.3 \right]}^{\text{T}}}$
                ${{m}_{1,i}}=3$, ${{m}_{2,i}}=5$, ${{n}_{1,i}}=5$, ${{n}_{2,i}}=7$
                ${{\alpha }_{01,i}}=0.15$, ${{\alpha }_{02,i}}=0.2$, ${{\delta }_{1,i}}={{\delta }_{2,i}}=1$
                ${{k}_{1,i}}={{k}_{2,i}}=2$, $\text{ }{{k}_{3,i}}={{k}_{4,i}}=4$
                ${{\varepsilon }_{1,i}}=0.02$, ${{\gamma }_{1,i}}=0.6$, ${{\gamma }_{2,i}}=1.4$
                ${{k}_{z1,i}}=4$, ${{k}_{z2,i}}=4$, ${{\varepsilon }_{0,i}}=0.2$
                仿真步長d$t$= 0.01 s
                外部干擾項$\Delta {{d}_{1,1}}=500\left( -\cos ({\pi t}/{20})+\sin ({\pi t}/{40}) \right)\;\text{N}\cdot \text{m}$
                $\Delta {{d}_{1,2}}=300\left( -\cos ({\pi t}/{30})+\sin ({\pi t}/{60}) \right)\;\text{N}\cdot \text{m}$
                $\Delta {{d}_{1,3}}=1\;000\cos ({\pi t}/{30})\sin ({\pi t}/{20})\;\text{N}\cdot \text{m}$
                模型不確定項$\Delta{{C}_{L}}=\Delta{{C}_{D}}=\Delta{{C}_{Y}}=\pm20\%$
                $\Delta{{C}_{mx}}=\Delta{{C}_{my}}=\Delta{{C}_{mz}}=\pm20\%$
                $\Delta{{I}_{xx}}=\Delta{{I}_{yy}}=\Delta{{I}_{zz}}=\Delta{{I}_{xy}}=\pm20\%$
                $\Delta{{S}_{r}}=\Delta{_{A}}=\Delta{{c}_{A}}=\pm5\%$
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] 宋慧心, 金磊. 折疊翼飛行器的動力學建模與穩定控制. 力學學報, 2020, 52(6): 1548-1559 doi: 10.6052/0459-1879-20-115

                        Song Hui-Xin, Jin Lei. Dynamic modeling and stability control of folding wing aircraft. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1548-1559 doi: 10.6052/0459-1879-20-115
                        [2] 張遠, 黃萬偉, 路坤鋒, 白文艷, 于江龍. 高超聲速變外形飛行器建模與有限時間控制. 北京航空航天大學學報, 2022, 48(10): 1979-1993 doi: 10.13700/j.bh.1001-5965.2021.0701

                        Zhang Yuan, Huang Wan-Wei, Lu Kun-Feng, Bai Wen-Yan, Yu Jiang-Long. Modeling and finite-time control for hypersonic morphing flight vehicle. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993 doi: 10.13700/j.bh.1001-5965.2021.0701
                        [3] Bao C Y, Wang P, He R Z, Tang G J. Observer-based optimal control method combination with event-triggered strategy for hypersonic morphing vehicle. Aerospace Science and Technology, 2023, 136: 108219 doi: 10.1016/j.ast.2023.108219
                        [4] Liang X H, Wang Q, Xu B, Dong C Y. Back-stepping fault-tolerant control for morphing aircraft based on fixed-time observer. International Journal of Control, Automation and Systems, 2021, 19(12): 3924-3936 doi: 10.1007/s12555-020-0764-3
                        [5] 張康康, 周彬, 蔡光斌, 侯明哲. 高超聲速飛行器指定時間時變高增益反饋跟蹤控制. 自動化學報, DOI: 10.16383/j.aas.c210895

                        Zhang Kang-Kang, Zhou Bin, Cai Guang-Bin, Hou Ming-Zhe. Prescribed-time tracking control of hypersonic vehicles by time-varying high-gain feedback. Acta Automatica Sinica, DOI: 10.16383/j.aas.c210895
                        [6] Bu X W, Jiang B X, Lei H M. Nonfragile quantitative prescribed performance control of waverider vehicles with actuator saturation. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3538-3548 doi: 10.1109/TAES.2022.3153429
                        [7] Ding Y B, Yue X K, Chen G S, et al. Review of control and guidance technology on hypersonic vehicle. Chinese Journal of Aeronautics, 2022, 35(7): 1-18 doi: 10.1016/j.cja.2021.10.037
                        [8] Tian B L, Li Z Y, Zhao X P, Zong Q. Adaptive multivariable reentry attitude control of rlv with prescribed performance. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(10): 6674-6678 doi: 10.1109/TSMC.2022.3145508
                        [9] 羅世彬, 吳瑕, 魏才盛. 可重復使用飛行器的保性能姿態跟蹤控制方法. 航空學報, 2021, 42(11): 415-426

                        Luo Shi-Bin, Wu Xia, Wei Cai-Sheng. A novel attitude tracking control with guaranteed performance for reusable launch vehicle. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 415-426
                        [10] Wang F, Wen L Z, Zhou C, Hua C H. Adaptive preassigned-time controller design for a hypersonic vehicle with improved performance and uncertainties. ISA Transactions, 2023, 132: 309-328 doi: 10.1016/j.isatra.2022.05.040
                        [11] Chu L L, Li Q, Gu F, Du X T, He Y Q, Deng Y C. Design, modeling, and control of morphing aircraft: A review. Chinese Journal of Aeronautics, 2022, 35(5): 220-246 doi: 10.1016/j.cja.2021.09.013
                        [12] 王鵬, 陳浩嵐, 鮑存余, 湯國建. 變形飛行器建模及控制方法研究綜述. 宇航學報, 2022, 43(7): 853-865 doi: 10.3873/j.issn.1000-1328.2022.07.002

                        Wang Peng, Chen Hao-Lan, Bao Cun-Yu, Tang Guo-Jian. Review on modeling and control methods of morphing vehicle. Journal of Astronautics, 2022, 43(7): 853-865 doi: 10.3873/j.issn.1000-1328.2022.07.002
                        [13] 李新凱, 張宏立, 范文慧. 非匹配擾動下變體無人機預設性能控制. 航空學報, 2022, 43(2): 382-397 doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202031

                        Li Xin-Kai, Zhang Hong-Li, Fan Wen-Hui. Prescribed performance control for morphing aerospace vehicle under mismatched disturbances. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 382-397 doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202031
                        [14] Xu D, Hui Z, Liu Y Q, Chen G. Morphing control of a new bionic morphing UAV with deep reinforcement learning. Aerospace science and technology, 2019, 92: 232-243 doi: 10.1016/j.ast.2019.05.058
                        [15] Bao C Y, Wang P, Tang G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase. Chinese Journal of Aeronautics, 2021, 34(5): 535-553 doi: 10.1016/j.cja.2020.11.009
                        [16] Song, M S, Zhang, F, Huang, B X, Huang, P F. Anti-disturbance control for tethered aircraft system with deferred output constraints. IEEE-CAA Journal of Automatica Sinica, 2023, 10(2): 474-485 doi: 10.1109/JAS.2023.123222
                        [17] 王寧, 高穎, 王仁慧. 狀態測量不確定和動力學未知的無人艇固定時間容錯控制. 自動化學報, 2023, 49(5): 1050-1061 doi: 10.16383/j.aas.c220482

                        Wang Ning, Gao Ying, Wang Ren-Hui. Fixed-time fault-tolerance control of an unmanned surface vehicle with uncertain measurements and unknown dynamics. Acta Automatica Sinica, 2023, 49(5): 1050-1061 doi: 10.16383/j.aas.c220482
                        [18] 李小華, 胡利耀. 一類p規范型非線性系統預設性能有限時間H跟蹤控制. 自動化學報, 2021, 47(12): 2870-2880

                        Li Xiao-Hua, Hu Li-Yao. Prescribed performance finite-time H tracking control for a class of p-normal form nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 2870-2880
                        [19] 陳辰. 基于擾動補償的高超聲速飛行器再入姿態控制研究[博士學位論文], 哈爾濱工業大學, 中國, 2018.

                        Chen Chen. Research on Reentry Attitude Control for Hypersonic Vehicle Based on Disturbance Compensation [Ph.D. dissertation], Harbin Institute of Technology, China, 2018.
                        [20] 楊炳尉. 標準大氣參數的公式表示. 宇航學報, 1983(1): 83-86.

                        Yang Bing-Wei. Formulization of standard atmospheric parameters. Journal of Astronautics, 1983(1): 83-86
                        [21] Zipfel P H. Modeling and Simulation of Aerospace Vehicle Dynamics, Third Edition. Reston: AIAA Education Series, 2014.
                        [22] 文利燕, 陶鋼, 姜斌, 楊杰. 非線性動態突變系統的多模型自適應執行器故障補償設計. 自動化學報, 2022, 48(1): 207-222

                        Wen Li-Yan, Tao Gang, Jiang Bin, Yang Jie. A multiple-model based adaptive actuator failure compensation scheme for nonlinear systems with dynamic mutations. Acta Automatica Sinica, 2022, 48(1): 207-222
                        [23] Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4): 918-927 doi: 10.1016/j.automatica.2008.11.017
                        [24] Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Transactions Neural Networks, 2004, 15(3): 674-692 doi: 10.1109/TNN.2004.826130
                        [25] Ren B B, Ge S S, Tee K P, Lee T H. Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Transactions on Neural Networks, 2010, 21(8): 1339-1345 doi: 10.1109/TNN.2010.2047115
                        [26] Wu R, Wei C Z, Yang F, Cui N G, Zhang L. FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems. IET Control Theory and Applications, 2018, 12(18): 2459-2467 doi: 10.1049/iet-cta.2018.5455
                        [27] Yu L, He G, Wang X K, Zhao S L. Robust fixed-time sliding mode attitude control of tilt trirotor UAV in helicopter mode. IEEE Transactions on Industrial Electronics, 2021, 10(69): 10322-10332 doi: 10.1109/TIE.2021.3118556
                        [28] Fu M Y, Zhang T, Ding F G, Wang D S. Appointed-time integral barrier Lyapunov function-based trajectory tracking control for a hovercraft with performance constraints. Applied Sciences, 2020, 10(20): 1-21
                        [29] Liu W, Fei S Q, Ma Q, et al. Prescribed performance dynamic surface control for nonlinear systems subject to partial and full state constraints. Applied Mathematics and Computation, 2022, 431: 127318: 1-14 doi: 10.1016/j.amc.2022.127318
                        [30] Yin Z Y, Luo J J, Wei C S. Quasi fixed-time fault-tolerant control for nonlinear mechanical systems with enhanced performance. Applied Mathematics and Computation, 2019, 352: 157-173 doi: 10.1016/j.amc.2019.01.068
                        [31] 劉曉東, 黃萬偉, 禹春梅. 含擴張狀態觀測器的高超聲速飛行器動態面姿態控制. 宇航學報, 2015, 36(8): 916-922

                        Liu Xiao-Dong, Huang Wan-Wei, Yu Chun-Mei. Dynamic surface attitude control for hypersonic vehicle containing ex-tended state observer. Journal of Astronautics, 2015, 36(8): 916-922
                        [32] Shen Z P, Li F, Cao X M, Guo C. Prescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraints. International Journal of Control, 2020, 94(11): 2945-2955
                      2. 加載中
                      3. 圖(26) / 表(3)
                        計量
                        • 文章訪問數:  1052
                        • HTML全文瀏覽量:  349
                        • PDF下載量:  242
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2023-04-26
                        • 錄用日期:  2023-07-22
                        • 網絡出版日期:  2023-08-14
                        • 刊出日期:  2024-03-29

                        目錄

                          /

                          返回文章
                          返回