面向可再生能源消納的火電機組控制結構綜合與分析
doi: 10.16383/j.aas.c230210
-
1.
東北大學(xué)流程工業(yè)綜合自動(dòng)化國家重點(diǎn)實(shí)驗室 沈陽(yáng) 110819
Syntheses and Analyses of Control Structure for Coal-fired Power Plants Oriented to Renewable Energy Accommodation
-
1.
The State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University, Shenyang 110819
-
摘要: 增加可再生能源在電網(wǎng)中的占比, 使能源結構更合理, 是加快能源轉型實(shí)現低碳可持續發(fā)展的有效途徑. 電網(wǎng)中占主導地位的火電, 輔助消納可再生能源的能力, 對提高可再生能源在電網(wǎng)中的占比起到重要作用. 為了提高火電機組輔助可再生能源的消納能力, 本文根據當前系統控制方案, 分析了影響機組靈活性與調峰深度的因素, 包括機爐協(xié)調、局部反饋策略下的鍋爐控制、系統穩態(tài)工作點(diǎn)的規劃等. 基于補償方案的協(xié)調策略限制了機組對具有隨機性和間歇性的可再生能源的補償能力; 局部反饋策略下的鍋爐控制只是實(shí)現了等效熱效應的反饋; 非額定工況下的穩態(tài)工作點(diǎn)關(guān)系到輔助可再生能源消納的能耗和排放指標. 根據以上分析分別給出了進(jìn)一步的研究?jì)热?Abstract: In order to optimize the energy structure to realize sustainable development, increasing the proportion of renewable energy in power grid is inevitable. The cooperative capability of coal-fired units, which are primary of national grid, is the issue. For the sake of improving this capability, this paper analysed factors which affect flexibility and depth of peak-shaving, based on control scheme. The factors include coordinating turbine and furnace, fuel control based on local feedback, programming steady operating point. Coordinating scheme which was based on compensating networks, restricts the ability of constraining renewable energy which is random and intermittent. It was thermal effect of the fired coal compared with standard coal that the furnace burning was fed back regardless of other burning characters. Steady operating points of the system were related to energy cost and emission when the system did not work in rated condition.The paper proposed further research based on these conclusions.
-
表 1 性能參數對比
Table 1 Comparision of performance parameters
參數 我國 歐洲 單位 負荷變動(dòng)速率 2/1.5 6/4 %/min 硬煤/褐煤 最小出力 35/50 20/40 % 硬煤/褐煤 冷態(tài)啟動(dòng)時(shí)間 8/12 4/6 h 硬煤/褐煤 熱態(tài)啟動(dòng)時(shí)間 4 2 h 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 李星梅, 鐘志鳴, 閻潔. 大規模風(fēng)電接入下的火電機組靈活性改造規劃. 電力系統自動(dòng)化, 2019, 43(3): 51-57 doi: 10.7500/AEPS20180213007Li Xing-Mei, Zhong Zhi-Ming, Yan Jie. Flexibility reformation planning of thermal power units with large-scale integration of wind power. Automation of Electric Power Systems, 2019, 43(3): 51-57 doi: 10.7500/AEPS20180213007 [2] 李人厚, 邵福慶. 大系統的遞階與分散控制. 西安: 西安交通大學(xué)出版社, 1986.Li Ren-hou, Shao Fu-qing. Hierarchical and Decentralized Control of Large Systems. Xi'an: Xi'an Jiaotong University Press, 1986. [3] 劉吉臻. 協(xié)調控制與給水全程控制. 北京: 水利電力出版社, 1995.Liu Ji-zhen. Coordinated control and full process control of water supply. Beijing: Water Resources and Electric Power Publishing House, 1995. [4] 涂序彥. 大系統控制論. 北京: 國防工業(yè)出版社, 1994.Tu Xu-yan. Large System Control Theory. Beijing: National Defense Industry Press, 1994. [5] Sandell N, Varaiya P, Athans M, Safonov M. Survey of decentralized control methods for large scale systems. IEEE Transactions on Automatic Control, 1978, 23(2): 108-128 doi: 10.1109/TAC.1978.1101704 [6] Roberts P D. Hierarchical control and decomposition of a chemical plant. International Journal of Systems Science, 1979, 10(2): 207-223 doi: 10.1080/00207727908941576 [7] Arkun Y, Stephanopoulos G. Studies in the synthesis of control structures for chemical processes. Part V: Design of steady-state optimizing control structures for integrated chemical plants. AIChE Journal, 1981, 27(5): 779-793 doi: 10.1002/aic.690270512 [8] Bailey F N, Malinowski K B. Problems in the design of multilayer, multiechelon control structures. IFAC Proceedings Volumes, 1977, 10(6): 31-38 doi: 10.1016/B978-0-08-022010-9.50009-8 [9] Li X N, Zhang L Q. Research based on the mid-point enthalpy of supercritical unit feed-water control circuit. Advanced Materials Research, 2011, 354-355: 344-349 doi: 10.4028/www.scientific.net/AMR.354-355.344 [10] Qiu S L, Song R F, Wang Z, Wang X T, Zhu B Y, Qi Z Y, et al. Research and application of Automatic Procedure Start up and shut down of ultra supercritical thermal power unit based on enthalpy control. In: Proceedings of the 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China: IEEE, 2020. 280?284 [11] Huang Y X, Yao R W, Liu X C, Lin S Y, Zhang W D. A reinforcement learning method for intermediate point enthalpy control in super-critical power unit. In: Proceedings of the Chinese Automation Congress (CAC). Xi'an, China: IEEE, 2018. 651?654 [12] Pan F P, Zhu Y Q, Zhang X. Full process control strategy of fuel based on water-coal ratio of ultra supercritical units. In: Proceedings of the International Conference on Electronics, Communications and Control (ICECC). Ningbo, China: IEEE, 2011. 3750?3753 [13] 王玉清, 董傳敏, 鄭亞光, 張海萍, 苗廣祥. 基于中間點(diǎn)焓值校正的超臨界機組給水全程控制. 鍋爐技術(shù), 2010, 41(3): 11-15 doi: 10.3969/j.issn.1672-4763.2010.03.004Wang Yu-Qing, Dong Chuan-Min, Zheng Ya-Guang, Zhang Hai-Ping, Miao Guang-Xiang. Supercritical unit full range feedwater control system based on intermediate point enthalpy correction. Boiler Technology, 2010, 41(3): 11-15 doi: 10.3969/j.issn.1672-4763.2010.03.004 [14] 王丕洲, 谷俊杰, 秦達飛, 曹曉威. 600 MW超臨界直流鍋爐兩種給水控制系統分析. 電力科學(xué)與工程, 2013, 29(4): 64-69 doi: 10.3969/j.issn.1672-0792.2013.04.013Wang Pi-Zhou, Gu Jun-Jie, Qin Da-Fei, Cao Xiao-Wei. Analysis of the two feed water control system of 600 mw supercritical once-through boiler. Electric Power Science and Engineering, 2013, 29(4): 64-69 doi: 10.3969/j.issn.1672-0792.2013.04.013 [15] 谷俊杰, 秦達飛, 曹曉威, 王丕洲, 李偉, 陳順青. 超臨界鍋爐中間點(diǎn)溫度增益切換控制方法. 中國電機工程學(xué)報, 2014, 34(14): 2274-2280 doi: 10.13334/j.0258-8013.pcsee.2014.14.008Gu Jun-Jie, Qin Da-Fei, Cao Xiao-Wei, Wang Pi-Zhou, Li Wei, Chen Shun-Qing. A control method based on gain-switching for intermediate point temperature of supercritical pressure boiler. Proceedings of the CSEE, 2014, 34(14): 2274-2280 doi: 10.13334/j.0258-8013.pcsee.2014.14.008 [16] 秦志明, 張欒英, 谷俊杰. 直流鍋爐單元機組協(xié)調控制系統的研究與設計. 動(dòng)力工程學(xué)報, 2016, 36(1): 16-21, 29 doi: 10.3969/j.issn.1674-7607.2016.01.003Qin Zhi-Ming, Zhang Luan-Ying, Gu Jun-Jie. Research and design on the coordinate control system of a once-through boiler unit. Journal of Chinese Society of Power Engineering, 2016, 36(1): 16-21, 29 doi: 10.3969/j.issn.1674-7607.2016.01.003 [17] 張秋生, 梁華, 胡曉花, 李生光, 劉瀟. 超超臨界機組的兩種典型協(xié)調控制方案. 中國電力, 2011, 44(10): 74-79 doi: 10.3969/j.issn.1004-9649.2011.10.017Zhang Qiu-Sheng, Liang Hua, Hu Xiao-Hua, Li Sheng-Guang, Liu Xiao. Two kinds of typical coordinated control systems in ultra-supercritical units. Electric Power, 2011, 44(10): 74-79 doi: 10.3969/j.issn.1004-9649.2011.10.017 [18] 劉吉臻, 王耀函, 曾德良, 陳彥橋. 基于凝結水節流的火電機組AGC控制優(yōu)化方法. 中國電機工程學(xué)報, 2017, 37(23): 6918-6925 doi: 10.13334/J.0258-8013.PCSEE.161979Liu Ji-Zhen, Wang Yao-Han, Zeng De-Liang, Chen Yan-Qiao. An AGC control method of thermal unit based on condensate throttling. Proceedings of the CSEE, 2017, 37(23): 6918-6925 doi: 10.13334/J.0258-8013.PCSEE.161979 [19] 王瑋, 孫陽(yáng), 劉吉臻, 井思桐. 適應電網(wǎng)快速調頻的熱電聯(lián)產(chǎn)機組新型變負荷控制策略. 電力系統自動(dòng)化, 2018, 42(21): 63-69 doi: 10.7500/AEPS20180102008Wang Wei, Sun Yang, Liu Ji-Zhen, Jing Si-Tong. Load-change control strategy for combined heat and power units adapted to rapid frequency regulation of power grid. Automation of Electric Power Systems, 2018, 42(21): 63-69 doi: 10.7500/AEPS20180102008 [20] Buche D, Stoll P, Dornberger R, Koumoutsakos P. Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2002, 32(4): 460-473 doi: 10.1109/TSMCB.2002.804372 [21] Song Z, Kusiak A. Constraint-based control of boiler efficiency: A data-mining approach. IEEE Transactions on Industrial Informatics, 2007, 3(1): 73-83 doi: 10.1109/TII.2006.890530 [22] Ito F, Fujimoto K, Kurihara N, Nishimura A, Kobayashi K, Sema T. A combustion monitoring and evaluation system for large utility boilers. IEEE Power Engineering Review, 1984, PER-4(5): 25-26 doi: 10.1109/MPER.1984.5526023 [23] Li K, Thompson S. A cascaded neural network and its application to modelling power plant pollutant emission. In: Proceedings of the 3rd World Congress on Intelligent Control and Automation (WCICA). Hefei, China: IEEE, 2000. 992?997 [24] Zhao S N, Fang Q Y, Yin C G, Wei T S, Wang H J, Zhang C, et al. New fuel air control strategy for reducing NOx emissions from corner-fired utility boilers at medium–low loads. Energy & Fuels, 2017, 31(7): 6689-6699 [25] 張?chǎng)? 陳隆. 高速煤粉燃燒器內燃燒特性數值模擬及結構優(yōu)化. 潔凈煤技術(shù), 2020, 26(2): 66-72 doi: 10.13226/j.issn.1006-6772.20011005Zhang Xin, Chen Long. Numerical simulation of burning characteristics and structural optimization design of the high speed combustor of pulverized coal. Clean Coal Technology, 2020, 26(2): 66-72 doi: 10.13226/j.issn.1006-6772.20011005 [26] 王東風(fēng), 劉千, 韓璞, 趙文杰. 基于大數據驅動(dòng)案例匹配的電站鍋爐燃燒優(yōu)化. 儀器儀表學(xué)報, 2016, 37(2): 420-428 doi: 10.3969/j.issn.0254-3087.2016.02.024Wang Dong-Feng, Liu Qian, Han Pu, Zhao Wen-Jie. Combustion optimization in power station based on big data-driven case-matching. Chinese Journal of Scientific Instrument, 2016, 37(2): 420-428 doi: 10.3969/j.issn.0254-3087.2016.02.024 [27] Booth R C, Roland W B. Neural network-based combustion optimization reduces NOx emissions while improving performance. In: Proceedings of the IEEE Industry Applications on Dynamic Modeling Control Applications for Industry Workshop. Vancouver, Canada: IEEE, 1998. 1?6 [28] Gu Y P, Zhao W J, Wu Z S. Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems. Journal of Process Control, 2011, 21(7): 1040-1048 doi: 10.1016/j.jprocont.2011.06.001 [29] Ding J L, Liu C X, Wen M, Chai T Y. Case-based decision making model for supervisory control of ore roasting process. In: Proceedings of the 5th International Composium on Neural Networks. Beijing, China: Springer, 2008. 148?157 [30] Ding J L, Chen Q, Chai T Y, Wang H, Su C Y. Data mining based feedback regulation in operation of hematite ore mineral processing plant. In: Proceedings of the American Control Conference. St. Louis, USA: IEEE, 2009. 907?912 [31] Kuang M, Li Z Q, Wang Z H, Jing X J, Liu C L, Zhu Q Y, et al. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MW_e down-fired pulverized-coal furnace under deep-air-staging conditions. Environmental Science & Technology, 2014, 48(1): 837-844 [32] Zhou H, Mo G Y, Si D B, Cen K F. Numerical simulation of the NOx emissions in a 1000 MW tangentially fired pulverized-coal boiler: Influence of the multi-group arrangement of the separated over fire air. Energy & Fuels, 2011, 25(5): 2004-2012 [33] Park H Y, Faulkner M, Turrell M D, Stopford P J, Kang D S. Coupled fluid dynamics and whole plant simulation of coal combustion in a tangentially-fired boiler. Fuel, 2010, 89(8): 2001-2010 doi: 10.1016/j.fuel.2010.01.036 [34] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 1989, 15(4): 287-338 doi: 10.1016/0360-1285(89)90017-8 [35] Szecowka L, Poskart M. Techniques to limit NOX emissions. Advanced Combustion and Aerothermal Technologies: Environmental Protection and Pollution Reductions. Dordrecht: Springer, 2007. 47?54 [36] Hill S C, Smoot L D. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 2000, 26(4-6): 417-458 doi: 10.1016/S0360-1285(00)00011-3 [37] De Soete G G. Overall reaction rates of NO and N_2 formation from fuel nitrogen. Symposium (International) on Combustion, 1975, 15(1): 1093-1102 doi: 10.1016/S0082-0784(75)80374-2 [38] Shi Y, Li C, Song L Z, Zhu C P, Fu Y L, He Y Q. Peak shaving auxiliary service market model with multi-type power participation. In: Proceedings of the International Conference on Power System Technology (POWERCON). Haikou, China: IEEE, 2021. 684?689
計量
- 文章訪(fǎng)問(wèn)數: 181
- HTML全文瀏覽量: 122
- 被引次數: 0