1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              面向可再生能源消納的火電機組控制結構綜合與分析

              馬士全 丁進良

              馬士全, 丁進良. 面向可再生能源消納的火電機組控制結構綜合與分析. 自動化學報, 2024, 50(5): 1?15 doi: 10.16383/j.aas.c230210
              引用本文: 馬士全, 丁進良. 面向可再生能源消納的火電機組控制結構綜合與分析. 自動化學報, 2024, 50(5): 1?15 doi: 10.16383/j.aas.c230210
              Ma Shi-Quan, Ding Jin-Liang. Syntheses and analyses of control structure for coal-fired power plants oriented to renewable energy accommodation. Acta Automatica Sinica, 2024, 50(5): 1?15 doi: 10.16383/j.aas.c230210
              Citation: Ma Shi-Quan, Ding Jin-Liang. Syntheses and analyses of control structure for coal-fired power plants oriented to renewable energy accommodation. Acta Automatica Sinica, 2024, 50(5): 1?15 doi: 10.16383/j.aas.c230210

              面向可再生能源消納的火電機組控制結構綜合與分析

              doi: 10.16383/j.aas.c230210
              基金項目: 國家自然科學基金 (61988101), 遼寧省中央引導地方項目(2022JH6/100100055)資助
              詳細信息
                作者簡介:

                馬士全:東北大學流程工業綜合自動化國家重點實驗室博士研究生. 2011年獲得吉林化工學院自動化學士學位. 2014年獲得東北電力大學自動化碩士學位. 主要研究方向為微機測控系統、復雜過程工業優化與控制. 本文通信作者.E-mail: msq_scholar_ex@163.com

                丁進良:東北大學教授. 主要研究方向為生產全流程運行優化, 智能優化和工業智能及應用.E-mail: jlding@mail.neu.edu.cn

              Syntheses and Analyses of Control Structure for Coal-fired Power Plants Oriented to Renewable Energy Accommodation

              Funds: Supported by National Natural Science Foundation of China (61988101), The Liaoning Province Center Leading Local Science and Technology Development Special Project under Grant (2022JH6/100100055)
              More Information
                Author Bio:

                MA Shi-Quan Ph.D. candidate at the State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University. He received the his bachelor degree from Jilin Institute of Chemical Technology in 2011 and master degree from Northeastern Dianli University in 2014. His current interest covers plant-wide control and optimization for complex industrial process systems, microcomputer measurement and control system. Corresponding authory of this paper

                DING Jin-Liang Professor at Northeastern University. His research interest covers optimization of the whole production process, intelligent optimization, industrial artificial intelligence and applications

              • 摘要: 增加可再生能源在電網中的占比, 使能源結構更合理, 是加快能源轉型實現低碳可持續發展的有效途徑. 電網中占主導地位的火電, 輔助消納可再生能源的能力, 對提高可再生能源在電網中的占比起到重要作用. 為了提高火電機組輔助可再生能源的消納能力, 本文根據當前系統控制方案, 分析了影響機組靈活性與調峰深度的因素, 包括機爐協調、局部反饋策略下的鍋爐控制、系統穩態工作點的規劃等. 基于補償方案的協調策略限制了機組對具有隨機性和間歇性的可再生能源的補償能力; 局部反饋策略下的鍋爐控制只是實現了等效熱效應的反饋; 非額定工況下的穩態工作點關系到輔助可再生能源消納的能耗和排放指標. 根據以上分析分別給出了進一步的研究內容.
              • 圖  1  電力系統平衡調節示意圖

                Fig.  1  Supply and demand balance of power grid

                圖  2  爐跟隨為基礎的協調控制遞階結構

                Fig.  2  Hierarchical structure based on furnace following mode

                圖  3  鍋爐壓力控制

                Fig.  3  Regulator of steam pressure of furnace

                圖  5  火電機組控制結構簡圖

                Fig.  5  Control scheme of power plants

                圖  6  局部反饋遞階結構

                Fig.  6  Hierarchical control structure of local feedback

                圖  7  全局反饋遞階結構

                Fig.  7  Hierarchical control structure of feedback

                圖  8  基本控制模式結構

                Fig.  8  Control structure of base mode

                圖  9  爐跟隨控制模式結構

                Fig.  9  Control structure of furnace following mode

                圖  10  機跟隨控制模式結構

                Fig.  10  Control structure of turbine following mode

                圖  4  汽機負荷跟蹤控制

                Fig.  4  Electrical power regulator of turbine

                圖  11  基于爐跟隨的協調控制

                Fig.  11  Coordinating control based on furnace following mode

                圖  12  基于機跟隨的協調控制

                Fig.  12  Coordinating control based on turbine following mode

                圖  13  火電機組模型結構

                Fig.  13  Structure of coal-fired power plants

                圖  14  串聯前補償結構

                Fig.  14  Compensation before series connection

                圖  15  反饋前補償結構

                Fig.  15  Compensation before feedback

                圖  16  串聯后補償結構

                Fig.  16  Compensation after series connection

                圖  17  汽機主控和電調參與一次調頻

                Fig.  17  Primary frequency regulating of turbine master and DEH

                圖  18  一次調頻結構

                Fig.  18  Structure of primary frequency regulating

                圖  19  凝結水節流補償結構

                Fig.  19  Compensating structure of adjusting condensing water

                圖  20  燃煤熱值校正

                Fig.  20  Calorific value correction of coal

                圖  21  回熱減小水冷壁入口欠焓

                Fig.  21  Improve giving water enthalpy by reheating

                圖  22  電網負荷供需平衡調節類比

                Fig.  22  Analogy of supply and demand balance of power grid

                表  1  性能參數對比

                Table  1  Comparision of performance parameters

                參數我國歐洲單位
                負荷變動速率2/1.56/4%/min 硬煤/褐煤
                最小出力35/5020/40% 硬煤/褐煤
                冷態啟動時間8/124/6h 硬煤/褐煤
                熱態啟動時間42 h
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] 李星梅, 鐘志鳴, 閻潔. 大規模風電接入下的火電機組靈活性改造規劃. 電力系統自動化, 2019, 43(3): 51-57 doi: 10.7500/AEPS20180213007

                        Li Xing-Mei, Zhong Zhi-Ming, Yan Jie. Flexibility reformation planning of thermal power units with large-scale integration of wind power. Automation of Electric Power Systems, 2019, 43(3): 51-57 doi: 10.7500/AEPS20180213007
                        [2] 李人厚, 邵福慶. 大系統的遞階與分散控制. 西安: 西安交通大學出版社, 1986.

                        Li Ren-hou, Shao Fu-qing. Hierarchical and Decentralized Control of Large Systems. Xi'an: Xi'an Jiaotong University Press, 1986.
                        [3] 劉吉臻. 協調控制與給水全程控制. 北京: 水利電力出版社, 1995.

                        Liu Ji-zhen. Coordinated control and full process control of water supply. Beijing: Water Resources and Electric Power Publishing House, 1995.
                        [4] 涂序彥. 大系統控制論. 北京: 國防工業出版社, 1994.

                        Tu Xu-yan. Large System Control Theory. Beijing: National Defense Industry Press, 1994.
                        [5] Sandell N, Varaiya P, Athans M, Safonov M. Survey of decentralized control methods for large scale systems. IEEE Transactions on Automatic Control, 1978, 23(2): 108-128 doi: 10.1109/TAC.1978.1101704
                        [6] Roberts P D. Hierarchical control and decomposition of a chemical plant. International Journal of Systems Science, 1979, 10(2): 207-223 doi: 10.1080/00207727908941576
                        [7] Arkun Y, Stephanopoulos G. Studies in the synthesis of control structures for chemical processes. Part V: Design of steady-state optimizing control structures for integrated chemical plants. AIChE Journal, 1981, 27(5): 779-793 doi: 10.1002/aic.690270512
                        [8] Bailey F N, Malinowski K B. Problems in the design of multilayer, multiechelon control structures. IFAC Proceedings Volumes, 1977, 10(6): 31-38 doi: 10.1016/B978-0-08-022010-9.50009-8
                        [9] Li X N, Zhang L Q. Research based on the mid-point enthalpy of supercritical unit feed-water control circuit. Advanced Materials Research, 2011, 354-355: 344-349 doi: 10.4028/www.scientific.net/AMR.354-355.344
                        [10] Qiu S L, Song R F, Wang Z, Wang X T, Zhu B Y, Qi Z Y, et al. Research and application of Automatic Procedure Start up and shut down of ultra supercritical thermal power unit based on enthalpy control. In: Proceedings of the 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China: IEEE, 2020. 280?284
                        [11] Huang Y X, Yao R W, Liu X C, Lin S Y, Zhang W D. A reinforcement learning method for intermediate point enthalpy control in super-critical power unit. In: Proceedings of the Chinese Automation Congress (CAC). Xi'an, China: IEEE, 2018. 651?654
                        [12] Pan F P, Zhu Y Q, Zhang X. Full process control strategy of fuel based on water-coal ratio of ultra supercritical units. In: Proceedings of the International Conference on Electronics, Communications and Control (ICECC). Ningbo, China: IEEE, 2011. 3750?3753
                        [13] 王玉清, 董傳敏, 鄭亞光, 張海萍, 苗廣祥. 基于中間點焓值校正的超臨界機組給水全程控制. 鍋爐技術, 2010, 41(3): 11-15 doi: 10.3969/j.issn.1672-4763.2010.03.004

                        Wang Yu-Qing, Dong Chuan-Min, Zheng Ya-Guang, Zhang Hai-Ping, Miao Guang-Xiang. Supercritical unit full range feedwater control system based on intermediate point enthalpy correction. Boiler Technology, 2010, 41(3): 11-15 doi: 10.3969/j.issn.1672-4763.2010.03.004
                        [14] 王丕洲, 谷俊杰, 秦達飛, 曹曉威. 600 MW超臨界直流鍋爐兩種給水控制系統分析. 電力科學與工程, 2013, 29(4): 64-69 doi: 10.3969/j.issn.1672-0792.2013.04.013

                        Wang Pi-Zhou, Gu Jun-Jie, Qin Da-Fei, Cao Xiao-Wei. Analysis of the two feed water control system of 600 mw supercritical once-through boiler. Electric Power Science and Engineering, 2013, 29(4): 64-69 doi: 10.3969/j.issn.1672-0792.2013.04.013
                        [15] 谷俊杰, 秦達飛, 曹曉威, 王丕洲, 李偉, 陳順青. 超臨界鍋爐中間點溫度增益切換控制方法. 中國電機工程學報, 2014, 34(14): 2274-2280 doi: 10.13334/j.0258-8013.pcsee.2014.14.008

                        Gu Jun-Jie, Qin Da-Fei, Cao Xiao-Wei, Wang Pi-Zhou, Li Wei, Chen Shun-Qing. A control method based on gain-switching for intermediate point temperature of supercritical pressure boiler. Proceedings of the CSEE, 2014, 34(14): 2274-2280 doi: 10.13334/j.0258-8013.pcsee.2014.14.008
                        [16] 秦志明, 張欒英, 谷俊杰. 直流鍋爐單元機組協調控制系統的研究與設計. 動力工程學報, 2016, 36(1): 16-21, 29 doi: 10.3969/j.issn.1674-7607.2016.01.003

                        Qin Zhi-Ming, Zhang Luan-Ying, Gu Jun-Jie. Research and design on the coordinate control system of a once-through boiler unit. Journal of Chinese Society of Power Engineering, 2016, 36(1): 16-21, 29 doi: 10.3969/j.issn.1674-7607.2016.01.003
                        [17] 張秋生, 梁華, 胡曉花, 李生光, 劉瀟. 超超臨界機組的兩種典型協調控制方案. 中國電力, 2011, 44(10): 74-79 doi: 10.3969/j.issn.1004-9649.2011.10.017

                        Zhang Qiu-Sheng, Liang Hua, Hu Xiao-Hua, Li Sheng-Guang, Liu Xiao. Two kinds of typical coordinated control systems in ultra-supercritical units. Electric Power, 2011, 44(10): 74-79 doi: 10.3969/j.issn.1004-9649.2011.10.017
                        [18] 劉吉臻, 王耀函, 曾德良, 陳彥橋. 基于凝結水節流的火電機組AGC控制優化方法. 中國電機工程學報, 2017, 37(23): 6918-6925 doi: 10.13334/J.0258-8013.PCSEE.161979

                        Liu Ji-Zhen, Wang Yao-Han, Zeng De-Liang, Chen Yan-Qiao. An AGC control method of thermal unit based on condensate throttling. Proceedings of the CSEE, 2017, 37(23): 6918-6925 doi: 10.13334/J.0258-8013.PCSEE.161979
                        [19] 王瑋, 孫陽, 劉吉臻, 井思桐. 適應電網快速調頻的熱電聯產機組新型變負荷控制策略. 電力系統自動化, 2018, 42(21): 63-69 doi: 10.7500/AEPS20180102008

                        Wang Wei, Sun Yang, Liu Ji-Zhen, Jing Si-Tong. Load-change control strategy for combined heat and power units adapted to rapid frequency regulation of power grid. Automation of Electric Power Systems, 2018, 42(21): 63-69 doi: 10.7500/AEPS20180102008
                        [20] Buche D, Stoll P, Dornberger R, Koumoutsakos P. Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2002, 32(4): 460-473 doi: 10.1109/TSMCB.2002.804372
                        [21] Song Z, Kusiak A. Constraint-based control of boiler efficiency: A data-mining approach. IEEE Transactions on Industrial Informatics, 2007, 3(1): 73-83 doi: 10.1109/TII.2006.890530
                        [22] Ito F, Fujimoto K, Kurihara N, Nishimura A, Kobayashi K, Sema T. A combustion monitoring and evaluation system for large utility boilers. IEEE Power Engineering Review, 1984, PER-4(5): 25-26 doi: 10.1109/MPER.1984.5526023
                        [23] Li K, Thompson S. A cascaded neural network and its application to modelling power plant pollutant emission. In: Proceedings of the 3rd World Congress on Intelligent Control and Automation (WCICA). Hefei, China: IEEE, 2000. 992?997
                        [24] Zhao S N, Fang Q Y, Yin C G, Wei T S, Wang H J, Zhang C, et al. New fuel air control strategy for reducing NOx emissions from corner-fired utility boilers at medium–low loads. Energy & Fuels, 2017, 31(7): 6689-6699
                        [25] 張鑫, 陳隆. 高速煤粉燃燒器內燃燒特性數值模擬及結構優化. 潔凈煤技術, 2020, 26(2): 66-72 doi: 10.13226/j.issn.1006-6772.20011005

                        Zhang Xin, Chen Long. Numerical simulation of burning characteristics and structural optimization design of the high speed combustor of pulverized coal. Clean Coal Technology, 2020, 26(2): 66-72 doi: 10.13226/j.issn.1006-6772.20011005
                        [26] 王東風, 劉千, 韓璞, 趙文杰. 基于大數據驅動案例匹配的電站鍋爐燃燒優化. 儀器儀表學報, 2016, 37(2): 420-428 doi: 10.3969/j.issn.0254-3087.2016.02.024

                        Wang Dong-Feng, Liu Qian, Han Pu, Zhao Wen-Jie. Combustion optimization in power station based on big data-driven case-matching. Chinese Journal of Scientific Instrument, 2016, 37(2): 420-428 doi: 10.3969/j.issn.0254-3087.2016.02.024
                        [27] Booth R C, Roland W B. Neural network-based combustion optimization reduces NOx emissions while improving performance. In: Proceedings of the IEEE Industry Applications on Dynamic Modeling Control Applications for Industry Workshop. Vancouver, Canada: IEEE, 1998. 1?6
                        [28] Gu Y P, Zhao W J, Wu Z S. Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems. Journal of Process Control, 2011, 21(7): 1040-1048 doi: 10.1016/j.jprocont.2011.06.001
                        [29] Ding J L, Liu C X, Wen M, Chai T Y. Case-based decision making model for supervisory control of ore roasting process. In: Proceedings of the 5th International Composium on Neural Networks. Beijing, China: Springer, 2008. 148?157
                        [30] Ding J L, Chen Q, Chai T Y, Wang H, Su C Y. Data mining based feedback regulation in operation of hematite ore mineral processing plant. In: Proceedings of the American Control Conference. St. Louis, USA: IEEE, 2009. 907?912
                        [31] Kuang M, Li Z Q, Wang Z H, Jing X J, Liu C L, Zhu Q Y, et al. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MW_e down-fired pulverized-coal furnace under deep-air-staging conditions. Environmental Science & Technology, 2014, 48(1): 837-844
                        [32] Zhou H, Mo G Y, Si D B, Cen K F. Numerical simulation of the NOx emissions in a 1000 MW tangentially fired pulverized-coal boiler: Influence of the multi-group arrangement of the separated over fire air. Energy & Fuels, 2011, 25(5): 2004-2012
                        [33] Park H Y, Faulkner M, Turrell M D, Stopford P J, Kang D S. Coupled fluid dynamics and whole plant simulation of coal combustion in a tangentially-fired boiler. Fuel, 2010, 89(8): 2001-2010 doi: 10.1016/j.fuel.2010.01.036
                        [34] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 1989, 15(4): 287-338 doi: 10.1016/0360-1285(89)90017-8
                        [35] Szecowka L, Poskart M. Techniques to limit NOX emissions. Advanced Combustion and Aerothermal Technologies: Environmental Protection and Pollution Reductions. Dordrecht: Springer, 2007. 47?54
                        [36] Hill S C, Smoot L D. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 2000, 26(4-6): 417-458 doi: 10.1016/S0360-1285(00)00011-3
                        [37] De Soete G G. Overall reaction rates of NO and N_2 formation from fuel nitrogen. Symposium (International) on Combustion, 1975, 15(1): 1093-1102 doi: 10.1016/S0082-0784(75)80374-2
                        [38] Shi Y, Li C, Song L Z, Zhu C P, Fu Y L, He Y Q. Peak shaving auxiliary service market model with multi-type power participation. In: Proceedings of the International Conference on Power System Technology (POWERCON). Haikou, China: IEEE, 2021. 684?689
                      2. 加載中
                      3. 計量
                        • 文章訪問數:  89
                        • HTML全文瀏覽量:  68
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2023-04-17
                        • 錄用日期:  2023-07-10
                        • 網絡出版日期:  2024-01-17

                        目錄

                          /

                          返回文章
                          返回