Distributed Operating Performance Assessment of Dynamic Industrial Processes Based on Slow Feature Analysis
-
摘要: 現代工業過程通常具有規模大、流程長和工序多的特點, 導致傳統的集中式建模方法會淹沒過程的局部變化信息, 從而無法及時識別早期的非優運行狀態. 此外, 閉環控制的廣泛應用使得過程變量普遍存在時序相關性. 針對以上問題, 提出一種基于慢特征分析(Slow feature analysis, SFA)的分布式動態工業過程運行狀態評價方法. 首先, 結合動態時間規整(Dynamic time warping, DTW)和K-medoids聚類算法對過程進行分解; 然后, 對每一變量子塊建立相應的動態慢特征分析(Dynamic slow feature analysis, DSFA)模型; 最后, 利用貝葉斯推理獲得全局的綜合評價指標. 通過在數值案例和金濕法冶金過程的仿真應用, 驗證了該方法的有效性.
-
關鍵詞:
- 分布式模型 /
- 運行狀態評價 /
- 慢特征分析 /
- 動態時間規整 /
- K-medoids聚類
Abstract: The modern industrial processes are generally characterized by large scale, long processes and multiple procedures. In this case, the traditional centralized model may submerge the local change information of the processes, thus failing to identify the early non-optimal operation status in time. In addition, the wide application of closed-loop control brings the universal existence of temporal correlations of process variables. In view of the above problem, a distributed operating performance assessment scheme of dynamic industrial processes based on slow feature analysis (SFA) is proposed. First, the process decomposition is realized by combining dynamic time warping (DTW) and K-medoids clustering algorithms. Second, the corresponding dynamic slow feature analysis (DSFA) model is established for each sub-block. Finally, the overall comprehensive assessment index is obtained through Bayesian inference. The effectiveness of the scheme is verified by numerical examples and gold hydrometallurgy process. -
表 1 不同算法在數值仿真算例中的漏報率(%)
Table 1 Missed alarm rates of different methods inthe numerical example (%)
方法 DPCA DDPCA DSFA DDSFA 案例1 20.25 4.25 19.25 7.00 案例2 94.00 90.50 24.00 18.25 表 2 金濕法冶金過程的變量
Table 2 The variables of gold hydrometallurgy process
序號 子工序 變量名稱 1 一次氰化浸出 礦漿濃度 2 入口礦漿流量 3 浸出槽1的${\rm{NaCN}}$流量 4 浸出槽2的${\rm{NaCN}}$流量 5 浸出槽4的${\rm{NaCN}}$流量 6 空氣流量 7 浸出槽溶解氧濃度 8 浸出槽1的${\rm{CN}}^-$濃度 9 浸出槽2的${\rm{CN}}^-$濃度 10 浸出槽4的${\rm{CN}}^-$濃度 11 一次洗滌 立式壓濾機進料壓力 12 立式壓濾機液壓壓力 13 立式壓濾機擠壓壓力 14 二次氰化浸出 礦漿濃度 15 入口礦漿流量 16 浸出槽1的${\rm{NaCN}}$流量 17 浸出槽2的${\rm{NaCN}}$流量 18 浸出槽4的${\rm{NaCN}}$流量 19 空氣流量 20 浸出槽溶解氧濃度 21 浸出槽1的${\rm{CN}}^-$濃度 22 浸出槽2的${\rm{CN}}^-$濃度 23 浸出槽4的${\rm{CN}}^-$濃度 24 二次洗滌 立式壓濾機進料壓力 25 立式壓濾機液壓壓力 26 立式壓濾機擠壓壓力 27 置換 脫氧塔真空度 28 貴液中的$ {\left[ {{\rm{Au}}{{\left( {{\rm{CN}}} \right)}_2}} \right]^ - }$濃度 29 貧液中的$ {\left[ {{\rm{Au}}{{\left( {{\rm{CN}}} \right)}_2}} \right]^ - }$濃度 30 鋅粉添加速度 表 3 金濕法冶金過程變量的子塊劃分結果
Table 3 Sub-block division result of process variables of gold hydrometallurgy
子塊 過程變量 1 27, 28, 29, 30 2 6, 7, 11, 12, 13 3 19, 20, 24, 25, 26 4 1, 2, 3, 4, 5, 8, 9, 10 5 14, 15, 16, 17, 18, 21, 22, 23 表 4 不同算法在金濕法冶金過程中的漏報率(%)
Table 4 Missed alarm rates of different methods in gold hydrometallurgy process (%)
方法 DPCA DDPCA DSFA DDSFA 案例3 71.50 40.00 25.50 6.00 案例4 68.00 48.75 35.00 26.25 亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Zhang C F, Peng K X, Dong J. A lifecycle operating performance assessment framework for hot strip mill process based on robust kernel canonical variable analysis. Control Engineering Practice, 2021, 107: Article No. 104698 doi: 10.1016/j.conengprac.2020.104698 [2] 褚菲, 傅逸靈, 趙旭, 王佩, 尚超, 王福利. 基于ISDAE模型的復雜工業過程運行狀態評價方法及應用. 自動化學報, 2021, 47(4): 849?863Chu Fei, Fu Yi-Ling, Zhao Xu, Wang Pei, Shang Chao, Wang Fu-Li. Operating performance assessment method and application for complex industrial process based on ISDAE model. Acta Automatica Sinica, 2021, 47(4): 849?863 [3] 趙春暉, 胡赟昀, 鄭嘉樂, 陳軍豪. 數據驅動的燃煤發電裝備運行工況監控: 現狀與展望. 自動化學報, 2022, 48(11): 2611?2633Zhao Chun-Hui, Hu Yun-Yun, Zheng Jia-Le, Chen Jun-Hao. Data-driven operating monitoring for coal-fired power generation equipment: The state of the art and challenge. Acta Automatica Sinica, 2022, 48(11): 2611?2633 [4] Ye L, Liu Y M, Fei Z S, Liang J. Online probabilistic assessment of operating performance based on safety and optimality indices for multi-mode industrial processes. Industrial and Eng-ineering Chemistry Research, 2009, 48(24): 10912?10923 doi: 10.1021/ie801870g [5] Fan H P, Wu M, Cao W H, Lai X Z, Chen L F, Lu C D, et al. An operating performance assessment strategy with multiple modes based on least squares support vector machines for drilling process. Computers and Industrial Engineering, 2021, 159: Article No. 107492 doi: 10.1016/j.cie.2021.107492 [6] Zou X Y, Wang F L, Chang Y Q. Assessment of operating performance using cross-domain feature transfer learning. Control Engineering Practice, 2019, 89: 143?153 doi: 10.1016/j.conengprac.2019.05.007 [7] Liu Y, Wang F L, Chang Y Q, Ma R C. Operating optimality assessment and non-optimal cause identification for non-Gaussian multi-mode processes with transitions. Chemical Engineering Science, 2015, 137: 106?118 doi: 10.1016/j.ces.2015.06.016 [8] Wang Y L, Li L, Wang K. An online operating performance evaluation approach using probabilistic fuzzy theory for chemical processes with uncertainties. Computers and Chemical Engineering, 2021, 144: Article No. 107156 doi: 10.1016/j.compchemeng.2020.107156 [9] Negiz A, ?linar A. Statistical monitoring of multivariable dynamic processes with state-space models. AIChE Journal, 1997, 43(8): 2002?2020 doi: 10.1002/aic.690430810 [10] Lee J M, Yoo C K, Lee I B. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chemical Engineering Science, 2004, 59(14): 2995?3006 doi: 10.1016/j.ces.2004.04.031 [11] Ku W F, Storer R H, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179?196 doi: 10.1016/0169-7439(95)00076-3 [12] Shang C, Yang F, Gao X Q, Huang X L, Suykens J A, Huang D X. Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis. AIChE Journal, 2015, 61(11): 3666?3682 doi: 10.1002/aic.14888 [13] Sedghi S, Huang B. Real-time assessment and diagnosis of process operating performance. Engineering, 2017, 3(2): 214?219 doi: 10.1016/J.ENG.2017.02.004 [14] Zou X Y, Zhao C H. Concurrent assessment of process operating performance with joint static and dynamic analysis. IEEE Transactions on Industrial Informatics, 2019, 16(4): 2776?2786 [15] Norazwan M N, Che R C H, Mohd A H. A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems. Reviews in Chemical Engineering, 2020, 36(4): 513?553 doi: 10.1515/revce-2017-0069 [16] Khan S S, Madden M G. One-class classification: Taxonomy of study and review of techniques. The Knowledge Engineering Review, 2014, 29(3): 345?374 doi: 10.1017/S026988891300043X [17] 姜慶超, 顏學峰. 基于局部?整體相關特征的多單元化工過程分層監測. 自動化學報, 2020, 46(9): 1770?1782Jiang Qing-Chao, Yan Xue-Feng. Hierarchical monitoring for multi-unit chemical processes based on local-global correlation features. Acta Automatica Sinica, 2020, 46(9): 1770?1782 [18] Chen Z W, Cao Y, Ding S X, Zhang K, Koenings T, Peng T, et al. A distributed canonical correlation analysis-based fault detection method for plant-wide process monitoring. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2710?2720 doi: 10.1109/TII.2019.2893125 [19] Liu Y, Wang F L, Gao F R, Cui H N. Hierarchical multi-block T-PLS based operating performance assessment for plant-wide processes. Industrial and Engineering Chemistry Research, 2018, 57(43): 14617?14627 doi: 10.1021/acs.iecr.8b02685 [20] Zhu J L, Ge Z Q, Song Z H. Distributed parallel PCA for modeling and monitoring of large-scale plant-wide processes with big data. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1877?1885 doi: 10.1109/TII.2017.2658732 [21] Huang K K, Wei K, Li Y G, Yang C H. Distributed dictionary learning for industrial process monitoring with big data. Applied Intelligence, 2021, 51(11): 7718?7734 doi: 10.1007/s10489-020-02128-x [22] Tong C D, Shi X H. Decentralized monitoring of dynamic processes based on dynamic feature selection and informative fault pattern dissimilarity. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3804?3814 doi: 10.1109/TIE.2016.2530047 [23] Jiang Q C, Yan X F, Huang B. Review and perspectives of data-driven distributed monitoring for industrial plant-wide processes. Industrial and Engineering Chemistry Research, 2019, 58(29): 12899?12912 doi: 10.1021/acs.iecr.9b02391 [24] Ge Z Q, Song Z H. Distributed PCA model for plant-wide process monitoring. Industrial and Engineering Chemistry Research, 2013, 52(5): 1947?1957 doi: 10.1021/ie301945s [25] Jiang Q C, Yan X F. Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multi-block KPCA. Journal of Process Control, 2015, 32: 38?50 doi: 10.1016/j.jprocont.2015.04.014 [26] Zhong K, Ma D W, Han M. Distributed dynamic process monitoring based on dynamic slow feature analysis with minimal redundancy maximal relevance. Control Engineering Practice, 2020, 104: Article No. 104627 doi: 10.1016/j.conengprac.2020.104627 [27] Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(1): 43?49 doi: 10.1109/TASSP.1978.1163055 [28] Park H S, Jun C H. A simple and fast algorithm for K-medoids clustering. Expert Systems With Applications, 2009, 36(2): 3336?3341 doi: 10.1016/j.eswa.2008.01.039 [29] Song P Y, Zhao C H. Slow down to go better: A survey on slow feature analysis. IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2022.3201621 [30] Rong M Y, Shi H B, Song B, Tao Y. Multi-block dynamic weighted principal component regression strategy for dynamic plant-wide process monitoring. Measurement, 2021, 183: Article No. 109705 doi: 10.1016/j.measurement.2021.109705 [31] Jia G L, Wang Y Q, Huang B. Dynamic higher-order cumulants analysis for state monitoring based on a novel lag selection. Information Sciences, 2016, 331: 45?66 doi: 10.1016/j.ins.2015.10.029 [32] 蔣珂, 蔣朝輝, 謝永芳, 潘冬, 桂衛華. 基于時序關聯矩陣的高爐冶煉過程多重關聯時延估計方法. 自動化學報, 2023, 49(2): 329?342Jiang Ke, Jiang Zhao-Hui, Xie Yong-Fang, Pan Dong, Gui Wei-Hua. A multi-correlated time-delay estimation method in the blast furnace iron-making process based on time-series correlation matrix. Acta Automatica Sinica, 2023, 49(2): 329?342 [33] Zhang S M, Zhao C H, Huang B. Simultaneous static and dynamic analysis for fine-scale identification of process operation statuses. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5320?5329 doi: 10.1109/TII.2019.2896987 [34] Ge Z Q, Chen J H. Plant-wide industrial process monitoring: A distributed modeling framework. IEEE Transactions on Industrial Informatics, 2015, 12(1): 310?321 [35] 張成, 戴絮年, 李元. 基于DPCA殘差互異度的故障檢測與診斷方法. 自動化學報, 2022, 48(1): 292?301Zhang Cheng, Dai Xu-Nian, Li Yuan. Fault detection and diagnosis based on residual dissimilarity in dynamic principal component analysis. Acta Automatica Sinica, 2022, 48(1): 292?301 [36] 常玉清, 孫雪婷, 鐘林生, 王福利, 劉英嬌. 基于改進隨機森林算法的工業過程運行狀態評價. 自動化學報, 2021, 47(9): 2214?2225Chang Yu-Qing, Sun Xue-Ting, Zhong Lin-Sheng, Wang Fu-Li, Liu Ying-Jiao. Industrial operation performance evaluation of industrial processes based on modified random forest. Acta Automatica Sinica, 2021, 47(9): 2214?2225 [37] Zhong L S, Chang Y Q, Wang F L, Gao S H. Distributed missing values imputation schemes for plant-wide industrial process using variational Bayesian principal component analysis. Industrial and Engineering Chemistry Research, 2022, 61(1): 580?593 doi: 10.1021/acs.iecr.1c03860