機器人化復合材料自動(dòng)鋪層技術(shù)綜述
doi: 10.16383/j.aas.c230149
-
1.
華南理工大學(xué)自動(dòng)化科學(xué)與工程學(xué)院 廣州 510000
-
2.
武漢大學(xué)工業(yè)科學(xué)研究院 武漢 430000
A Review on Robotized Automated Lay-up Technology for Composite Material Manufacturing
-
1.
School of Automation Science and Engineering, South China University of Technology, Guangzhou 510000
-
2.
The Institute of Technological Sciences, Wuhan University, Wuhan 430000
-
摘要: 碳纖維增強復合材料(Carbon fiber-reinforced composite, CFRC)因具有輕質(zhì)高強、耐腐蝕、耐沖擊等優(yōu)越性能, 在生產(chǎn)生活中的應用已越來(lái)越廣泛, 然而復材產(chǎn)品的生產(chǎn)制造仍是勞動(dòng)密集性產(chǎn)業(yè), 主要依靠人工. 機械臂自上世紀50年代進(jìn)入工業(yè)生產(chǎn)中以來(lái), 極大提高了生產(chǎn)效率和質(zhì)量, 然而目前機械臂在復材產(chǎn)品制造中的應用是少見(jiàn)的, 主要集中在機械臂形式的自動(dòng)鋪絲(Automated fiber placement, AFP)中. 復材產(chǎn)品制造工藝繁瑣, 將復合材料鋪放在模具上是復材產(chǎn)品制造過(guò)程中的一個(gè)重要環(huán)節, 本文稱(chēng)之為“鋪層”, 使用機械臂完成復合材料自動(dòng)鋪層將是未來(lái)復材產(chǎn)品制造自動(dòng)化、智能化發(fā)展的一個(gè)關(guān)鍵方向. 本文將機械臂進(jìn)行復合材料自動(dòng)鋪層操作分為兩種主要形式: 鋪片和鋪帶(絲), 通過(guò)案例調研和分析, 歸納總結現有的設計理念和技術(shù)方法, 提出未來(lái)發(fā)展趨勢, 以期對機械臂的應用和研究、復材產(chǎn)品的智能化制造和工業(yè)4.0的發(fā)展形成參考.
-
關(guān)鍵詞:
- 碳纖維增強復合材料 /
- 機械臂控制 /
- 末端設計 /
- 自動(dòng)鋪層
Abstract: Carbon fiber-reinforced composite (CFRC) has been widely used in production and life because of its superior properties such as light weight and high strength, corrosion resistance and impact resistance. However, the manufacturing of composite products is still a labor-intensive industry, mainly relying on manual labor. Since the robot arm entered the industrial production in the 1950s, it has greatly improved the production efficiency and quality, however, the current application of robot arm in the manufacturing of composite products is rare, mainly focusing on the robot arm form of automated fiber placement (AFP). The manufacturing process of composite products is tedious, and laying the composite material on the mold is an important part of the manufacturing process of composite products, which we call “l(fā)ay-up”, and the use of robot arm to complete the automated lay-up operation will be a key direction for the future automation and intelligent development of the manufacturing of composite products. This paper offers a thorough examination of automated lay-up operation for robot arm, and categorizes them into two primary types: Lay-up sheets and lay-up tapes (fibers). Through case study and analysis of existing design concepts and technical methods, this paper identifies trend and suggests future development direction. The insights are of significant value for application and research related to robot arm, intelligent manufacturing of composite products, and the progression of Industry 4.0. -
圖 1 復材產(chǎn)品制造工藝的生產(chǎn)流程圖
Fig. 1 Production flow chart of the manufacturing process of composite products
圖 6 面向工業(yè)生產(chǎn)的多機械臂協(xié)同鋪層研究案例
Fig. 6 Multi-robot arms collaborative lay-up study cases for industrial production
表 1 機械臂在傳統工業(yè)場(chǎng)景和復材產(chǎn)品制造場(chǎng)景應用特點(diǎn)對比
Table 1 Comparison of the application characteristics of robot arm in traditional industrial scenario and composite products manufacturing scenario
對比 特點(diǎn) 傳統工業(yè)場(chǎng)景 復材產(chǎn)品制造場(chǎng)景 噴涂 點(diǎn)焊 搬運 裝配 鋪片 鋪帶(絲) 相同之處 重復定位精度 高 位置跟蹤要求 高 不同之處 操作是否接觸 否 是 是 是 是 是 操作材料特性 氣體 高溫 硬質(zhì) 硬質(zhì) 柔軟粘性 柔軟粘性 是否需要加熱 否 是 否 否 是 是 是否有接觸力 否 否 是 是 是 是 末端構造 噴嘴 焊鉗 夾持 各類(lèi)工具 夾持懸垂拾取 專(zhuān)有鋪放頭 下載: 導出CSV表 2 不同拾取原理的優(yōu)劣對比
Table 2 Comparison of the advantages and disadvantages of different pick-up principles
拾取原理 對材料的損壞程度 成本 實(shí)現難度 易操作性 針刺 高 低 低 高 低溫 中 中 中 中 真空吸取 無(wú) 高 中 中 下載: 導出CSV表 3 單機械臂鋪層研究案例對比
Table 3 Comparison of single robot arm lay-up study cases
研究機構 研究重點(diǎn) 路徑規劃 運動(dòng)規劃 工藝參數 系統軟件 使用的機械臂 相關(guān)文獻 德國宇航中心 全過(guò)程自動(dòng)化 基于視覺(jué)生成 系統生成 未知 獨立開(kāi)發(fā) KUKA [45?46, 71?72] 漢堡科技大學(xué) 工藝流程優(yōu)化 未知 未知 未知 未知 ABB [73?76] 慕尼黑工業(yè)大學(xué) 全過(guò)程自動(dòng)化 人類(lèi)專(zhuān)家設計 控制器生成 人類(lèi)專(zhuān)家設計 CFK-Tex.Office KUKA KR-500 [32?34, 77] 布里斯托大學(xué) 鋪放自動(dòng)化 未知 未知 人類(lèi)專(zhuān)家設計 未知 ABB [62] 德國宇航中心 全過(guò)程自動(dòng)化 系統生成 系統生成 未知 獨立開(kāi)發(fā) KUKA [78?79] 南丹麥大學(xué) 鋪放自動(dòng)化 基于模擬方法 系統生成 未知 獨立開(kāi)發(fā) KUKA KR-360 [60, 80?84] 下載: 導出CSV表 4 多機械臂協(xié)同鋪層研究案例對比
Table 4 Comparison of multi-robot arms collaborative lay-up study cases
研究機構 機械臂數量 研究?jì)热?/td> 路徑規劃 運動(dòng)規劃 系統軟件 使用的機械臂 相關(guān)文獻 南卡羅萊納大學(xué) 3 路徑規劃 運動(dòng)規劃 算法生成 控制器生成 獨立開(kāi)發(fā) KUKA-iiwa [85?87, 89?91] 斯圖加特大學(xué) 3 系統搭建 路徑規劃 人類(lèi)專(zhuān)家設計 系統生成 獨立開(kāi)發(fā) ABB [64, 92] 德國宇航中心 2 系統搭建 路徑規劃 算法生成 系統生成 獨立開(kāi)發(fā) KUKA-KR270 [93?101] 空客集團 2 系統搭建 末端開(kāi)發(fā) 人類(lèi)專(zhuān)家設計 系統生成 獨立開(kāi)發(fā) KUKA [41?42, 106] 林雪平大學(xué) 2 技術(shù)驗證 末端開(kāi)發(fā) 未知 未知 未知 KUKA-KR10, ABB [107?108] 慕尼黑工業(yè)大學(xué) 2 系統搭建 路徑規劃 算法生成 系統生成 獨立開(kāi)發(fā) Staubli, KUKA [24] 思克萊德大學(xué) 1 技術(shù)驗證 人類(lèi)專(zhuān)家設計 系統生成 獨立開(kāi)發(fā) KUKA-KR6 [110] 維也納技術(shù)大學(xué) 2 技術(shù)驗證 人類(lèi)專(zhuān)家設計 系統生成 未知 自制 [111?112] 下載: 導出CSV表 5 鋪帶(絲)頭中采用的切割方式對比
Table 5 Comparison of cutting methods used in tape (fiber) lay-up heads
切割方式 成本 優(yōu)點(diǎn) 缺點(diǎn) 機械道具切割 低 結構簡(jiǎn)單, 切割效率高, 適用于多種復雜環(huán)境,
維修更換比較方便難以控制切割深度且切口毛糙, 損傷預浸料,
無(wú)法保證切口質(zhì)量激光切割 較高 切割效率高, 非接觸式切割, 產(chǎn)品邊緣光滑平整,
激光對位精準, 切割精度高溫度較高, 使復合材料發(fā)生變質(zhì)且
切割深度不易控制水噴射切割 低 設備結構簡(jiǎn)單, 操作容易, 工作機構具有噴頭體積小、
后坐力小、移動(dòng)方便、生產(chǎn)效率高等特點(diǎn)給整個(gè)鋪帶環(huán)境帶來(lái)大量污染液體,
影響復合材料成型, 鋪帶工作不便超聲波切割 較高 切割效率高, 切口平整; 合適的切割速度、
切割深度滿(mǎn)足不同工況下的切割易受負載、溫度等因素影響, 引起諧振頻率、
等效阻抗等參數漂移變化下載: 導出CSV表 6 鋪帶(絲)頭中采用的加熱方式對比
Table 6 Comparison of heating methods used in tape (fiber) lay-up heads
加熱方式 成本 優(yōu)點(diǎn) 缺點(diǎn) 電阻絲加熱 低 加熱均勻, 實(shí)現簡(jiǎn)單 熱損失大, 功率密度低, 使用壽命短 激光加熱 高 激光加熱效率高, 響應快 溫度難以控制, 容易產(chǎn)生局部過(guò)熱 熱風(fēng)加熱 低 溫度場(chǎng)均勻, 調節范圍廣 加熱升溫時(shí)間長(cháng), 熱效率較低 紅外加熱 高 熱效率高, 加熱均勻, 響應速度快 輻射面存在一定限制, 溫度場(chǎng)不均勻 下載: 導出CSV表 7 路徑規劃方法對比
Table 7 Comparison of path planning methods
分類(lèi) 方法 優(yōu)點(diǎn) 缺點(diǎn) 參考路徑生成 自然路徑法 可以避免纖維起皺, 軌跡可鋪放性良好 計算量大, 僅適用于低曲率表面 定角度路徑法 原理及計算過(guò)程簡(jiǎn)單 僅適用于整體曲率波動(dòng)較小的曲面 變角度路徑法 能夠自適應芯模曲面不規則情況 算法計算量大 路徑密化 等距偏置算法 算法簡(jiǎn)單, 能夠覆蓋整個(gè)芯模表面 在復雜表面上可能存在間隙和重疊 等角度算法 算法實(shí)現簡(jiǎn)單, 適應各種復雜構件 易存在間隙和重疊 下載: 導出CSV關(guān)鍵技術(shù) 研究?jì)热?/td> 研究目標 軌跡規劃 根據構件3D表面設計相應路徑規劃算法, 自適應生成鋪放軌跡 滿(mǎn)足構件結構的方向性、鋪放順序和鋪疊層數要求 鋪放路徑覆蓋 根據曲面上相鄰路徑的間距, 對鋪絲路徑的覆蓋性進(jìn)行檢驗與優(yōu)化 實(shí)現對模具的滿(mǎn)覆蓋、不重疊, 滿(mǎn)足空隙容差 邊界處理 根據構件的邊界輪廓信息, 設計邊界處理算法, 控制邊緣和角部的鋪放方式與形態(tài) 確保鋪放邊界質(zhì)量和表面光潔度 后置處理 數控代碼生成、代碼優(yōu)化與合成、加工仿真技術(shù)等 機器人能夠識別執行的指令 下載: 導出CSV表 9 現有自動(dòng)化缺陷檢測技術(shù)優(yōu)劣對比
Table 9 Comparison of the advantages and disadvantages of existing automated defect detection technologies
檢測技術(shù) 使用設備 安裝方式 優(yōu)點(diǎn) 缺點(diǎn) 相關(guān)文獻 激光輔助檢測 激光投影儀 固定支架安裝 實(shí)時(shí)性好、精度高、分辨率高 投影儀與模具間的相對位置精度要求高,
對效率提升不明顯[189?191] 紅外熱成像檢測 熱成像儀 集成在鋪放頭 檢測成本低 對環(huán)境溫度要求嚴格, 精度難以保證 [192?195] 基于輪廓數據檢測 激光輪廓儀 集成在鋪放頭或安裝在
機械臂末端檢測結果準確, 不易受環(huán)境影響 計算量大, 需要極高性能計算平臺,
僅能檢測外部缺陷[196?200] 機器視覺(jué)檢測 工業(yè)相機 集成在鋪放頭 檢測效果好, 自動(dòng)化程度高 檢測系統適應性不高 [201?212] 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 林剛, CINTE21. 構建“硬科技”優(yōu)勢——2021全球碳纖維復合材料市場(chǎng)報告. 紡織科學(xué)研究, 2022, 33(5): 46?66Lin Gang, CINTE21. Building a “hard technology” advantage-global carbon fibre composites market report 2021. Textile Science Research, 2022, 33(5): 46?66 [2] 中國電子學(xué)會(huì ). 中國機器人產(chǎn)業(yè)發(fā)展報告(2022年), 世界機器人大會(huì ), 中國, 2022.Chinese Institute of Electronics. China Robotics Industry Development Report (2022), World Robot Conference, China, 2022. [3] 億歐智庫. 2022中國工業(yè)機器人市場(chǎng)研究報告. 機器人產(chǎn)業(yè), 2022, (4): 83?95 doi: 10.3969/j.issn.2096-0182.2022.04.014EqualOcean. 2022 China industrial robotics market research report. Robot Industry, 2022, (4): 83?95 doi: 10.3969/j.issn.2096-0182.2022.04.014 [4] Lei T, Rong Y M, Wang H, Huang Y, Li M. A review of vision-aided robotic welding. Computers in Industry, 2020, 123: Article No. 103326 doi: 10.1016/j.compind.2020.103326 [5] Sun Y W, Jia J J, Xu J T, Chen M S, Niu J B. Path, feedrate and trajectory planning for free-form surface machining: A state-of-the-art review. Chinese Journal of Aeronautics, 2022, 35(8): 12?29 doi: 10.1016/j.cja.2021.06.011 [6] Urhal P, Weightman A, Diver C, Bartolo P. Robot assisted additive manufacturing: A review. Robotics and Computer-Integrated Manufacturing, 2019, 59: 335?345 doi: 10.1016/j.rcim.2019.05.005 [7] Cong Y, Chen R H, Ma B T, Liu H S, Hou D D, Yang C G. A comprehensive study of 3-D vision-based robot manipulation. IEEE Transactions on Cybernetics, 2023, 53(3): 1682?1698 doi: 10.1109/TCYB.2021.3108165 [8] 秦方博, 徐德. 機器人操作技能模型綜述. 自動(dòng)化學(xué)報, 2019, 45(8): 1401?1418Qin Fang-Bo, Xu De. Review of robot manipulation skill models. Acta Automatica Sinica, 2019, 45(8): 1401?1418 [9] 曾超, 楊辰光, 李強, 戴詩(shī)陸. 人?機器人技能傳遞研究進(jìn)展. 自動(dòng)化學(xué)報, 2019, 45(10): 1813?1828Zeng Chao, Yang Chen-Guang, Li Qiang, Dai Shi-Lu. Research progress on human-robot skill transfer. Acta Automatica Sinica, 2019, 45(10): 1813?1828 [10] 齊志剛, 黃攀峰, 劉正雄, 韓冬. 空間冗余機械臂路徑規劃方法研究. 自動(dòng)化學(xué)報, 2019, 45(6): 1103?1110Qi Zhi-Gang, Huang Pan-Feng, Liu Zheng-Xiong, Han Dong. Research on path planning method of spatial redundant manipulator. Acta Automatica Sinica, 2019, 45(6): 1103?1110 [11] Chutima P. A comprehensive review of robotic assembly line balancing problem. Journal of Intelligent Manufacturing, 2022, 33(1): 1?34 doi: 10.1007/s10845-020-01641-7 [12] Rajak D K, Pagar D D, Menezes P L, Linul E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 2019, 11(10): Article No. 1667 doi: 10.3390/polym11101667 [13] Elkington M, Ward C, Sarkytbayev A. Automated composite draping: A review. In: Proceedings of the SAMPE Seattle 2017. Seattle, USA: SAMPE North America, 2017. [14] Bj?rnsson A, Jonsson M, Johansen K. Automated material handling in composite manufacturing using pick-and-place systems——A review. Robotics and Computer-Integrated Manufacturing, 2018, 51: 222?229 doi: 10.1016/j.rcim.2017.12.003 [15] Lukaszewicz D H J A, Ward C, Potter K D. The engineering aspects of automated prepreg layup: History, present and future. Composites Part B: Engineering, 2012, 43(3): 997?1009 doi: 10.1016/j.compositesb.2011.12.003 [16] Brasington A, Sacco C, Halbritter J, Wehbe R, Harik R. Automated fiber placement: A review of history, current technologies, and future paths forward. Composites Part C: Open Access, 2021, 6: Article No. 100182 doi: 10.1016/j.jcomc.2021.100182 [17] Zhang W X, Liu F, Jiang T, Yi M H, Chen W Q, Ding X L. Overview of current design and analysis of potential theories for automated fibre placement mechanisms. Chinese Journal of Aeronautics, 2022, 35(4): 1?13 doi: 10.1016/j.cja.2021.04.018 [18] Chen J P, Fu K K, Li Y. Understanding processing parameter effects for carbon fibre reinforced thermoplastic composites manufactured by laser-assisted automated fibre placement (AFP). Composites Part A: Applied Science and Manufacturing, 2021, 140: Article No. 106160 doi: 10.1016/j.compositesa.2020.106160 [19] de Campos A A, Henriques E, Magee C L. Technological improvement rates and recent innovation trajectories in automated advanced composites manufacturing technologies: A patent-based analysis. Composites Part B: Engineering, 2022, 238: Article No. 109888 doi: 10.1016/j.compositesb.2022.109888 [20] Soares B A R, Henriques E, Ribeiro I, Freitas M. Cost analysis of alternative automated technologies for composite parts production. International Journal of Production Research, 2019, 57(6): 1797?1810 doi: 10.1080/00207543.2018.1508903 [21] Jayasekara D, Lai N Y G, Wong K H, Pawar K, Zhu Y D. Level of automation (LOA) in aerospace composite manufacturing: Present status and future directions towards industry 4.0. Journal of Manufacturing Systems, 2022, 62: 44?61 doi: 10.1016/j.jmsy.2021.10.015 [22] Potter K, Ward C. Draping processes for composites manufacture. Advances in Composites Manufacturing and Process Design. Amsterdam: Woodhead Publishing, 2015. 93?109 [23] Cevotec. Composite tank reinforcements [Online], available: https://www.cevotec.com/industries-applications/fpp-composite-tanks/, July 29, 2023 [24] Michl F, Coquel M. Fully-automated production of complex CFRP parts using fibre-patch-preforming technology. JEC Com posites Magazine, 2014, 87: 108?110 [25] Malhan R K, Shembekar A V, Kabir A M, Bhatt P M, Shah B, Zanio S, et al. Automated planning for robotic layup of composite prepreg. Robotics and Computer-Integrated Manufacturing, 2021, 67: Article No. 102020 doi: 10.1016/j.rcim.2020.102020 [26] Larsen L, Kim J. Path planning of cooperating industrial robots using evolutionary algorithms. Robotics and Computer-Integrated Manufacturing, 2021, 67: Article No. 102053 doi: 10.1016/j.rcim.2020.102053 [27] Khodunov A A, Bogachev V V, Borodulin A S. Advances in tailored fiber placement technology. Journal of Physics: Conference Series, 2021, 1990: Article No. 012041 [28] Lindback J E, Bj?rnsson A, Johansen K. New automated composite manufacturing process: Is it possible to find a cost effective manufacturing method with the use of robotic equipment? In: Proceedings of the 5th International Swedish Production Symposium. Linkoping, Sweden: 2012. 523?531 [29] Kordi M T, Husing M, Corves B. Development of a multifunctional robot end-effector system for automated manufacture of textile preforms. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Zurich, Switzerland: IEEE, 2007. 1?6 [30] Reinhart G, Stra?er G. Flexible gripping technology for the automated handling of limp technical textiles in composites industry. Production Engineering, 2011, 5(3): 301?306 doi: 10.1007/s11740-011-0306-1 [31] Reinhart G, Strassr G, Ehinger C. Highly flexible automated manufacturing of composite structures consisting of limp carbon fibre textiles. SAE International Journal of Aerospace, 2010, 2(1): 181?187 [32] Angerer A, Ehinger C, Hoffmann A, Reif W, Reinhart G. Design of an automation system for preforming processes in aerospace industries. In: Proceedings of the IEEE International Conference on Automation Science and Engineering. Trieste, Italy: IEEE, 2011. 557?562 [33] Ehinger C, Reinhart G. Robot-based automation system for the flexible preforming of single-layer cut-outs in composite industry. Production Engineering, 2014, 8(5): 559?565 doi: 10.1007/s11740-014-0546-y [34] Reinhart G, Ehinger C. Novel robot-based end-effector design for an automated preforming of limb carbon fiber textiles. In: Proceedings of the 1st Conference of the German Academic Society for Production Engineering (WGP). Berlin, Germany: Springer, 2013. 131?142 [35] L?chte C, Kunz H, Schnurr R, Dietrich F, Raatz A, Dilger K, et al. Form-flexible handling technology for automated preforming. In: Proceedings of the 19th International Conference on Composite Materials. Montreal, Canada: Concordia University, 2013. [36] L?chte C, Kunz H, Schnurr R, Langhorst S, Dietrich F, Raatz A, et al. Form-flexible handling and joining technology (FormHand) for the forming and assembly of limp materials. Procedia CIRP, 2014, 23: 206?211 doi: 10.1016/j.procir.2014.10.086 [37] Kunz H, L?chte C, Dietrich F, Raatz A, Fischer F, Dr?der K, et al. Novel form-flexible handling and joining tool for automated preforming. Science and Engineering of Composite Materials, 2015, 22(2): 199?213 doi: 10.1515/secm-2013-0326 [38] Dr?der K, Dietrich F, L?chte C, Hesselbach J. Model based design of process-specific handling tools for workpieces with many variants in shape and material. CIRP Annals, 2016, 65(1): 53?56 doi: 10.1016/j.cirp.2016.04.109 [39] Apmann H. Automatic Handling of CFRP-material for Frame and Stringer Production, SAE Technical Paper 2008-01-2289, SAE, USA, 2008. [40] Apmann H, Hemmen A, Herkt M. Automatic Handling of Carbon Fiber Preforms for CFRP Parts in Aerospace, SAE Technical Paper 2012-01-1864, SAE, USA, 2012. [41] Apmann H, Busse M, Du J Y, K?hnke P. Automated manufacture of fibre metal laminates to achieve high rate of production. Lightweight Design Worldwide, 2017, 10(4): 28?33 [42] Ucan H, Apmann H, Gra?l G, Krombholz C, Fortkamp K, Nieberl D, et al. Production technologies for lightweight structures made from fibre-metal laminates in aircraft fuselages. CEAS Aeronautical Journal, 2019, 10(2): 479?489 doi: 10.1007/s13272-018-0330-3 [43] Ucan H, Scheller J, Nguyen C, Nieberl D, Beumler T, Haschenburger A, et al. Automated, quality assured and high volume oriented production of fiber metal laminates (FML) for the next generation of passenger aircraft fuselage shells. Science and Engineering of Composite Materials, 2019, 26(1): 502?508 doi: 10.1515/secm-2019-0031 [44] Braun G, Buchheim A, Fischer F, Gerngross T. Handgeführter Endeffektor Für Die Automatisierte Handhabung von Textilen Zuschnitten, DLR-IB 435-2013/88, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Germany, 2013. [45] Kuehnel M, Schuster A, Buchheim A, Gergross T, Kupke M. Automated near-net-shape preforming of carbon fiber reinforced thermoplastics (CFRTP). In: Proceedings of the Paper for the I.C.S of the JEC Europe 2014. Paris, France: 2014. [46] Kuhnel M, Schuster A, R?htz C, Kupke M. Near net shape thermoplastic preforming with continuously automated cutting and robotic pick and place processes. In: Proceedings of the International Conference and Exhibition on Thermoplastic Composites. Bremen, Germany: 2016. [47] Vistein M, Faber J, Schmidt-Eisenlohr C, Reiter D. Automated handling of auxiliary materials using a multi-kinematic gripping system. Procedia Manufacturing, 2019, 38: 1276?1283 doi: 10.1016/j.promfg.2020.01.220 [48] Gunnarsson G G, Nielsen O W, Schlette C, Petersen H G. Fast and simple interacting models of drape tool and ply material for handling free hanging, pre-impregnated carbon fibre material. In: Proceedings of the 15th Informatics in Control, Automation and Robotics. Porto, Portugal: Springer, 2018. 1?25 [49] Fleischer J, F?rster F, Crispieri N V. Intelligent gripper technology for the handling of carbon fiber material. Production Engineering, 2014, 8(6): 691?700 doi: 10.1007/s11740-014-0549-8 [50] F?rster F, Ballier F, Coutandin S, Defranceski A, Fleischer J. Manufacturing of textile preforms with an intelligent draping and gripping system. Procedia CIRP, 2017, 66: 39?44 doi: 10.1016/j.procir.2017.03.370 [51] Wirth B, Coutandin S, Fleischer J. Disturbance force estimation for a low pressure suction gripper based on differential pressure analysis. In: Proceedings of the Annals of Scientific Society for Assembly, Handling and Industrial Robotics. Berlin, Germany: Springer, 2020. 263?273 [52] Wirth B, Schwind T, Friedmann M, Fleischer J. Automated stack singulation for technical textiles using sensor supervised low pressure suction grippers. In: Proceedings of the Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2022. Cham, Germany: Springer, 2022. 329?340 [53] Brink M, Ohlendorf J H, Thoben K D. Development of a handling system with integrated sensors for textile preforms using additive manufacturing. Procedia Manufacturing, 2018, 24: 114?119 doi: 10.1016/j.promfg.2018.06.016 [54] Bj?rnsson A, Jonsson M, Eklund D, Lindb?ck J E, Bj?rkman M. Getting to grips with automated prepreg handling. Production Engineering, 2017, 11: 445?453 doi: 10.1007/s11740-017-0763-2 [55] Brinker J, Prause I, Kosse P, Früh H C, Printz S, Henke C, et al. Automated handling and draping of reinforcing textiles-challenges and developments. New Advances in Mechanisms, Mechanical Transmissions and Robotics. Cham, Germany: Springer, 2017. 485?493 [56] Brinker J, Paris J, Müller M, Hüsing M, Corves B. Mechanism type synthesis approach for automated handling and multiaxial draping of reinforcing textiles. New Trends in Mechanism and Machine Science: Theory and Industrial Applications. Cham, Germany: Springer, 2017. 523?532 [57] Brinker J, Müller M, Paris J, Husing M, Corves B. Mechanism design for automated handling and multiaxial draping of reinforcing textiles. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Charlotte, USA: ASME, 2016. Article No. V05BT07A040 [58] Corves B, Brinker J, Prause I, Hüsing M, Abbas B, Krieger H, et al. AutoHD——Automated handling and draping of reinforcing textiles. In: Proceedings of the Conference on Mechanisms, Transmissions and Applications. Cham, Germany: Springer, 2015. 301?309 [59] Wang B W. Design and Development of a Soft Robotic Gripper for Fabric Material Handling [Master thesis], University of Windsor, Canada, 2020. [60] Krogh C, Jakobsen J, Sherwood J A. Development of a computationally efficient fabric model for optimization of gripper trajectories in automated composite draping. arXiv preprint arXiv: 1810.07619, 2018. [61] Elkington M, Bloom D, Ward C, Chatzimichali A, Potter K. Hand layup: Understanding the manual process. Advanced Manufacturing: Polymer & Composites Science, 2015, 1(3): 138?151 [62] Elkington M, Ward C, Potter K D. Automated layup of sheet prepregs on complex moulds. Journal of Advanced Materials, 2016, 3 : 70?84 [63] Elkington M, Almas E, Ward-Cherrier B, Pestell N, Lloyd J, Ward C, et al. Real time defect detection during composite layup via tactile shape sensing. Science and Engineering of Composite Materials, 2021, 28(1): 1?10 doi: 10.1515/secm-2021-0001 [64] Szcesny M, Heieck F, Carosella S, Middendorf P, Sehrsch?n H, Schneiderbauer M. The advanced ply placement process——An innovative direct 3D placement technology for plies and tapes. Advanced Manufacturing: Polymer & Composites Science, 2017, 3(1): 2?9 [65] Richrath M, Franke J, Ohlendorf J H, Thoben K D. Effector for automated direct textile placement in rotor blade production. Lightweight Design Worldwide, 2017, 10(5): 42?47 doi: 10.1007/s41777-017-0039-8 [66] Schouterden G, Cramer J, Demeester E, Kellens K. Development of a membrane-shaped MR-based composite draping tool. Procedia CIRP, 2019, 86: 167?172 doi: 10.1016/j.procir.2020.01.048 [67] Denkena B, Schmidt C, Werner S, Schwittay D. Development of a shape replicating draping unit for continuous layup of unidirectional non-crimp fabrics on complex surface geometries. Journal of Composites Science, 2021, 5(4): Article No. 93 doi: 10.3390/jcs5040093 [68] Helber F, Amann A, Carosella S, Middendorf P. Intrinsic fibre heating: A novel approach for automated dry fibre placement. IOP Conference Series: Materials Science and Engineering, 2018, 460: Article No. 012064 [69] Bj?rnsson A, Lindback J E, Johansen K. Automated removal of prepreg backing paper——A sticky problem. In: Proceedings of the SAE 2013 AeroTech Congress & Exhibition. New York, USA: SAE International, 2013. [70] Bruns C, Micke-Camuz M, Bohne F, Raatz A. Process design and modelling methods for automated handling and draping strategies for composite components. CIRP Annals, 2018, 67(1): 1?4 doi: 10.1016/j.cirp.2018.04.014 [71] Schuster A, Larsen L, Fischer F, Glück R, Schneyer S, Kühnel M, et al. Smart manufacturing of thermoplastic CFRP skins. Procedia Manufacturing, 2018, 17: 935?943 doi: 10.1016/j.promfg.2018.10.147 [72] Beyrle M, Endra? M, Kühnel M, Schuster A, Stefani T, Glück R, et al. Automated production and joining of high performance structures out of carbon fiber reinforced thermoplastics. In: Proceedings of the Composites and Advanced Materials Expo. Orlando, USA: 2017. [73] Roth F, Eschen H, Schüppstuhl T. The loop gripper: A soft gripper for honeycomb materials. Procedia Manufacturing, 2021, 55: 160?167 doi: 10.1016/j.promfg.2021.10.023 [74] Eschen H, Harnisch M, Schuppstühl T. Flexible and automated production of sandwich panels for aircraft interior. Procedia Manufacturing, 2018, 18: 35?42 doi: 10.1016/j.promfg.2018.11.005 [75] Eschen H, Kalscheuer F, Schüppstuhl T. Optimized process chain for flexible and automated aircraft interior production. Procedia Manufacturing, 2020, 51: 535?542 doi: 10.1016/j.promfg.2020.10.075 [76] Kalscheuer F, Eschen H, Schüppstuhl T. Towards semi automated pre-assembly for aircraft interior production. In: Proceedings of the Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021. Cham, Germany: Springer, 2022. 203?213 [77] Angerer A, Ehinger C, Hoffmann A, Reif W, Reinhart G, Strasser G. Automated cutting and handling of carbon fiber fabrics in aerospace industries. In: Proceedings of the IEEE International Conference on Automation Science and Engineering. Toronto, Canada: IEEE, 2010. 861?866 [78] Gerngross T, Nieberl D. Automated manufacturing of large, three-dimensional CFRP parts from dry textiles. CEAS Aeronautical Journal, 2016, 7(2): 241?257 doi: 10.1007/s13272-016-0184-5 [79] N?gele L, Macho M, Angerer A, Hoffmann A, Vistein M, Sch?nheits M, et al. A backward-oriented approach for offline programming of complex manufacturing tasks. In: Proceedings of the 6th International Conference on Automation, Robotics and Applications (ICARA). Queenstown, New Zealand: IEEE, 2015. 124?130 [80] Ellekilde L P, Wilm J, Nielsen O W, Krogh C, Kristiansen E, Gunnarsson G G, et al. Design of automated robotic system for draping prepreg composite fabrics. Robotica, 2021, 39(1): 72?87 doi: 10.1017/S0263574720000193 [81] Serpina G G G, Petersen H G. Mathematical modeling of a highly underactuated tool for draping fiber plies on double curved molds. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Xi'an, China: IEEE, 2021. 1666?1672 [82] Krogh C, Glud J A, Jakobsen J. Modeling of prepregs during automated draping sequences. AIP Conference Proceedings, 2017, 1896: Article No. 030036 [83] Krogh C, Glud J A, Jakobsen J. Modeling the robotic manipulation of woven carbon fiber prepreg plies onto double curved molds: A path-dependent problem. Journal of Composite Materials, 2019, 53(15): 2149?2164 doi: 10.1177/0021998318822722 [84] Krogh C, Sherwood J A, Jakobsen J. Generation of feasible gripper trajectories in automated composite draping by means of optimization. Advanced Manufacturing: Polymer & Composites Science, 2019, 5(4): 234?249 [85] Malhan R K, Kabir A M, Shembekar A V, Shah B, Gupta S K, Centea T. Hybrid cells for multi-layer prepreg composite sheet layup. In: Proceedings of the IEEE 14th International Conference on Automation Science and Engineering (CASE). Munich, Germany: IEEE, 2018. 1466?1472 [86] Malhan R K, Kabir A M, Shah B, Centea T, Gupta S K. Automated prepreg sheet placement using collaborative robotics. In: Proceedings of the North America Society for the Advancement of Material and Process Engineering (SAMPE) Long Beach Conference. Long Beach, USA: SAMPE, 2018. [87] Malhan R K, Kabir A M, Shah B, Gupta S K. Identifying feasible workpiece placement with respect to redundant manipulator for complex manufacturing tasks. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019. 5585?5591 [88] Malhan R K, Kabir A M, Shah B, Centea T, Gupta S K. Determining feasible robot placements in robotic cells for composite prepreg sheet layup. In: Proceedings of the ASME 14th International Manufacturing Science and Engineering Conference. Erie, USA: ASME, 2019. Article No. V001T02A025 [89] Manyar O M, Desai J, Deogaonkar N, Joesph R J, Malhan R, McNulty Z, et al. A simulation-based grasp planner for enabling robotic grasping during composite sheet layup. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Xi'an, China: IEEE, 2021. 930?937 [90] Malhan R K, Joseph R J, Shembekar A V, Kabir A M, Bhatt P M, Gupta S K. Online grasp plan refinement for reducing defects during robotic layup of composite prepreg sheets. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, 2020. 11500?11507 [91] Malhan R K, Thakar S, Kabir A M, Rajendran P, Bhatt P M, Gupta S K. Generation of configuration space trajectories over semi-constrained cartesian paths for robotic manipulators. IEEE Transactions on Automation Science and Engineering, 2023, 20(1): 193?205 doi: 10.1109/TASE.2022.3144673 [92] Helber F, Carosella S, Middendorf P. Multi-robotic composite production of complex and large-scaled components for the automotive industry. In: Proceedings of the Advances in Automotive Production Technology——Theory and Application. Berlin, Germany: Springer, 2021. 369?376 [93] Krebs F, Larsen L, Braun G, Dudenhausen W. Design of a multifunctional cell for aerospace CFRP production. The International Journal of Advanced Manufacturing Technology, 2016, 85: 17?24 doi: 10.1007/s00170-014-6022-1 [94] Tekles N, Reiner M, Krebs F. Model-based elastic deformation compensation for a multi-robot work cell. In: Proceedings of the IEEE 15th International Conference on Control and Automation (ICCA). Edinburgh, UK: IEEE, 2019. 530?536 [95] Tekles N, Krebs F, Reiner M. Inverse model command shaper for a flexible gantry robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada: IEEE, 2017. 1636?1642 [96] Eckardt M, Buchheim A, Gerngross T. Investigation of an automated dry fiber preforming process for an aircraft fuselage demonstrator using collaborating robots. CEAS Aeronautical Journal, 2016, 7(3): 429?440 doi: 10.1007/s13272-016-0199-y [97] Schuster A, Kupke M, Larsen L. Autonomous manufacturing of composite parts by a multi-robot system. Procedia Manufacturing, 2017, 11: 249?255 doi: 10.1016/j.promfg.2017.07.238 [98] Brandt L, Eckardt M. Automated handling and positioning of large dry carbon fibre cut-pieces with cooperating robots in rear pressure bulkhead production. In: Proceedings of the CEAS Conference. Bucharest, Romania: CEAS, 2017. [99] Schuster A, Frommel C, Deden D, Brandt L, Eckardt M, Glück R, et al. Simulation based draping of dry carbon fibre textiles with cooperating robots. Procedia Manufacturing, 2019, 38: 505?512 doi: 10.1016/j.promfg.2020.01.064 [100] Deden D, Frommel C, Glück R, Larsen L, Malecha M, Schuster A. Towards a fully automated process chain for the lay-up of large carbon dry-fibre cut pieces using cooperating robots. In: Proceedings of the SAMPE Europe Conference. Nantes, France: SAMPE, 2019. [101] Frommel C, Krebs F, Haase T, Vistein M, Schuster A, Larsen L, et al. Automated manufacturing of large composites utilizing a process orchestration system. Procedia Manufacturing, 2020, 51: 470?477 doi: 10.1016/j.promfg.2020.10.066 [102] Larsen L, Kim J, Kupke M. Intelligent path panning towards collision-free cooperating industrial robots. In: Proceedings of the 11th International Conference on Informatics in Control. Vienna, Austria: SciTePress, 2014. [103] Angerer A, Hoffmann A, Larsen L, Vistein M, Kim J, Kupke M, et al. Planning and execution of collision-free multi-robot trajectories in industrial applications. In: Proceedings of the 47th International Symposium on Robotics. Munich, Germany: VDE, 2016. 1?7 [104] Larsen L, Pham V L, Kim J, Kupke M. Collision-free path planning of industrial cooperating robots for aircraft fuselage production. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Seattle, USA: IEEE, 2015. 2042?2047 [105] Larsen L, Kaspar M, Schuster A, Vistein M, Kim J, Kupke M. Full automatic path planning of cooperating robots in industrial applications. In: Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE). Xi'an, China: IEEE, 2017. 523?530 [106] Vistein M, Deden D, Glück R, Schneyer S. Automated production of large fibre metal laminate aircraft structure parts. Procedia Manufacturing, 2019, 38: 1300?1307 doi: 10.1016/j.promfg.2020.01.160 [107] Bj?rnsson A, Jonsson M, Johansen K. Automation of composite manufacturing using off-the-shelf solutions, three cases from the aerospace industry. In: Proceedings of the 20th International Conference on Composite Materials. Copenhagen, Denmark: Aalborg University, 2015. [108] Bj?rnsson A, Lindback J E, Eklund D, Jonsson M. Low-cost automation for prepreg handling-two cases from the aerospace industry. SAE International Journal of Materials and Manufacturing, 2016, 9(1): 68?74 [109] Zhang X W, Chi X F, Ji C C. Discrete path planning of carbon fiber patch placement with complex surface. Textile Research Journal, 2023, 93(17?18): 4010?4022 doi: 10.1177/00405175231169045 [110] Yang M M, Yu L J, Wong C B, Mineo C, Yang E F, Bomphray I, et al. A cooperative mobile robot and manipulator system (Co-MRMS) for transport and lay-up of fibre plies in modern composite material manufacture. The International Journal of Advanced Manufacturing Technology, 2022, 119: 1249?1265 doi: 10.1007/s00170-021-08342-2 [111] Flixeder S, Glück T, Kugi A. Force-based cooperative handling and lay-up of deformable materials: Mechatronic design, modeling, and control of a demonstrator. Mechatronics, 2017, 47: 246?261 doi: 10.1016/j.mechatronics.2016.10.003 [112] Hartl-Nesic C, Glück T, Kugi A. Surface-based path following control: Application of curved tapes on 3-D objects. IEEE Transactions on Robotics, 2021, 37(2): 615?626 doi: 10.1109/TRO.2020.3033721 [113] Belhaj M, Dodangeh A, Hojjati M. Experimental investigation of prepreg tackiness in automated fiber placement. Composite Structures, 2021, 262: Article No. 113602 doi: 10.1016/j.compstruct.2021.113602 [114] Zhao F H, Liu Z Q, Chen R F, Hao Y, Ma Z H. The effect of temperature field on the characteristics of carbon fiber reinforced thermoplastic composites in the laying and shaping process. The International Journal of Advanced Manufacturing Technology, 2022, 121: 7569?7589 doi: 10.1007/s00170-022-09795-9 [115] de Sá Rodrigues J, Gon?alves P T, Pina L, Gomes de Almeida F. Modelling the heating process in the transient and steady state of an in situ tape-laying machine head. Journal of Manufacturing and Materials Processing, 2022, 6(1): Article No. 8 doi: 10.3390/jmmp6010008 [116] Zhang P, Sun R L, Zhao X Y, Hu L J. Placement suitability criteria of composite tape for mould surface in automated tape placement. Chinese Journal of Aeronautics, 2015, 28(5): 1574?1581 doi: 10.1016/j.cja.2015.06.002 [117] 趙堯旭. 熱塑性復合材料機器人鋪放設備及工藝研究 [碩士學(xué)位論文], 哈爾濱工業(yè)大學(xué), 中國, 2019.Zhao Yao-Xu. Research on Robotic Placement Machine and Placement Process of Thermoplastic Composite [Master thesis], Harbin Institute of Technology, China, 2019. [118] 解五一. 復合材料自動(dòng)鋪帶機器人設計及鋪帶過(guò)程控制 [碩士學(xué)位論文], 武漢大學(xué), 中國, 2019.Xie Wu-Yi. Design of Automatic Composite Tape Laying Robot and Process Control of Taping [Master thesis], Wuhan University, China, 2019. [119] Han Z Y, Hu F C, Lu H, Fu H Y. Design of ultrasonic cutting bench for automatic tape laying machine. Applied Mechanics and Materials, 2014, 552: 80?85 doi: 10.4028/www.scientific.net/AMM.552.80 [120] Grimshaw M N, Grant C M C G, Diaz C M J M L. Advanced technology tape laying for affordable manufacturing of large composite structures. In: Proceedings of the 46th International SAMPE Symposium. Long Beach, USA: SAMPE, 2001. 2484?2494 [121] Budelmann D, Detampel H, Schmidt C, Meiners D. Interaction of process parameters and material properties with regard to prepreg tack in automated lay-up and draping processes. Composites Part A: Applied Science and Manufacturing, 2019, 117: 308?316 doi: 10.1016/j.compositesa.2018.12.001 [122] Ren S L, Lu H, Wang Y Z, Fu H Y. Development of PLC-based tension control system. Chinese Journal of Aeronautics, 2007, 20(3): 266?271 doi: 10.1016/S1000-9361(07)60043-0 [123] Izco L, Isturiz J, Motilva M. High Speed Tow Placement System for Complex Surfaces with Cut/Clamp/ & Restart Capabilities at 85 m/min (3350 IPM), SAE Technical Paper 2006-01-3138, Aerospace Manufacturing and Automated Fastening Conference and Exhibition, USA, 2006. [124] Denkena B, Schmidt C, Weber P. Automated fiber placement head for manufacturing of innovative aerospace stiffening structures. Procedia Manufacturing, 2016, 6: 96?104 doi: 10.1016/j.promfg.2016.11.013 [125] Singh Y, Singh J, Sharma S, Sharma A, Singh Chohan J. Process parameter optimization in laser cutting of coir fiber reinforced epoxy composite——A review. Materials Today: Proceedings, 2022, 48: 1021?1027 doi: 10.1016/j.matpr.2021.06.344 [126] Liu X L, Han Z Y, Zhao Z Y, Sun S Z. Thermal analysis of cylindrical molds using thermoplastic composite during robotic fiber placement. Journal of Physics: Conference Series, 2021, 1765: Article No. 012023 [127] 蔣威, 周悅, 楊飛, 黃志高, 陳誠, 周華民. 紅外輔助自動(dòng)纖維鋪放工藝對連續玻璃纖維增強聚丙烯復合材料結構與性能影響. 復合材料學(xué)報, 2023, 40(4): 2015?2025Jiang Wei, Zhou Yue, Yang Fei, Huang Zhi-Gao, Chen Cheng, Zhou Hua-Min. Infrared-assisted automated fiber placement process on the structure and properties of continuous glass fiber reinforced polypropylene composites. Acta Materiae Compositae Sinica, 2023, 40(4): 2015?2025 [128] 楊宇. 門(mén)式六通道纖維鋪放系統的研究與裝備實(shí)現 [碩士學(xué)位論文], 武漢理工大學(xué), 中國, 2019.Yang Yu. Research and Equipment Realization of Gantry Type Six-channel Fiber Laying System [Master thesis], Wuhan University of Technology, China, 2019. [129] Sabido A M. Development of an Automated Fiber Placement Process for the Fabrication of Thermoplastic Composite Laminates [Master thesis], University of South Carolina, USA, 2019. [130] Zhang W X, Liu F, Lv Y X, Ding X L. Modelling and layout design for an automated fibre placement mechanism. Mechanism and Machine Theory, 2020, 144: Article No. 103651 doi: 10.1016/j.mechmachtheory.2019.103651 [131] Hauber D E, Langone R J, Martin J P, Miller S F, Pasanen M J. Composite Tape Laying Apparatus and Method, U.S. Patent 7063118, June 2006 [132] Mischler P L, Tingley M C, Hoffmann K. Compaction Roller for A Fiber Placement Machine, U.S. Patent 7810539, October 2010 [133] 王磊. 紗架與鋪絲頭一體化纖維鋪放系統研究 [碩士學(xué)位論文], 哈爾濱工業(yè)大學(xué), 中國, 2015.Wang Lei. Research on Integration Technique of Creels and Fiber Placment Head for Automated Fiber Placement Machine [Master thesis], Harbin Institute of Technology, China, 2015. [134] Liu F, Zhang W X, Shang J F, Yi M H, Wang S R, Ding X L. A planar underactuated compaction mechanism with self-adaptability for automated fiber placement heads. Aerospace, 2022, 9(10): Article No. 586 doi: 10.3390/aerospace9100586 [135] Saboukhi A. Designing and Implementing a Small-size Automated Fiber Placement (AFP) Head Capable of Depositing Thermoset Layers on V-shape Structures [Master thesis], Concordia University, Canada, 2023. [136] Li L N, Xu D, Wang X G, Tan M. A survey on path planning algorithms in robotic fibre placement. In: Proceedings of the 27th Chinese Control and Decision Conference (CCDC). Qingdao, China: IEEE, 2015. 4704?4709 [137] Rousseau G, Wehbe R, Halbritter J, Harik R. Automated fiber placement path planning: A state-of-the-art review. Computer-Aided Design & Applications, 2018, 16(2): 172?203 [138] Shinno N, Shigematsu T. Method for Controlling Tape Affixing Direction of Automatic Tape Affixing Apparatus, U.S. Patent 5041179, August 1991 [139] 尹書(shū)云. 自由型面自動(dòng)鋪絲線(xiàn)型規劃約束研究 [碩士學(xué)位論文], 武漢理工大學(xué), 中國, 2013.Yin Shu-Yun. Research on Constraint for Fibers Arrangement Pattern Planning in Auto Fiber Placement on Free-surface [Master thesis], Wuhan University of Technology, China, 2013. [140] Zhang J F, Xu D L, Wang Z H. Modeling approach for fiber placement routes on complex surface. Applied Mechanics and Materials, 2014, 686: 560?566 doi: 10.4028/www.scientific.net/AMM.686.560 [141] Xiao H, Han W, Tang W B, Duan Y G. An efficient and adaptable path planning algorithm for automated fiber placement based on meshing and multi guidelines. Materials, 2020, 13(18): Article No. 4209 doi: 10.3390/ma13184209 [142] Hély C, Birglen L, Xie W F. Feasibility study of robotic fibre placement on intersecting multi-axial revolution surfaces. Robotics and Computer-Integrated Manufacturing, 2017, 48: 73?79 doi: 10.1016/j.rcim.2017.02.005 [143] Qu W W, Gao J X, Yang D, He R M, Yang Q, Cheng L, et al. Automated fiber placement path generation method based on prospective analysis of path performance under multiple constraints. Composite Structures, 2021, 255: Article No. 112940 doi: 10.1016/j.compstruct.2020.112940 [144] 張鵬, 尹來(lái)容, 周振華, 黃龍. 基于近似測地線(xiàn)的分層次自動(dòng)鋪帶軌跡規劃方法. 機械工程學(xué)報, 2020, 56(23): 226?238 doi: 10.3901/JME.2020.23.226Zhang Peng, Yin Lai-Rong, Zhou Zhen-Hua, Huang Long. A multi-level trajectory planning method based on quasi-geodesic for automated tape placement. Journal of Mechanical Engineering, 2020, 56(23): 226?238 doi: 10.3901/JME.2020.23.226 [145] Punera D, Mukherjee P. Recent developments in manufacturing, mechanics, and design optimization of variable stiffness composites. Journal of Reinforced Plastics and Composites, 2022, 41(23?24): 917?945 doi: 10.1177/07316844221082999 [146] Parnas L, Oral S, Ceyhan ü. Optimum design of composite structures with curved fiber courses. Composites Science and Technology, 2003, 63(7): 1071?1082 doi: 10.1016/S0266-3538(02)00312-3 [147] IJsselmuiden S T, Abdalla M M, Gurdal Z. Optimization of variable-stiffness panels for maximum buckling load using lamination parameters. AIAA Journal, 2010, 48(1): 134?143 doi: 10.2514/1.42490 [148] Blom A W, Tatting B F, Hol J M A M, Gürdal Z. Fiber path definitions for elastically tailored conical shells. Composites Part B: Engineering, 2009, 40(1): 77?84 doi: 10.1016/j.compositesb.2008.03.011 [149] 李玥華, 富宏亞, 韓振宇, 韓德東. 兩類(lèi)非可展曲面零件自動(dòng)纖維鋪放變角度軌跡規劃算法. 計算機輔助設計與圖形學(xué)學(xué)報, 2013, 25(10): 1523?1529Li Yue-Hua, Fu Hong-Ya, Han Zhen-Yu, Han De-Dong. Variable-angle trajectory planning algorithm for automated fiber placement of two non-developable surfaces. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(10): 1523?1529 [150] 李玥華. 熱塑性預浸絲變角度鋪放及其軌跡規劃的研究 [博士學(xué)位論文], 哈爾濱工業(yè)大學(xué), 中國, 2013.Li Yue-Hua. Research on Thermoplastic Towpreg Variable Angle Placement and Trajectory Planning [Ph.D. dissertation], Harbin Institute of Technology, China, 2013. [151] Shirinzadeh B, Cassidy G, Oetomo D, Alici G, Ang Jr M H. Trajectory generation for open-contoured structures in robotic fibre placement. Robotics and Computer-Integrated Manufacturing, 2007, 23(4): 380?394 doi: 10.1016/j.rcim.2006.04.006 [152] Schueler K, Miller J, Hale R. Approximate geometric methods in application to the modeling of fiber placed composite structures. Journal of Computing and Information Science in Engineering, 2004, 4(3): 251?256 doi: 10.1115/1.1736685 [153] Zhu Y J, Yao K Z. Optimization path planning algorithm based on STL file reconstruction for automated fiber placement. In: Proceedings of the Chinese Intelligent Systems Conference. Singapore: Springer, 2019. 379?387 [154] Li L, Wang X G, Xu D, Tan M. A placement path planning algorithm based on meshed triangles for carbon fiber reinforce composite component with revolved shape. International Journal on Control Systems and Applications, 2014, 1(1): 23?32 [155] 王小平, 周宇, 劉付國. 三角網(wǎng)格面自動(dòng)鋪絲定角度路徑規劃算法. 南京航空航天大學(xué)學(xué)報, 2020, 52(3): 378?387Wang Xiao-Ping, Zhou Yu, Liu Fu-Guo. Fixed-angle method for automatic fiber placement on triangular mesh surface. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(3): 378?387 [156] Bruyneel M, Zein S. A modified fast marching method for defining fiber placement trajectories over meshes. Computers & Structures, 2013, 125: 45?52 [157] 劉志強, 顧獻安, 郭昊, 奚浩, 王明強, 李軍利. 碳纖維螺旋槳自動(dòng)鋪放成形軌跡規劃方法. 中國機械工程, 2020, 31(17): 2079?2084 doi: 10.3969/j.issn.1004-132X.2020.17.010Liu Zhi-Qiang, Gu Xian-An, Guo Hao, Xi Hao, Wang Ming-Qiang, Li Jun-Li. A trajectory planning method for automatic placement of carbon n fiber screw propellers. China Mechanical Engineering, 2020, 31(17): 2079?2084 doi: 10.3969/j.issn.1004-132X.2020.17.010 [158] 趙安安, 何大亮, 王晗, 郭俊剛, 柯映林. 復雜曲面上的自動(dòng)鋪放路徑規劃方法. 北京航空航天大學(xué)學(xué)報, 2022, 48(4): 595?601Zhao An-An, He Da-Liang, Wang Han, Guo Jun-Gang, Ke Ying-Lin. Automatic paving path planning method on complex surfaces. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 595?601 [159] Yan L, Chen Z C, Shi Y Y, Mo R. An accurate approach to roller path generation for robotic fibre placement of free-form surface composites. Robotics and Computer-Integrated Manufacturing, 2014, 30(3): 277?286 doi: 10.1016/j.rcim.2013.10.007 [160] Wang P Y, Li Y, Wang X F, Xiao J. Research on fiber placement trajectory design algorithm for the free-form surface with given ply orientation information. Polymers and Polymer Composites, 2011, 19(2?3): 203?208 doi: 10.1177/0967391111019002-323 [161] Qu W W, He R M, Wang Q, Cheng L, Yang D, Gao J X, et al. Algorithms for constructing initial and offset path of automated fiber placement for complex double-curved surfaces. Applied Composite Materials, 2021, 28(3): 855?875 doi: 10.1007/s10443-021-09901-2 [162] Lu J R, Xu H J, Jiang Z H, Li K M, Hu J. Design of a composite truncated elliptical rotary shell based on variable-angle trajectories. Composite Structures, 2022, 294: Article No. 115772 doi: 10.1016/j.compstruct.2022.115772 [163] Scheirer N, Holland S D, Krishnamurthy A. Fiber layup generation on curved composite structures. Computer-Aided Design, 2021, 136: Article No. 103031 doi: 10.1016/j.cad.2021.103031 [164] Xu K, Hao X Z, Lin J M. Automated fibre placement path generation for complex surfaces via digital image deconvolution algorithm. Composites Part A: Applied Science and Manufacturing, 2022, 163: Article No. 107246 doi: 10.1016/j.compositesa.2022.107246 [165] Wang K, Wang X P, Gan J Q, Jiang S K. A general method of trajectory generation based on point-cloud structures in automatic fibre placement. Composite Structures, 2023, 314: Article No. 116976 doi: 10.1016/j.compstruct.2023.116976 [166] 張洋, 鐘翔嶼, 包建文. 先進(jìn)樹(shù)脂基復合材料自動(dòng)絲束鋪放技術(shù)研究現狀及發(fā)展方向. 航空制造技術(shù), 2013, 56(23): 131?136 doi: 10.3969/j.issn.1671-833X.2013.23.026Zhang Yang, Zhong Xiang-Yu, Bao Jian-Wen. Research status and future trend of automated fiber placement technology for advanced polymer matrix composites. Aeronautical Manufacturing Technology, 2013, 56(23): 131?136 doi: 10.3969/j.issn.1671-833X.2013.23.026 [167] Oromiehie E, Prusty B G, Compston P, Rajan G. The influence of consolidation force on the performance of AFP manufactured laminates. In: Proceedings of the 21st International Conference on Composite Materials. Xi'an, China: Chinese Society for Composite Materials, 2017. 1?11 [168] 徐志明. 復合材料自動(dòng)鋪放技術(shù)的研究進(jìn)展及其工藝特點(diǎn)分析. 電氣自動(dòng)化, 2018, 40(1): 88?91Xu Zhi-Ming. Research progress of automatic placement of composite materials and analysis of its technological characters. Electrical Automation, 2018, 40(1): 88?91 [169] Khan M A, Mitschang P, Schledjewski R. Parametric study on processing parameters and resulting part quality through thermoplastic tape placement process. Journal of Composite Materials, 2013, 47(4): 485?499 doi: 10.1177/0021998312441810 [170] 劉林, 文立偉, 李勇, 肖軍. 基于PMAC隨動(dòng)控制模式下自動(dòng)鋪帶切割的研究. 宇航材料工藝, 2007, 37(5): 46?49 doi: 10.3969/j.issn.1007-2330.2007.05.012Liu Lin, Wen Li-Wei, Li Yong, Xiao Jun. Research on tape-cutting for automated tape laying based on tracking control mode of PMAC. Aerospace Materials & Technology, 2007, 37(5): 46?49 doi: 10.3969/j.issn.1007-2330.2007.05.012 [171] Gao J C, Pashkevich A, Caro S. Optimization of the robot and positioner motion in a redundant fiber placement workcell. Mechanism and Machine Theory, 2017, 114: 170?189 doi: 10.1016/j.mechmachtheory.2017.04.009 [172] FarzanehKaloorazi M, Bonev I A, Birglen L. Simultaneous path placement and trajectory planning optimization for a redundant coordinated robotic workcell. Mechanism and Machine Theory, 2018, 130: 346?362 doi: 10.1016/j.mechmachtheory.2018.08.022 [173] Zhang X M, Xie W F, Hoa S V. Semi-offline trajectory synchronized algorithm of the cooperative automated fiber placement system. Robotics and Computer-Integrated Manufacturing, 2018, 51: 53?62 doi: 10.1016/j.rcim.2017.11.015 [174] Hassan M, Liu D K, Xu D L. A two-stage approach to collaborative fiber placement through coordination of multiple autonomous industrial robots. Journal of Intelligent & Robotic Systems, 2019, 95: 915?933 [175] He K, Nie H P, Yan C. The intelligent composite panels manufacturing technology based on tape-laying automatic system. Procedia CIRP, 2016, 56: 610?613 doi: 10.1016/j.procir.2016.10.120 [176] Yao Y X. Adaptive Position/Force Control and Calibration of Robotic Manipulators as Applied to Automated Composite Tape-laying [Ph.D. dissertation], The University of Wisconsin-Madison, USA, 1988. [177] Jiang J X, He Y X, Wang H, Ke Y L. Modeling and experimental validation of compaction pressure distribution for automated fiber placement. Composite Structures, 2021, 256: Article No. 113101 doi: 10.1016/j.compstruct.2020.113101 [178] Shirinzadeh B, Hui Tan B, Tronche D. Planning and simulation for robotic fibre placement. In: Proceedings of the 30th International Symposium on Robotics. Tokyo, Japan: International Federation of Robotics, 1999. 161?168 [179] 朱珮旗, 樊紅日, 錢(qián)波. 復合材料自動(dòng)鋪絲軟件技術(shù)研究與應用綜述. 軟件工程與應用, 2022, 11(6): 1521?1533 doi: 10.12677/SEA.2022.116157Zhu Pei-Qi, Fan Hong-Ri, Qian Bo. Review of research and application about composite automated fibre placement software technology. Software Engineering and Applications, 2022, 11(6): 1521?1533 doi: 10.12677/SEA.2022.116157 [180] Shirinzadeh B, Alici G, Foong C W, Cassidy G. Fabrication process of open surfaces by robotic fibre placement. Robotics and Computer-Integrated Manufacturing, 2004, 20(1): 17?28 doi: 10.1016/S0736-5845(03)00050-4 [181] Shirinzadeh B, Wei Foong C, Hui Tan B. Robotic fibre placement process planning and control. Assembly Automation, 2000, 20(4): 313?320 doi: 10.1108/01445150010353242 [182] Druiff P P, Ma K, Visrolia A, Arruda M, Palardy-Sim M, Bolduc S, et al. A smart interface for machine learning based data-driven automated fibre placement. In: Proceedings of the Composites and Advanced Materials Expo. Dallas, USA: 2021. [183] Wanigasekara C, Oromiehie E, Swain A, Prusty B G, Nguang S K. Machine learning-based inverse predictive model for AFP based thermoplastic composites. Journal of Industrial Information Integration, 2021, 22: Article No. 100197 doi: 10.1016/j.jii.2020.100197 [184] Zimmerling C, Poppe C, Stein O, K?rger L. Optimisation of manufacturing process parameters for variable component geometries using reinforcement learning. Materials & Design, 2022, 214: Article No. 110423 [185] Croft K, Lessard L, Pasini D, Hojjati M, Chen J H, Yousefpour A. Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates. Composites Part A: Applied Science and Manufacturing, 2011, 42(5): 484?491 doi: 10.1016/j.compositesa.2011.01.007 [186] Halbritter A, Harper R. Big parts demand big changes to the fiber placement status quo. In: Proceedings of the SME Composites Manufacturing. Mesa, USA: 2012. [187] Juarez P D, Gregory E D. In situ thermal inspection of automated fiber placement for manufacturing induced defects. Composites Part B: Engineering, 2021, 220 : Article No. 109002 [188] Harik R, Saidy C, Williams S J, Gurdal Z, Grimsley B. Automated fiber placement defect identity cards: Cause, anticipation, existence, significance, and progression. In: Proceedings of the SAMPE 2018 Technical Conference and Exhibition. Long Beach, USA: SAMPE, 2018. [189] Shadmehri F, Ioachim O, Pahud O, Brunel J E, Landry A, Hoa S V, et al. Laser-vision inspection system for automated fiber placement (AFP) process. In: Proceedings of the 20th International Conference on Composite Materials. Copenhagen, Denmark: Aalborg University, 2015. [190] Rudberg T, Cemenska J. Incorporation of laser projectors in machine cell controller reduces ply boundary inspection time, on-part course identification and part probing. SAE International Journal of Aerospace, 2012, 5(1): 74?78 doi: 10.4271/2012-01-1886 [191] Rudberg T, Nielson J, Henscheid M, Cemenska J. Improving AFP cell performance. SAE International Journal of Aerospace, 2014, 7(2): 317?321 doi: 10.4271/2014-01-2272 [192] Juarez P D, Cramer K E, Seebo J P. Advances in in situ inspection of automated fiber placement systems. In: Proceedings of the SPIE 9861, Thermosense: Thermal Infrared Applications XXXVIII. Baltimore, USA: SPIE, 2016. Article No. 986109 [193] Denkena B, Schmidt C, V?ltzer K, Hocke T. Thermographic online monitoring system for automated fiber placement processes. Composites Part B: Engineering, 2016, 97: 239?243 doi: 10.1016/j.compositesb.2016.04.076 [194] Yadav N, Oswald-Tranta B, Gürocak M, Galic A, Adam R, Schledjewski R. In-line and off-line NDT defect monitoring for thermoplastic automated tape layup. NDT & E International, 2023, 137: Article No. 102839 [195] Chen H Z, Zhang Z J, Yin W L, Wang Q, Li Y F, Zhao C Y. Surface defect characterization and depth identification of CFRP material by laser line scanning. NDT & E International, 2022, 130: Article No. 102657 [196] Cemenska J, Rudberg T, Henscheid M. Automated in-process inspection system for AFP machines. SAE International Journal of Aerospace, 2015, 8(2): 303?309 doi: 10.4271/2015-01-2608 [197] 馬少博. 復合材料自動(dòng)鋪放過(guò)程表層缺陷檢測與識別方法研究 [碩士學(xué)位論文], 南京航空航天大學(xué), 中國, 2020.Ma Shao-Bo. Surface Defect Inspection Technology of Automated Fiber Placement Manufacturing Process [Master thesis], Nanjing University of Aeronautics and Astronautics, China, 2020. [198] Tang Y P, Wang Q, Wang H, Li J X, Ke Y L. A novel 3D laser scanning defect detection and measurement approach for automated fibre placement. Measurement Science and Technology, 2021, 32(7): Article No. 075201 [199] Tang Y P, Wang Q, Cheng L, Li J X, Ke Y L. An in-process inspection method integrating deep learning and classical algorithm for automated fiber placement. Composite Structures, 2022, 300: Article No. 116051 doi: 10.1016/j.compstruct.2022.116051 [200] Nguyen D H, Sun X C, Tretiak I, Valverde M A, Kratz J. Automatic process control of an automated fibre placement machine. Composites Part A: Applied Science and Manufacturing, 2023, 168: Article No. 107465 doi: 10.1016/j.compositesa.2023.107465 [201] Tao Y C, Jia S H, Duan Y G, Zhang X H. An online detection method for composite fibre tow placement accuracy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(9): 1614?1621 doi: 10.1177/0954405416640189 [202] Chen M J, Jiang M, Liu X L, Wu B L. Intelligent inspection system based on infrared vision for automated fiber placement. In: Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA). Changchun, China: IEEE, 2018. 918?923 [203] 蔡志強. 基于圖像處理的纖維鋪放缺陷檢測研究 [碩士學(xué)位論文], 南京航空航天大學(xué), 中國, 2017.Cai Zhi-Qiang. Research on Defect Detection Based on Image Processing for AFP [Master thesis], Nanjing University of Aeronautics and Astronautics, China, 2017. [204] Sacco C, Radwan A B, Harik R, Van Tooren M. Automated fiber placement defects: Automated inspection and characterization. In: Proceedings of the SAMPE 2018 Technical Conference and Exhibition. Long Beach, USA: SAMPE, 2018. [205] Sacco C. Machine Learning Methods for Rapid Inspection of Automated Fiber Placement Manufactured Composite Structures [Master thesis], University of South Carolina, USA, 2019. [206] Zambal S, Heindl C, Eitzinger C, Scharinger J. End-to-end defect detection in automated fiber placement based on Artificially generated data. In: Proceedings of the SPIE 11172, Fourteenth International Conference on Quality Control by Artificial Vision. Mulhouse, France: SPIE, 2019. 371?378 [207] Meister S, M?ller N, Stüve J, Groves R M. Synthetic image data augmentation for fibre layup inspection processes: Techniques to enhance the data set. Journal of Intelligent Manufacturing, 2021, 32(6): 1767?1789 doi: 10.1007/s10845-021-01738-7 [208] Manyar O M, Cheng J Y, Levine R, Krishnan V, Barbi? J, Gupta S K. Physics informed synthetic image generation for deep learning-based detection of wrinkles and folds. Journal of Computing and Information Science in Engineering, 2023, 23(3): Article No. 030903 [209] Szarski M, Chauhan S. An unsupervised defect detection model for a dry carbon fiber textile. Journal of Intelligent Manufacturing, 2022, 33(7): 2075?2092 doi: 10.1007/s10845-022-01964-7 [210] Schmidt C, Hocke T, Denkena B. Artificial intelligence for non-destructive testing of CFRP prepreg materials. Production Engineering, 2019, 13(5): 617?626 doi: 10.1007/s11740-019-00913-3 [211] Zhang Y D, Wang W, Liu Q, Guo Z H, Ji Y C. Research on defect detection in automated fiber placement processes based on a multi-scale detector. Electronics, 2022, 11(22): Article No. 3757 doi: 10.3390/electronics11223757 [212] 柯巖, 傅云, 周瑋珠, 朱偉東. 基于Transformer的復合材料多源圖像實(shí)例分割網(wǎng)絡(luò ). 紅外與激光工程, 2023, 52(2): Article No. 20220338Ke Yan, Fu Yun, Zhou Wei-Zhu, Zhu Wei-Dong. Transformer-based multi-source images instance segmentation network for composite materials. Infrared and Laser Engineering, 2023, 52(2): Article No. 20220338 [213] Rath J E, Graupner R, Schüppstuhl T. Processing strategies for dieless forming of fiber-reinforced plastic composites. Machines, 2023, 11(3): Article No. 365 doi: 10.3390/machines11030365 [214] Priyadharshini M, Balaji D, Bhuvaneswari V, Rajeshkumar L, Sanjay M R, Siengchin S. Fiber reinforced composite manufacturing with the aid of artificial intelligence——A state-of-the-art review. Archives of Computational Methods in Engineering, 2022, 29(7): 5511?5524 doi: 10.1007/s11831-022-09775-y [215] Yadav N, Schledjewski R. Review of in-process defect monitoring for automated tape laying. Composites Part A: Applied Science and Manufacturing, 2023, 173: Article No. 107654 doi: 10.1016/j.compositesa.2023.107654 [216] Cong Y, Tian D Y, Feng Y, Fan B J, Yu H B. Speedup 3-D texture-less object recognition against self-occlusion for intelligent manufacturing. IEEE Transactions on Cybernetics, 2019, 49(11): 3887?3897 doi: 10.1109/TCYB.2018.2851666 [217] Manyar O M, Kanyuck A, Deshkulkarni B, Gupta S K. Visual servo based trajectory planning for fast and accurate sheet pick and place operations. In: Proceedings of the ASME 17th International Manufacturing Science and Engineering Conference. West Lafayette, USA: ASME, 2022. Article No. V001T04A019 [218] D?brich O, Brauner C. Machine vision system for digital twin modeling of composite structures. Frontiers in Materials, 2023, 10: Article No. 1154655 doi: 10.3389/fmats.2023.1154655 [219] Glück R, Korber M. Automated control and simulation of dynamic robot teams in the domain of CFK production. arXiv: 2210.11213, 2022. [220] Manyar O M, McNulty Z, Nikolaidis S, Gupta S K. Inverse reinforcement learning framework for transferring task sequencing policies from humans to robots in manufacturing applications. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). London, UK: IEEE, 2023. 849?856 [221] Si W Y, Wang N, Li Q C, Yang C G. A framework for composite layup skill learning and generalizing through teleoperation. Frontiers in Neurorobotics, 2022, 16: Article No. 840240 doi: 10.3389/fnbot.2022.840240