1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              基于計算機視覺(jué)的工業(yè)金屬表面缺陷檢測綜述

              伍麟 郝鴻宇 宋友

              伍麟, 郝鴻宇, 宋友. 基于計算機視覺(jué)的工業(yè)金屬表面缺陷檢測綜述. 自動(dòng)化學(xué)報, 2024, 50(7): 1261?1283 doi: 10.16383/j.aas.c230039
              引用本文: 伍麟, 郝鴻宇, 宋友. 基于計算機視覺(jué)的工業(yè)金屬表面缺陷檢測綜述. 自動(dòng)化學(xué)報, 2024, 50(7): 1261?1283 doi: 10.16383/j.aas.c230039
              Wu Lin, Hao Hong-Yu, Song You. A review of metal surface defect detection based on computer vision. Acta Automatica Sinica, 2024, 50(7): 1261?1283 doi: 10.16383/j.aas.c230039
              Citation: Wu Lin, Hao Hong-Yu, Song You. A review of metal surface defect detection based on computer vision. Acta Automatica Sinica, 2024, 50(7): 1261?1283 doi: 10.16383/j.aas.c230039

              基于計算機視覺(jué)的工業(yè)金屬表面缺陷檢測綜述

              doi: 10.16383/j.aas.c230039
              詳細信息
                作者簡(jiǎn)介:

                伍麟:北京航空航天大學(xué)碩士研究生. 主要研究方向為計算機視覺(jué), 目標檢測和表面缺陷檢測. E-mail: zf2021349@buaa.edu.cn

                郝鴻宇:北京航空航天大學(xué)碩士研究生. 主要研究方向為計算機視覺(jué), 圖神經(jīng)網(wǎng)絡(luò )和少樣本學(xué)習. E-mail: JoeyHao@buaa.edu.cn

                宋友:北京航空航天大學(xué)教授. 主要研究方向為軟件工程, 異常信號檢測, 算法分析與設計. 本文通信作者. E-mail: songyou@buaa.edu.cn

              A Review of Metal Surface Defect Detection Based on Computer Vision

              More Information
                Author Bio:

                WU Lin Master student at the School of Software, Beihang University. His research interest covers computer vision, object detection and surface defect detection

                HAO Hong-Yu Master student at the School of Software, Beihang University. His research interest covers computer vision, graph neural network and few-shot learning

                SONG You Professor at the School of Software, Beihang University. His research interest covers software engineering, anomaly signal detection, algorithm analysis and design. Corresponding author of this paper

              • 摘要: 針對平面及三維結構金屬材料的工業(yè)表面缺陷檢測, 概述了視覺(jué)檢測技術(shù)的基本原理和研究現狀, 并總結出視覺(jué)自動(dòng)檢測系統的關(guān)鍵技術(shù)包括光學(xué)成像技術(shù)、圖像預處理技術(shù)與缺陷檢測器. 首先介紹了如何根據檢測對象的光學(xué)特性選擇合適的二維、三維光學(xué)成像技術(shù); 其次介紹了圖像降噪、特征提取、圖像分割和拼接等預處理技術(shù)的重要作用; 然后根據缺陷檢測器的實(shí)現原理將其分為模板匹配、圖像分類(lèi)、圖像語(yǔ)義分割、目標檢測和圖像異常檢測五類(lèi), 并對其中的經(jīng)典算法進(jìn)行了歸納分析. 最后, 探討了工業(yè)場(chǎng)景下金屬表面缺陷檢測技術(shù)實(shí)施中的關(guān)鍵問(wèn)題, 并對該技術(shù)的發(fā)展趨勢進(jìn)行了展望.
              • 圖  1  金屬表面缺陷檢測基本流程

                Fig.  1  Pipline of metal surface defect detection

                圖  2  自動(dòng)光學(xué)成像系統

                Fig.  2  Automated optical inspection system

                圖  3  表面散射模型

                Fig.  3  Light scattering model on surface

                圖  4  照明光路類(lèi)型

                Fig.  4  Types of lighting path

                圖  5  二維成像與三維成像對比

                Fig.  5  2D imaging versus 3D imaging

                圖  6  光度立體法

                Fig.  6  Photometric stereo

                圖  7  結構光法

                Fig.  7  Structured light illumination

                圖  8  混合成像技術(shù) ((a) ~ (c) 二維灰度圖像; (d) ~ (f)具有三維深度信息表示的圖像)

                Fig.  8  Hybrid imaging technique ((a) ~ (c) 2D grayscale images; (d) ~ (f) Images with 3D depth information represented)

                圖  9  基于圖像分割的缺陷檢測

                Fig.  9  Defect detection based on image segmentation

                圖  10  三元網(wǎng)絡(luò )結構

                Fig.  10  The structure of triplet network

                圖  11  二階段網(wǎng)絡(luò )和一階段網(wǎng)絡(luò )對比

                Fig.  11  Comparison of two-stage and one-stage networks

                圖  12  基于二階段網(wǎng)絡(luò )的金屬表面缺陷檢測[100], 經(jīng)許可轉載自文獻[100], ?Sage, 2021

                Fig.  12  Metal surface defect detection based on two-stage networks[100], reproduced with permission from reference [100], ?Sage, 2021

                圖  13  DETR網(wǎng)絡(luò )結構

                Fig.  13  The network architecture of DETR

                圖  14  基于圖像重建的缺陷檢測 ((a)變分自編碼機; (b) GAN結合AE; (c)基于記憶池的模型)

                Fig.  14  Defect detection based on image reconstruction ((a) VAE; (b) GAN associated with Auto-Encoder; (c) Memory based model)

                圖  15  基于標準化流的缺陷檢測 ((a)原始圖像; (b)多尺度輸入; (c)圖像特征分布; (d)簡(jiǎn)單分布; (e)標準分布; (f)異常分布)

                Fig.  15  Defect detection based on normalizing flow ((a) Origin image; (b) Multiscale input; (c) Feature distribution; (d) Simple distribution; (e) Normalized distribution; (f) Anomalous distribution)

                圖  16  (a)基于教師?學(xué)生網(wǎng)絡(luò )的方法; (b)基于最典型嵌入表示的方法

                Fig.  16  (a) Method based on teacher-student network; (b) Method based on the most typical embedding representation

                表  1  目標檢測模型在NEU-DET上的表現

                Table  1  Performance of object detection models on NEU-DET

                MethodBackboneNeck$AP_{50}$
                Faster R-CNN[97]ResNet-50FPN74.7
                Cascade R-CNN[99]ResNet-50FPN75.8
                YOLOX[115]CSPDarknetPA-FPN70.9
                YOLOv4[105]CSPDarknetFPN76.4
                AutoAssign[116]ResNet-50FPN76.6
                AutoAssign[116]Swin-TinyFPN78.3
                DDN[108]ResNet-50MFN82.3
                CA-AutoAssign[117]CSPDarknetCA82.7
                下載: 導出CSV

                表  2  異常檢測方法對比

                Table  2  Comparison of abnormal detection

                MethodDetection AUROCSegmentation AUROCFPS
                PatchCore Large[145]99.698.25.9
                PNI[146]99.599.0
                MemSeg[144]99.599.631.3
                Fastflow[141]99.498.521.8
                EfficientAD-M[148]99.196.9269.0
                EfficientAD-S[148]98.896.8614.0
                CS-Flow[140]98.7
                Patch SVDD[142]92.195.7 2.1
                VAE-Grad[136]89.2
                下載: 導出CSV

                表  3  缺陷檢測方法對比

                Table  3  Comparison of defect detection methods

                方法基本原理應用場(chǎng)景優(yōu)缺點(diǎn)
                模板匹配比較模板與待檢樣本的差異來(lái)判斷是否存在缺陷產(chǎn)品高度一致的金屬精密加工制成品, 例如手機外殼、汽車(chē)零件等方法簡(jiǎn)單有效, 但需要提取制作模板, 僅適用于一致性強的產(chǎn)品
                分類(lèi)網(wǎng)絡(luò )直接用 CNN 提取特征, 通過(guò) Softmax 或距離度量來(lái)預測類(lèi)別公差較大、尺寸較小的金屬制品, 例如螺母、金屬蓋等零件結構簡(jiǎn)單, 是其他網(wǎng)絡(luò )的基礎, 準確率依賴(lài)缺陷樣本數量, 難以定位缺陷位置
                目標檢測對每個(gè)提議候選框或者每個(gè)網(wǎng)格進(jìn)行密集預測, 從背景中找出所有目標的分類(lèi)和位置適用于絕大多數缺陷類(lèi)別可事先定義的工業(yè)場(chǎng)景速度快, 適用范圍廣, 但網(wǎng)絡(luò )結構復雜, 依賴(lài)大量缺陷樣本進(jìn)行訓練
                語(yǔ)義分割通過(guò)卷積提取高階語(yǔ)義特征, 然后通過(guò)上采樣輸出像素級的缺陷邊界劃分大面積金屬板、帶制品, 缺陷具有成片連續區域、形態(tài)不定的場(chǎng)景可以進(jìn)行像素級缺陷分割, 但是依賴(lài)大量像素級標注數據, 標注成本很高
                異常檢測通過(guò)自編碼機、GAN、標準流等生成模型學(xué)習正常樣本的表達方式, 根據重建誤差、梯度或分布差異來(lái)進(jìn)行缺陷檢測缺乏缺陷樣本, 只有正常樣本可以用于訓練的場(chǎng)景無(wú)需缺陷樣本和標注, 可以檢測未事先定義的缺陷類(lèi)別, 但準確率尚達不到有監督學(xué)習的效果
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Neogi N, Mohanta D K, Dutta P K. Review of vision-based steel surface inspection systems. EURASIP Journal on Image and Video Processing, 2014, 2014(1): Article No. 50 doi: 10.1186/1687-5281-2014-50
                        [2] 盧榮勝, 吳昂, 張騰達, 王永紅. 自動(dòng)光學(xué)(視覺(jué))檢測技術(shù)及其在缺陷檢測中的應用綜述. 光學(xué)學(xué)報, 2018, 38(8): Article No. 0815002

                        Lu Rong-Sheng, Wu Ang, Zhang Teng-Da, Wang Yong-Hong. Review on automated optical (visual) inspection and its applications in defect detection. Acta Optica Sinica, 2018, 38(8): Article No. 0815002
                        [3] 呂承侃, 沈飛, 張正濤, 張峰. 圖像異常檢測研究現狀綜述. 自動(dòng)化學(xué)報, 2022, 48(6): 1402?1428

                        Lv Cheng-Kan, Shen Fei, Zhang Zheng-Tao, Zhang Feng. Review of image anomaly detection. Acta Automatica Sinica, 2022, 48(6): 1402?1428
                        [4] 李維創(chuàng ), 尹柏強. 工業(yè)金屬板帶材表面缺陷自動(dòng)視覺(jué)檢測研究進(jìn)展. 電子測量與儀器學(xué)報, 2021, 35(6): 1?16 doi: 10.13382/j.jemi.B2003349

                        Li Wei-Chuang, Yin Bai-Qiang. Research progress of automated visual surface defect detection for industrial metal planar materials. Journal of Electronic Measurement and Instrumentation, 2021, 35(6): 1?16 doi: 10.13382/j.jemi.B2003349
                        [5] 陶顯, 侯偉, 徐德. 基于深度學(xué)習的表面缺陷檢測方法綜述. 自動(dòng)化學(xué)報, 2021, 47(5): 1017?1034

                        Tao Xian, Hou Wei, Xu De. A survey of surface defect detection methods based on deep learning. Acta Automatica Sinica, 2021, 47(5): 1017?1034
                        [6] 羅東亮, 蔡雨萱, 楊子豪, 章哲彥, 周瑜, 白翔. 工業(yè)缺陷檢測深度學(xué)習方法綜述. 中國科學(xué): 信息科學(xué), 2022, 52(6): 1002?1039 doi: 10.1360/SSI-2021-0336

                        Luo Dong-Liang, Cai Yu-Xuan, Yang Zi-Hao, Zhang Zhe-Yan, Zhou Yu, Bai Xiang. Survey on industrial defect detection with deep learning. Scientia Sinica Informationis, 2022, 52(6): 1002?1039 doi: 10.1360/SSI-2021-0336
                        [7] Khan S, Naseer M, Hayat M, Zamir S W, Khan F S, Shah M. Transformers in vision: A survey. ACM Computing Surveys, 2022, 54(10s): Article No. 200
                        [8] Huang Y C, Hung K C, Liu C C, Chuang T H, Chiou S J. Customized convolutional neural networks technology for machined product inspection. Applied Sciences, 2022, 12(6): Article No. 3014 doi: 10.3390/app12063014
                        [9] Liu S, Wang Q, Luo Y. A review of applications of visual inspection technology based on image processing in the railway industry. Transportation Safety and Environment, 2019, 1(3): 185?204
                        [10] Lu R S, Forrest A K. 3D surface topography from the specular lobe of scattered light. Optics and Lasers in Engineering, 2007, 45(10): 1018?1027 doi: 10.1016/j.optlaseng.2007.04.008
                        [11] Smith B. Geometrical shadowing of a random rough surface. IEEE Transactions on Antennas and Propagation, 1967, 15(5): 668?671 doi: 10.1109/TAP.1967.1138991
                        [12] Garcia-Lamont F, Cervantes J, López A, Rodriguez L. Segmentation of images by color features: A survey. Neurocomputing, 2018, 292: 1?27 doi: 10.1016/j.neucom.2018.01.091
                        [13] Foucher B. Infrared machine vision: A new contender. In: Proceedings of the SPIE 3700, Thermosense XXI. Orlando, USA: SPIE, 1999. 210?213
                        [14] Nayar S K, Ikeuchi K, Kanade T. Surface reflection: Physical and geometrical perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(7): 611?634 doi: 10.1109/34.85654
                        [15] Porter T F, Sylvester R A, Bouyoucas T W, Kolesar M P. Automatic strip surface defect detection system. Iron and Steel Engineer, 1988, 65(12): 17?20
                        [16] Tian G Y, Lu R S, Gledhill D. Surface measurement using active vision and light scattering. Optics and Lasers in Engineering, 2007, 45(1): 131?139 doi: 10.1016/j.optlaseng.2006.03.005
                        [17] 盧榮勝. 自動(dòng)光學(xué)檢測技術(shù)的發(fā)展現狀. 紅外與激光工程, 2008, 37(S1): 120?123

                        Lu Rong-Sheng. State of the art of automated optical inspection. Infrared and Laser Engineering, 2008, 37(S1): 120?123
                        [18] Rinn R, Thompson S A, Foehr R, Luecking F, Torre J. Parsytec HTS-2: Defect detection and classification through software vs. dedicated hardware. In: Proceedings of the Electronic Imaging '99. San Jose, CA, United States: SPIE, 1999. 110?121
                        [19] 李松, 周亞同, 張忠偉, 池越, 韓春穎. 基于雙打光模板匹配的沖壓件表面缺陷檢測. 鍛壓技術(shù), 2018, 43(11): 137?145

                        Li Song, Zhou Ya-Tong, Zhang Zhong-Wei, Chi Yue, Han Chun-Ying. Surface defect detection of stamping parts based on double light pattern matching. Forging & Stamping Technology, 2018, 43(11): 137?145
                        [20] Landstrom A, Thurley M J. Morphology-based crack detection for steel slabs. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(7): 866?875 doi: 10.1109/JSTSP.2012.2212416
                        [21] Woodham R J. Photometric method for determining surface orientation from multiple images. Optical Engineering, 1980, 19(1): Article No. 191139
                        [22] Berthold K P H. Shape From Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One View, Technical Report AITR-232, Artificial Intelligence Laboratory, MIT, USA, 1970.
                        [23] Wang L, Xu K, Zhou P. Online detection technique of 3D defects for steel strips based on photometric stereo. In: Proceedings of the 8th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). Macao, China: IEEE, 2016. 428?432
                        [24] Delpy D T, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J. Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine & Biology, 1988, 33(12): 1433?1442
                        [25] Bologna F, Tannous M, Romano D, Stefanini C. Automatic welding imperfections detection in a smart factory via 2-D laser scanner. Journal of Manufacturing Processes, 2022, 73: 948?960 doi: 10.1016/j.jmapro.2021.10.046
                        [26] Huang C, Wang G L, Song H, Li R S, Zhang H O. Rapid surface defects detection in wire and arc additive manufacturing based on laser profilometer. Measurement, 2022, 189: Article No. 110503 doi: 10.1016/j.measurement.2021.110503
                        [27] Li J L, Liu T, Wang X F. Advanced pavement distress recognition and 3D reconstruction by using GA-DenseNet and binocular stereo vision. Measurement, 2022, 201: Article No. 111760 doi: 10.1016/j.measurement.2022.111760
                        [28] Li B Z, Xu Z J, Gao F, Cao Y L, Dong Q C. 3D reconstruction of high reflective welding surface based on binocular structured light stereo vision. Machines, 2022, 10(2): Article No. 159 doi: 10.3390/machines10020159
                        [29] Zhou P, Xu K, Wang D D. Rail profile measurement based on line-structured light vision. IEEE Access, 2018, 6: 16423?16431 doi: 10.1109/ACCESS.2018.2813319
                        [30] Guillo L, Jiang X R, Lafruit G, Guillemot C. Light Field Video Dataset Captured by A R8 Raytrix Camera (With Disparity Maps), Technical Report hal-01804578, International Organisation for Standardisation, San Diego, USA, 2018.
                        [31] Saiz F A, Barandiaran I, Arbelaiz A, Gra?a M. Photometric stereo-based defect detection system for steel components manufacturing using a deep segmentation network. Sensors, 2022, 22(3): Article No. 882 doi: 10.3390/s22030882
                        [32] Wen X, Song K C, Huang L M, Niu M H, Yan Y H. Complex surface ROI detection for steel plate fusing the gray image and 3D depth information. Optik, 2019, 198: Article No. 163313 doi: 10.1016/j.ijleo.2019.163313
                        [33] Niu M H, Song K C, Huang L M, Wang Q, Yan Y H, Meng Q G. Unsupervised saliency detection of rail surface defects using stereoscopic images. IEEE Transactions on Industrial Informatics, 2021, 17(3): 2271?2281
                        [34] Ren Z H, Fang F Z, Yan N, Wu Y. State of the art in defect detection based on machine vision. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9(2): 661?691 doi: 10.1007/s40684-021-00343-6
                        [35] Niblack W. An Introduction to Digital Image Processing. Birkeroed: Strandberg Publishing Company, 1985.
                        [36] Luisier F, Blu T, Unser M. A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding. IEEE Transactions on Image Processing, 2007, 16(3): 593?606 doi: 10.1109/TIP.2007.891064
                        [37] Gu S H, Zhang L, Zuo W M, Feng X C. Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. 2862?2869
                        [38] Mohanaiah P, Sathyanarayana P, GuruKumar L. Image texture feature extraction using GLCM approach. International Journal of Scientific and Research Publications, 2013, 3(5): 1?5
                        [39] Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971?987 doi: 10.1109/TPAMI.2002.1017623
                        [40] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). San Diego, USA: IEEE, 2005. 886?893
                        [41] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91?110 doi: 10.1023/B:VISI.0000029664.99615.94
                        [42] Lindeberg T. Scale invariant feature transform. Scholarpedia, 2012, 7(5): Article No. 10491 doi: 10.4249/scholarpedia.10491
                        [43] Oren M, Papageorgiou C, Sinha P, Osuna E, Poggio T. Pedestrian detection using wavelet templates. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan, USA: IEEE, 1997. 193?199
                        [44] Lienhart R, Maydt J. An extended set of Haar-like features for rapid object detection. In: Proceedings of the International Conference on Image Processing. Rochester, USA: IEEE, 2002.
                        [45] Wang X W, Ding X Q, Liu C S. Gabor filters-based feature extraction for character recognition. Pattern Recognition, 2005, 38(3): 369?379 doi: 10.1016/j.patcog.2004.08.004
                        [46] Raheja J L, Kumar S, Chaudhary A. Fabric defect detection based on GLCM and Gabor filter: A comparison. Optik, 2013, 124(23): 6469?6474 doi: 10.1016/j.ijleo.2013.05.004
                        [47] Siew L H, Hodgson R M, Wood E J. Texture measures for carpet wear assessment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(1): 92?105 doi: 10.1109/34.3870
                        [48] Liu K, Wang H Y, Chen H Y, Qu E Q, Tian Y, Sun H X. Steel surface defect detection using a new Haar–Weibull-Variance model in unsupervised manner. IEEE Transactions on Instrumentation and Measurement, 2017, 66(10): 2585?2596 doi: 10.1109/TIM.2017.2712838
                        [49] Pernkopf F, O'Leary P. Image acquisition techniques for automatic visual inspection of metallic surfaces. NDT & E International, 2003, 36(8): 609?617
                        [50] Kaggle. Severstal: Steel defect detection [Online], available: https://www.kaggle.com/c/severstal-steel-defect-detection, March 19, 2023
                        [51] Qi S, Yang J, Zhong Z. A review on industrial surface defect detection based on deep learning technology. In: Proceedings of the 3rd International Conference on Machine Learning and Machine Intelligence. Hangzhou, China: ACM, 2020. 24?30
                        [52] 鄭凱, 李建勝. 基于深度神經(jīng)網(wǎng)絡(luò )的圖像語(yǔ)義分割綜述. 測繪與空間地理信息, 2020, 43(10): 119?125 doi: 10.3969/j.issn.1672-5867.2020.10.032

                        Zheng Kai, Li Jian-Sheng. An overview of image semantic segmentation based on deep learning. Geomatics & Spatial Information Technology, 2020, 43(10): 119?125 doi: 10.3969/j.issn.1672-5867.2020.10.032
                        [53] Belongie S, Malik J, Puzicha J. Shape context: A new descriptor for shape matching and object recognition. In: Proceedings of the 13th International Conference on Neural Information Processing Systems. Denver, USA: MIT Press, 2000. 798?804
                        [54] Qi C R, Yi L, Su H, Guibas L J. PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 652?660
                        [55] Qi C R, Yi L, Su H, Guibas L J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 5105?5114
                        [56] Ma X, Qin C, You H X, Ran H X, Fu Y. Rethinking network design and local geometry in point cloud: A simple residual MLP framework. In: Proceedings of the 10th International Conference on Learning Representations (ICLR). OpenReview.net, 2022.
                        [57] Qian G C, Li Y C, Peng H W, Mai J J, Al Kader Hammoud H A, Elhoseiny M, et al. PointNeXt: Revisiting PointNet++ with improved training and scaling strategies. In: Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS). 2022. 23192?23204
                        [58] Jain P, Tyagi V. LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising. Information Sciences, 2015, 294: 164?181 doi: 10.1016/j.ins.2014.09.060
                        [59] Li A B, Ma H W, Xu S H. Three-dimensional morphology and watershed-algorithm-based method for pitting corrosion evaluation. Buildings, 2022, 12(11): Article No. 1908 doi: 10.3390/buildings12111908
                        [60] 郭皓然, 邵偉, 周阿維, 楊宇祥, 劉凱斌. 全局閾值自適應的高亮金屬表面缺陷識別新方法. 儀器儀表學(xué)報, 2017, 38(11): 2797?2804

                        Guo Hao-Ran, Shao Wei, Zhou A-Wei, Yang Yu-Xiang, Liu Kai-Bin. Novel defect recognition method based on adaptive global threshold for highlight metal surface. Chinese Journal of Scientific Instrument, 2017, 38(11): 2797?2804
                        [61] 魏愛(ài)東. 基于脈沖渦流熱成像的鋼板缺陷檢測研究. 電子測試, 2020, 34(7): 56?59 doi: 10.3969/j.issn.1000-8519.2020.07.020

                        Wei Ai-Dong. Thermal image defect extraction based on two image segmentation algorithms. Electronic Test, 2020, 34(7): 56?59 doi: 10.3969/j.issn.1000-8519.2020.07.020
                        [62] Prabha P A, Bharathwaj M, Dinesh K, Prashath G H. Defect detection of industrial products using image segmentation and saliency. Journal of Physics: Conference Series, 2021, 1916: Article No. 012165
                        [63] Zhang X W, Ding Y Q, Lv Y Y, Shi A Y, Liang R Y. A vision inspection system for the surface defects of strongly reflected metal based on multi-class SVM. Expert Systems With Applications, 2011, 38(5): 5930?5939 doi: 10.1016/j.eswa.2010.11.030
                        [64] Ghosh D, Kaabouch N. A survey on image mosaicing techniques. Journal of Visual Communication and Image Representation, 2016, 34: 1?11 doi: 10.1016/j.jvcir.2015.10.014
                        [65] Lu R S, Shi Y Q, Li Q, Yu Q P. AOI techniques for surface defect inspection. In: Proceedings of the Applied Mechanics and Materials. Trans Tech Publications Ltd, 2010. 297?302
                        [66] Kong Q, Wu Z, Song Y. Online detection of external thread surface defects based on an improved template matching algorithm. Measurement, 2022, 195: Article No. 111087
                        [67] Pang G, Shen C, Cao L, Hengel V A D. Deep learning for anomaly detection: A review. ACM Computing Surveys, 2021, 54(2): 1?38
                        [68] Konovalenko I, Maruschak P, Brevus V, Prentkovskis O. Recognition of scratches and abrasions on metal surfaces using a classifier based on a convolutional neural network. Metals, 2021, 11(4): Article No. 549 doi: 10.3390/met11040549
                        [69] Jiang Q S, Tan D P, Li Y B, Ji S M, Cai C P, Zheng Q M. Object detection and classification of metal polishing shaft surface defects based on convolutional neural network deep learning. Applied Sciences, 2019, 10(1): Article No. 87 doi: 10.3390/app10010087
                        [70] Tabernik D, ?ela S, Skvar? J, Sko?aj D. Segmentation-based deep-learning approach for surface-defect detection. Journal of Intelligent Manufacturing, 2019, 31(3): 759?776
                        [71] 楊潔. 基于深度學(xué)習的無(wú)監督圖像異常模式檢測與識別研究 [博士學(xué)位論文], 中國科學(xué)院大學(xué), 中國, 2021.

                        Yang Jie. Unsupervised Visual Anomaly Detection and Recognition Based on Deep Learning [Ph.D. dissertation], University of Chinese Academy of Sciences, China, 2021.
                        [72] Chetverikov D, Khenokh Y. Matching for shape defect detection. In: Proceedings of the 8th International Conference on Computer Analysis of Images and Patterns (CAIP). Ljubljana, Slovenia: Springer, 1999. 367?374
                        [73] Wang L, Pavlidis T. Direct gray-scale extraction of features for character recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1053?1067 doi: 10.1109/34.254062
                        [74] Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 2003, 89(2): 114?141 doi: 10.1016/S1077-3142(03)00009-2
                        [75] Borgefors G. Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(6): 849?865 doi: 10.1109/34.9107
                        [76] Zhang H J, Hu Q. Fast image matching based-on improved SURF algorithm. In: Proceedings of the International Conference on Electronics, Communications and Control (ICECC). Ningbo, China: IEEE, 2011. 1460?1463
                        [77] Crispin A J, Rankov V. Automated inspection of PCB components using a genetic algorithm template-matching approach. The International Journal of Advanced Manufacturing Technology, 2007, 35(3): 293?300
                        [78] Hashemi N S, Aghdam R B, Ghiasi A S B, Fatemi P. Template matching advances and applications in image analysis. arXiv preprint arXiv: 1610.07231, 2016.
                        [79] Wang H Y, Zhang J W, Tian Y, Chen H Y, Sun H X, Liu K. A simple guidance template-based defect detection method for strip steel surfaces. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2798?2809 doi: 10.1109/TII.2018.2887145
                        [80] Pernkopf F. Detection of surface defects on raw steel blocks using Bayesian network classifiers. Pattern Analysis and Applications, 2004, 7(3): 333?342 doi: 10.1007/s10044-004-0232-3
                        [81] Aghdam S R, Amid E, Imani M F. A fast method of steel surface defect detection using decision trees applied to LBP based features. In: Proceedings of the 7th IEEE Conference on Industrial Electronics and Applications (ICIEA). Singapore: IEEE, 2012. 1447?1452
                        [82] Samy M P, Foong S, Soh G S, Yeo K S. Automatic optical & laser-based defect detection and classification in brick masonry walls. In: Proceedings of the IEEE Region 10 Conference (TENCON). Singapore: IEEE, 2016. 3521?3524
                        [83] Li X G, Zhu J, Shi H R, Cong Z J. Surface defect detection of seals based on K-means clustering algorithm and particle swarm optimization. Scientific Programming, 2021, 2021: Article No. 3965247
                        [84] Yue B, Wang Y P, Min Y Z, Zhang Z H, Wang W R, Yong J. Rail surface defect recognition method based on AdaBoost multi-classifier combination. In: Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). Lanzhou, China: IEEE, 2019. 391?396
                        [85] Soukup D, Huber-M?rk R. Convolutional neural networks for steel surface defect detection from photometric stereo images. In: Proceedings of the 10th International Symposium on Visual Computing (ISVC). Las Vegas, USA: Springer, 2014. 668?677
                        [86] Masci J, Meier U, Ciresan D, Schmidhuber J, Fricout G. Steel defect classification with max-pooling convolutional neural networks. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN). Brisbane, Australia: IEEE, 2012. 1?6
                        [87] Staar B, Lütjen M, Freitag M. Anomaly detection with convolutional neural networks for industrial surface inspection. Procedia CIRP, 2019, 79: 484?489 doi: 10.1016/j.procir.2019.02.123
                        [88] Liao S C, Shao L. Graph sampling based deep metric learning for generalizable person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 7349?7358
                        [89] Alzu'bi A, Albalas F, Al-Hadhrami T, Younis L B, Bashayreh A. Masked face recognition using deep learning: A review. Electronics, 2021, 10(21): Article No. 2666 doi: 10.3390/electronics10212666
                        [90] Mordia R, Verma A K. Visual techniques for defects detection in steel products: A comparative study. Engineering Failure Analysis, 2022, 134: Article No. 106047 doi: 10.1016/j.engfailanal.2022.106047
                        [91] Kim M S, Park T, Park P. Classification of steel surface defect using convolutional neural network with few images. In: Proceedings of the 12th Asian Control Conference (ASCC). Kitakyushu, Japan: IEEE, 2019. 1398?1401
                        [92] Wu S L, Wu Y B, Cao D H, Zheng C Y. A fast button surface defect detection method based on Siamese network with imbalanced samples. Multimedia Tools and Applications, 2019, 78(24): 34627?34648 doi: 10.1007/s11042-019-08042-w
                        [93] Li X, Yang X, Ma Z, Xue J H. Deep metric learning for few-shot image classification: A selective review. arXiv preprint arXiv: 2105.08149, 2021.
                        [94] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. 580?587
                        [95] He K M, Zhang X Y, Ren S Q, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904?1916 doi: 10.1109/TPAMI.2015.2389824
                        [96] Girshick R. Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 1440?1448
                        [97] Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137?1149 doi: 10.1109/TPAMI.2016.2577031
                        [98] He K M, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2980?2988
                        [99] Cai Z W, Vasconcelos N. Cascade R-CNN: Delving into high quality object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 6154?6162
                        [100] Guo F, Qian Y, Rizos D, Suo Z, Chen X B. Automatic rail surface defects inspection based on mask R-CNN. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(11): 655?668 doi: 10.1177/03611981211019034
                        [101] Xu Y Y, Li D W, Xie Q, Wu Q Y, Wang J. Automatic defect detection and segmentation of tunnel surface using modified mask R-CNN. Measurement, 2021, 178: Article No. 109316 doi: 10.1016/j.measurement.2021.109316
                        [102] Fang J T, Tan X Y, Wang Y H. ACRM: Attention cascade R-CNN with Mix-NMS for metallic surface defect detection. In: Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Milan, Italy: IEEE, 2021. 423?430
                        [103] Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 779?788
                        [104] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint arXiv: 2004.10934, 2020.
                        [105] Li M J, Wang H, Wan Z B. Surface defect detection of steel strips based on improved YOLOv4. Computers and Electrical Engineering, 2022, 102: Article No. 108208 doi: 10.1016/j.compeleceng.2022.108208
                        [106] Usamentiaga R, Lema D G, Pedrayes O D, Garcia D F. Automated surface defect detection in metals: A comparative review of object detection and semantic segmentation using deep learning. IEEE Transactions on Industry Applications, 2022, 58(3): 4203?4213 doi: 10.1109/TIA.2022.3151560
                        [107] Xu Y H, Wang X J, Li S Y. Track surface defect detection based on EfficientDet. In: Proceedings of the 5th International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT) 2021: Rail Transportation Information Processing and Operational Management Technologies. Singapore: Springer, 2022. 56?66
                        [108] Wang C Y, Bochkovskiy A, Liao H Y M. Scaled-YOLOv4: Scaling cross stage partial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE, 2021. 13024?13033
                        [109] He Y, Song K C, Meng Q G, Yan Y H. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493?1504 doi: 10.1109/TIM.2019.2915404
                        [110] Anthony A, Ho E S L, Woo W L, Gao B. A review and benchmark on state-of-the-art steel defects detection [Online], available: http://dx.doi.org/10.2139/ssrn.4121951, March 19, 2023
                        [111] Song G L, Liu Y, Wang X G. Revisiting the sibling head in object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 11560?11569
                        [112] Lin T Y, Goyal P, Girshick R, He K M, Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 2999?3007
                        [113] Ma P F, Ma J, Wang X J, Yang L C, Wang N N. Deformable convolutional networks for multi-view 3D shape classification. Electronics Letters, 2018, 54(24): 1373?1375 doi: 10.1049/el.2018.6851
                        [114] Law H, Deng J. CornerNet: Detecting objects as paired keypoints. In: Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 765?781
                        [115] Ge Z, Liu S T, Wang F, Li Z M, Sun J. YOLOX: Exceeding YOLO series in 2021. arXiv preprint arXiv: 2107.08430, 2021.
                        [116] Zhu B J, Wang J F, Jiang Z K, Zong F H, Liu S T, Li Z M, et al. AutoAssign: Differentiable label assignment for dense object detection. arXiv preprint arXiv: 2007.03496, 2020.
                        [117] Lu H T, Fang M Y, Qiu Y, Xu W Q. An anchor-free defect detector for complex background based on pixelwise adaptive multiscale feature fusion. IEEE Transactions on Instrumentation and Measurement, 2023, 72: Article No. 5002312
                        [118] Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. In: Proceedings of the 16th European Conference on Computer Vision (ECCV). Glasgow, UK: Springer, 2020. 213?229
                        [119] Zhu X, Su W, Lu L, Li B, Wang X, Dai J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv: 2010.04159, 2020.
                        [120] Misra I, Girdhar R, Joulin A. An end-to-end transformer model for 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE, 2021. 2886?2897
                        [121] Lv X, Duan F, Jiang J, Fu X, Gan L. Deep metallic surface defect detection: The new benchmark and detection network. Sensors, 2020, 20(6): Article No. 1562
                        [122] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015. 3431?3440
                        [123] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Munich, Germany: Springer, 2015. 234?241
                        [124] Sabet D N, Zarifi M R, Khoramdel J, Borhani Y, Najafi E. An automated visual defect segmentation for flat steel surface using deep neural networks. In: Proceedings of the 12th International Conference on Computer and Knowledge Engineering (ICCKE). Mashhad, Islamic Republic of Iran: IEEE, 2022. 423?427
                        [125] Lin T Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 2117?2125
                        [126] Xie S N, Girshick R, Dollár P, Tu Z W, He K M. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 5987?5995
                        [127] Koonce B. EfficientNet. Convolutional Neural Networks With Swift for Tensorflow: Image Recognition and Dataset Categorization. Berkeley: Apress, 2021. 109?123
                        [128] Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille A L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834?848 doi: 10.1109/TPAMI.2017.2699184
                        [129] Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z Z, Du D L, et al. Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 1529?1537
                        [130] Ma L F, Li J. SD-GCN: Saliency-based dilated graph convolution network for pavement crack extraction from 3D point clouds. International Journal of Applied Earth Observation and Geoinformation, 2022, 111: Article No. 102836 doi: 10.1016/j.jag.2022.102836
                        [131] Huang Y B, Qiu C Y, Guo Y, Wang X N, Yuan K. Surface defect saliency of magnetic tile. In: Proceedings of the 14th International Conference on Automation Science and Engineering (CASE). Munich, Germany: IEEE, 2018. 612?617
                        [132] Tian H, Li F. Autoencoder-based fabric defect detection with cross-patch similarity. In: Proceedings of the 16th International Conference on Machine Vision Applications (MVA). Tokyo, Japan: IEEE, 2019. 1?6
                        [133] Mei S, Yang H, Yin Z P. An unsupervised-learning-based approach for automated defect inspection on textured surfaces. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1266?1277 doi: 10.1109/TIM.2018.2795178
                        [134] Huang C Q, Cao J K, Ye F, Li M S, Zhang Y, Lu C W. Inverse-transform Autoencoder for anomaly detection. arXiv preprint arXiv: 1911.10676, 2019.
                        [135] Zimmerer D, Petersen J, Kohl S A A, Maier-Hein K H. A case for the score: Identifying image anomalies using variational autoencoder gradients. arXiv preprint arXiv: 1912.00003, 2019.
                        [136] Kwon G, Prabhushankar M, Temel D, AlRegib G. Backpropagated gradient representations for anomaly detection. In: Proceedings of the 16th European Conference on Computer Vision (ECCV). Glasgow, UK: Springer, 2020. 206?226
                        [137] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. Communications of the ACM, 2020, 63(11): 139?144 doi: 10.1145/3422622
                        [138] Baur C, Denner S, Wiestler B, Navab N, Albarqouni S. Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study. Medical Image Analysis, 2021, 69: Article No. 101952 doi: 10.1016/j.media.2020.101952
                        [139] Schlegl T, Seeb?ck P, Waldstein S M, Langs G, Schmidt-Erfurth U. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical Image Analysis, 2019, 54: 30?44 doi: 10.1016/j.media.2019.01.010
                        [140] Rudolph M, Wehrbein T, Rosenhahn B, Wandt B. Fully convolutional cross-scale-flows for image-based defect detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE, 2022. 1829?1838
                        [141] Yu J W, Zheng Y, Wang X, Li W, Wu Y S, Zhao R, et al. FastFlow: Unsupervised anomaly detection and localization via 2D normalizing flows. arXiv preprint arXiv: 2111.07677, 2021.
                        [142] Yi J H, Yoon S. Patch SVDD: Patch-level SVDD for anomaly detection and segmentation. In: Proceedings of the 15th Asian Conference on Computer Vision (ACCV). Kyoto, Japan: Springer, 2021. 375?390
                        [143] Tax D M J, Duin R P W. Support vector data description. Machine Learning, 2004, 54(1): 45?66 doi: 10.1023/B:MACH.0000008084.60811.49
                        [144] Yang M H, Wu P, Feng H. MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities. Engineering Applications of Artificial Intelligence, 2023, 119: Article No. 105835 doi: 10.1016/j.engappai.2023.105835
                        [145] Roth K, Pemula L, Zepeda J, Sch?lkopf B, Brox T, Gehler P. Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 14298?14308
                        [146] Bae J, Lee J H, Kim S. Image anomaly detection and localization with position and neighborhood information. arXiv preprint arXiv: 2211.12634, 2022.
                        [147] Bergmann P, Fauser M, Sattlegger D, Steger C. Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020. 4182?4191
                        [148] Batzner K, Heckler L, K?nig R. EfficientAD: Accurate visual anomaly detection at millisecond-level latencies. arXiv preprint arXiv: 2303.14535, 2023.
                      2. 加載中
                      3. 圖(16) / 表(3)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  2997
                        • HTML全文瀏覽量:  3513
                        • PDF下載量:  828
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2023-02-06
                        • 錄用日期:  2023-05-18
                        • 網(wǎng)絡(luò )出版日期:  2023-07-03
                        • 刊出日期:  2024-07-23

                        目錄

                          /

                          返回文章
                          返回