一種迭代邊界優(yōu)化的醫學(xué)圖像小樣本分割網(wǎng)絡(luò )
doi: 10.16383/j.aas.c220994
-
1.
北京工業(yè)大學(xué)信息學(xué)部 北京 100124
-
2.
首都醫科大學(xué)附屬北京友誼醫院 北京 100050
A Few-shot Medical Image Segmentation Network With Iterative Boundary Refinement
-
1.
Faculty of Information Technology, Beijing University of Technology, Beijing 100124
-
2.
Beijing Friendship Hospital, Capital Medical University, Beijing 100050
-
摘要: 精準的醫學(xué)圖像自動(dòng)分割是臨床影像學(xué)診斷和影像三維重建的重要基礎. 但醫學(xué)圖像數據的目標對象間對比度差異小、受器官運動(dòng)影響大, 加之標注樣本規模小, 因此在小樣本下建立高性能的醫學(xué)分割模型仍是目前的難點(diǎn)問(wèn)題. 針對主流原型學(xué)習小樣本分割網(wǎng)絡(luò )對醫學(xué)圖像邊界分割性能差的問(wèn)題, 提出一種迭代邊界優(yōu)化的小樣本分割網(wǎng)絡(luò )(Iterative boundary refinement based few-shot segmentation network, IBR-FSS-Net). 以雙分支原型學(xué)習的小樣本分割框架為基礎, 引入類(lèi)別注意力機制和密集比較模塊(Dense comparison module, DCM), 對粗分割掩碼進(jìn)行迭代優(yōu)化, 引導分割模型在多次迭代學(xué)習過(guò)程中關(guān)注邊界, 從而提升邊界分割精度. 為進(jìn)一步克服醫學(xué)圖像訓練樣本少且多樣性不足問(wèn)題, 使用超像素方法生成偽標簽, 擴充訓練數據以提升模型泛化性. 在A(yíng)BD-MR和ABD-CT醫學(xué)圖像分割公共數據集上進(jìn)行實(shí)驗, 與現有多種先進(jìn)的醫學(xué)圖像小樣本分割方法進(jìn)行對比分析和消融實(shí)驗. 實(shí)驗結果表明, 該方法有效提升了未見(jiàn)醫學(xué)類(lèi)別的分割性能.
-
關(guān)鍵詞:
- 醫學(xué)圖像分割 /
- 小樣本學(xué)習 /
- 注意力機制 /
- 邊界優(yōu)化
Abstract: Accurate automatic segmentation of medical images is an important basis for clinical imaging diagnosis and 3D image reconstruction. However, medical image data has small contrast differences between target objects, is greatly affected by organ movement, and the scale of labeled samples is small. Therefore, it is still a difficult problem to establish a high-performance medical segmentation model under few samples. In view of the poor performance of the mainstream prototype learning few-shot segmentation network for medical image boundary segmentation, an iterative boundary refinement based few-shot segmentation network (IBR-FSS-Net) is proposed. Based on the few-shot segmentation framework of dual-branch prototype learning, the category attention mechanism and dense comparison module (DCM) are introduced to iteratively refine the coarse segmentation mask, and guide the segmentation model to focus on the boundary during multiple iterative learning processes, thereby improving the boundary segmentation accuracy. In order to further overcome the problem of few training samples and insufficient diversity of medical images, this paper uses the super-pixel method to generate pseudo-labels and expand the training data to improve the generalization of the model. Experiments on the mainstream ABD-MR and ABD-CT medical image segmentation public datasets are done, we conduct extensive comparative analysis and ablation experiments with various existing advanced medical image few-shot segmentation methods. The results show that our method effectively improves the segmentation performance of unseen medical categories.1) 本文責任編委 XXX Recommended by Associate Editor BIAN Wei -
圖 1 一種迭代邊界優(yōu)化的小樣本分割網(wǎng)絡(luò )
Fig. 1 An iterative boundary refinement based few-shot segmentation network
圖 7 醫學(xué)圖像小樣本分割網(wǎng)絡(luò )的Baseline模型
Fig. 7 Baseline model of few-shot medical image segmentation network
圖 8 核磁共振成像圖像中的4種器官樣例的預測分割掩碼
Fig. 8 Predicted segmentation masks for four organ samples in magnetic resonance images
圖 9 電子計算機斷層掃描圖像中的4種器官樣例的預測分割掩碼
Fig. 9 Predicted segmentation masks for four organ samples in computed tomography images
表 1 ABD-CT和ABD-MR數據集上, 不同方法的Dice系數值 (%)
Table 1 Dice coefficient values with different models on ABD-CT and ABD-MR datasets (%)
方法 ABD-CT ABD-MR 脾臟 左腎 右腎 肝臟 平均值 脾臟 左腎 右腎 肝臟 平均值 SE-Net 0.23 32.83 14.34 0.27 11.91 51.80 62.11 61.32 27.43 50.66 PANet 25.59 32.34 17.37 38.42 29.42 50.90 53.45 38.64 42.26 46.33 SSL-ALPNet 60.25 63.34 54.82 73.65 63.02 67.02 73.63 78.39 73.05 73.02 GCN-DE 56.53 68.13 75.50 46.77 61.73 60.63 76.07 83.03 49.47 67.30 RP-Net 69.85 70.48 70.00 79.62 72.48 76.35 81.40 85.78 73.51 79.26 ADNet — — — — — 75.92 75.28 83.28 80.81 78.82 PoissonSeg 52.33 50.11 47.02 58.74 52.05 52.85 50.58 53.57 61.03 54.51 AAS-DCL 66.36 64.71 69.95 71.61 68.16 74.86 76.90 83.75 69.94 76.36 IBR-FSS-Net 71.73 73.78 72.02 78.13 73.92 75.12 82.19 85.64 75.89 79.71 下載: 導出CSV表 2 不同組件組合方式的Dice系數值 (%)
Table 2 Dice coefficient values with different component combinations (%)
組合方式 脾臟 左腎 右腎 肝臟 平均值 Baseline 62.33 63.65 66.87 64.18 64.26 Baseline+Concat 60.62 65.55 68.53 66.56 65.32 Baseline+BRM 66.63 72.10 74.83 69.17 70.68 Baseline+3Concat 61.20 68.72 70.38 66.95 66.81 Baseline+3BRM 75.12 82.19 85.64 75.89 79.71 下載: 導出CSV表 3 不同邊界優(yōu)化模塊數量的Dice系數值 (%)
Table 3 Dice coefficient values with different number of boundary refinement modules (%)
組件 脾臟 左腎 右腎 肝臟 平均值 Baseline 62.33 63.65 66.87 64.18 64.26 Baseline+BRM 66.63 72.10 74.83 69.17 70.68 Baseline+2BRM 69.88 79.98 82.12 73.56 76.39 Baseline+3BRM 75.12 82.19 85.64 75.89 79.71 Baseline+4BRM 68.57 77.23 78.82 69.60 73.56 Baseline+5BRM 64.13 70.55 72.69 66.42 68.45 下載: 導出CSV表 4 不同特征提取網(wǎng)絡(luò )的Dice系數值 (%)
Table 4 Dice coefficient values with different feature extraction networks (%)
骨干網(wǎng)絡(luò ) 脾臟 左腎 右腎 肝臟 平均值 VGG-16 52.09 63.83 64.48 57.88 59.57 U-Net 69.66 78.94 80.46 72.15 75.30 Res U-Net 71.82 78.24 81.10 73.41 76.14 Attention U-Net 73.96 79.14 83.51 73.60 77.55 ResNet50 71.23 78.19 82.57 73.68 76.42 ResNet101 75.12 82.19 85.64 75.89 79.71 下載: 導出CSV表 5 不同度量網(wǎng)絡(luò )組合方式的Dice系數值 (%)
Table 5 Dice coefficient values with different combination of metric networks (%)
度量網(wǎng)絡(luò )組合方式 脾臟 左腎 右腎 肝臟 平均值 Prototypical-Net 70.92 80.61 83.70 74.48 77.43 DCM 71.53 81.36 83.44 74.81 77.79 DCM+Prototypical-Net 72.97 81.49 83.68 74.83 78.24 Prototypical-Net+DCM 75.12 82.19 85.64 75.89 79.71 下載: 導出CSV表 6 ABD-CT和ABD-MR數據集上, 與其他少標注樣本下醫學(xué)圖像分割方法對比的Dice系數值 (%)
Table 6 Dice coefficient values with other medical segmentation models in case of less annotated sample on ABD-CT and ABD-MR datasets (%)
方法(比例) ABD-CT ABD-MR 脾臟 左腎 右腎 肝臟 平均值 脾臟 左腎 右腎 肝臟 平均值 MagicNet (30%) 91.42 86.19 84.64 93.89 89.04 — — — — — CVCL (部分) 95.40 94.60 94.60 96.70 95.33 — — — — — C-CAM (0%) — — — — — 74.16 81.00 84.75 72.68 78.15 IBR-FSS-Net (5%) 71.73 73.78 72.02 78.13 73.92 75.12 82.19 85.64 75.89 79.71 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Zhang B, Zhang L, Zhang L, Karray F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers in Biology and Medicine, 2010, 40(4): 438?445 doi: 10.1016/j.compbiomed.2010.02.008 [2] Vinyals O, Blundell C, Lillicrap T, Wierstra D. Matching networks for one shot learning. In: Proceedings of the PMLR on Advances in Neural Information Processing Systems. Barcelona, Spain: PMLR, 2016. 3637–3645 [3] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the PMLR on International Conference on Machine Learning. Sydney, Australia: PMLR, 2017. 1126?1135 [4] Sung F, Yang Y, Zhang L, Tao X, Philip H S T, Timothy M. Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE on Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 1199? 1208 [5] Li G, Jampani V, Sevilla-Lara L, Sun D, Kim J, Kim J. Adaptive prototype learning and allocation for few-shot segmentation. In: Proceedings of the IEEE on Conference on Computer Vision and Pattern Recognition. Virtual Event: IEEE, 2021. 8334?8343 [6] Yu Q, Dang K, Tajbakhsh N, Terzopoulos D, Ding X. A location-sensitive local prototype network for few-shot medical image segmentation. In: Proceedings of the IEEE on Image Processing. Anchorage, USA: IEEE, 2021. 262?266 [7] 孫君梅, 葛青青, 李秀梅, 趙寶奇. 具有邊界增強功能的醫學(xué)圖像分割網(wǎng)絡(luò ). 電子與信息學(xué)報, 2022, 44(5): 1643?1652 doi: 10.11999/JEIT210784Sun Jun-Mei, Ge Qing-Qing, Li Xiu-Mei, Zhao Bao-Qi. A medical image segmentation network with boundary enhancement. Journal of Electronics, 2022, 44(5): 1643?1652 doi: 10.11999/JEIT210784 [8] Yuan Y, Chen X, Wang J. Object-contextual representations for semantic segmentation. In: Proceedings of the European Conference on Computer Vision. Virtual Event: Springer, 2020. 23?28, 173?190 [9] Kim T, Lee H, Kim D. UACANet: Uncertainty augmented context attention for polyp segmentation. In: Proceedings of the IEEE Conference on ACM International Conference on Multimedia. Chengdu, China: ACM, 2021. 2167?2175 [10] Zhang C, Lin G, Liu F, Rui Y, She C. CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE Conference on Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 5217?5226 [11] Ouyang C, Biffi C, Chen C, Kart T, Qiu H, Rueckert D. Self-supervision with super-pixels: Training few-shot medical image segmentation without annotation. In: Proceedings of the European Conference on Computer Vision. Virtual Event: Springer, 2020. 762?780 [12] Tang H, Liu X, Sun S, Yan X, Xie X. Recurrent mask refinement for few-shot medical image segmentation. In: Proceedings of the IEEE on International Conference on Computer Vision. Seoul, South Korea: IEEE, 2021. 3918?3928 [13] Fan D P, Ji G P, Zhou T, Chen G, Fu H, Shen J, et al. PRANet: Parallel reverse attention network for polyp segmentation. In: Proceedings of the Medical Image Computing and Computer Assisted Intervention. Lima, Peru: Springer, 2020. 263? 273 [14] Shaban A, Bansal S, Liu Z, Essa I, Byron B. One-shot learning for semantic segmentation. In: Proceedings of the British Machine Vision Conference. London, UK: BMVA, 2017. 1?12 [15] Wang K, Liew J H, Zou Y, Zhou D, Feng J. PANet: Few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE on International Conference on Computer Vision. Seoul, South Korea: IEEE, 2019. 9197?9206 [16] Tian Z, Zhao H, Shu M, Yang Z, Li R, Jia J. Prior guided feature enrichment network for few-shot segmentation. Pattern Analysis and Machine Intelligence, 2020, 44(2): 1050?1065 [17] Zhang G, Kang G, Yang Y, Wei Y. Few-shot segmentation via cycle-consistent transformer. In: Proceedings of the Advances in Neural Information Processing Systems. Montreal, Canada: NeurIPS, 2021. 21984?21996 [18] Roy A G, Siddiqui S, Polsterl S, Navab N, Wachinger C. “Squeeze & Excite” guided few-shot segmentation of volumetric images. Medical Image Analysis, 2020, 59: Article No. 101587 [19] Sun L, Li C, Ding X, Huang Y, Chen Z, Wang G, et al. Few-shot medical image segmentation using a global correlation network with discriminative embedding. Computers in Biology an Medicine, 2022, 140: Article No. 105067 [20] Tang H, Liu X, Sun S, Yan X, Xie X. Recurrent mask refinement for few-shot medical image segmentation. In: Proceedings of the IEEE on International Conference on Computer Vision. Montreal, Canada: IEEE, 2021. 3918?3928 [21] Hansen S, Gautam S, Jenssen R, Kampffmeyer M. Anomaly detection-inspired few-shot medical image segmentation through self-supervision with super-voxels. Medical Image Analysis, 2022, 78: Article No. 102385 [22] Shen X, Zhang G, Lai H, Luo J, Lu J. PoissonSeg: Semi-supervised few-shot medical image segmentation via Poisson learning. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine. Houston, USA: IEEE, 2021. 1513? 1518 [23] Wu H, Xiao F, Liang C. Dual contrastive learning with anatomical auxiliary supervision for few-shot medical image segmentation. In: Proceedings of the European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 417?434 [24] Chen D, Bai Y, Shen W, Li Q, Yu L, Wang Y. MagicNet: Semi-supervised multi-organ segmen-tation via magic-cube partition and recovery. In: Proceedings of the IEEE on Computer Vision and Pattern Recognition. Oxford, UK: IEEE, 2023. 23869?23878 [25] Liu P, Zheng G. Context-aware voxel-wise contrastive learning for label efficient multi-organ segmentation. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Singapore: Springer, 2022. 653? 662 [26] Chen Z, Tian Z, Zhu J, Li C, Du S. C-CAM: Causal cam for weakly supervised semantic segmentation on medical image. In: Proceedings of the IEEE on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022. 11676?11685 [27] Chen S, Tan X, Wang B, Hu X. Reverse attention for salient object detection. In: Proceedings of the European Conference on Computer Vision. Munich, Germany: Springer, 2018. 234?250 [28] 陳瓊, 楊永, 黃田琳, 馮媛. 新型全向立體視覺(jué)系統設計. 數據與計算發(fā)展前沿, 2022, 3(6): 17?34Chen Qiong, Yang Yong, Huang Tian-Lin, Feng Yuan. A survey on few-shot image semantic segmentation. Frontiers of Data and Computing, 2022, 3(6): 17?34 [29] Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning. In: Proceedings of the Conference on Neural Information Processing Systems. Long Beach, USA: NeurIPS, 2017. 4080–4090 [30] Landman B, Xu Z, Igelsias J, Styner M, Langerak T, Klein A. Miccai multi-atlas labeling beyond the cranial vault-workshop and challenge. In: Proceedings of the Medical Image Computing and Computer Assisted Intervention. Munich, Germany: Springer, 2015. 1–12 [31] Kavur A E, Gezer N S, Baris M, Aslan S, Conze P H, Groza V. Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. Medical Image Analysis, 2021, 69: Article No. 101950 [32] Irving B. MaskSLIC: Regional super-pixel generation with application to local pathology characterisation in medical images. In: Proceedings of the IEEE on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. Article No. 9518 [33] Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common objects in context. In: Proceed-ings of the European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 740?755 [34] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations. San Diego, USA: ICLR, 2015. 1?14 [35] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Proceedings of the Medical Image Computing and Computer-assisted Intervention. Munich, Germany: Springer, 2015. 234?241 [36] Xiao X, Lian S, Luo Z, Li S. Weighted Res U-Net for high-quality retina vessel segmentation. In: Proceedings of the International Conference on Information Technology in Medicine and Education. Hangzhou, China: IEEE, 2018. 327?331 [37] Oktay O, Schlemper J, Folgoc L L, Lee M, Heinrich M, Misawa K. Attention U-Net: Learning where to look for the pancreas. In: Proceedings of the IEEE on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. Atricle No. 3999 [38] Kervadec H, Bouchtiba J, Desrosiers C, Granger E, Dolz J, Ayed I B. Boundary loss for highly unbalanced segmentation. In: Proceedings of the International Conference on Medical Imaging With Deep Learning. Shanghai, China: PMLR, 2019. 285? 296