1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              一種迭代邊界優(yōu)化的醫學(xué)圖像小樣本分割網(wǎng)絡(luò )

              賈熹濱 郭雄 王珞 楊大為 楊正漢

              賈熹濱, 郭雄, 王珞, 楊大為, 楊正漢. 一種迭代邊界優(yōu)化的醫學(xué)圖像小樣本分割網(wǎng)絡(luò ). 自動(dòng)化學(xué)報, 2024, 50(10): 1988?2001 doi: 10.16383/j.aas.c220994
              引用本文: 賈熹濱, 郭雄, 王珞, 楊大為, 楊正漢. 一種迭代邊界優(yōu)化的醫學(xué)圖像小樣本分割網(wǎng)絡(luò ). 自動(dòng)化學(xué)報, 2024, 50(10): 1988?2001 doi: 10.16383/j.aas.c220994
              Jia Xi-Bin, Guo Xiong, Wang Luo, Yang Da-Wei, Yang Zheng-Han. A few-shot medical image segmentation network with iterative boundary refinement. Acta Automatica Sinica, 2024, 50(10): 1988?2001 doi: 10.16383/j.aas.c220994
              Citation: Jia Xi-Bin, Guo Xiong, Wang Luo, Yang Da-Wei, Yang Zheng-Han. A few-shot medical image segmentation network with iterative boundary refinement. Acta Automatica Sinica, 2024, 50(10): 1988?2001 doi: 10.16383/j.aas.c220994

              一種迭代邊界優(yōu)化的醫學(xué)圖像小樣本分割網(wǎng)絡(luò )

              doi: 10.16383/j.aas.c220994
              基金項目: 國家重點(diǎn)研發(fā)項目中國和韓國政府間聯(lián)合研究項目(2019YFE0107800), 國家自然科學(xué)基金(62171298, 82071876, 62476015, 82372043, 82371904)資助
              詳細信息
                作者簡(jiǎn)介:

                賈熹濱:北京工業(yè)大學(xué)信息學(xué)部教授. 主要研究方向為視覺(jué)信息認知與計算, 智能醫學(xué)圖像分析和診斷, 情感計算. 本文通信作者. E-mail: jiaxibin@bjut.edu.cn

                郭雄:北京工業(yè)大學(xué)信息學(xué)部碩士研究生. 主要研究方向為計算機視覺(jué), 醫學(xué)圖像分割和小樣本學(xué)習. E-mail: guox@emails.bjut.edu.cn

                王珞:北京工業(yè)大學(xué)信息學(xué)部講師. 主要研究方向為圖像檢索, 深度學(xué)習, 醫學(xué)影像處理和多模態(tài)數據融合. E-mail: wangluo@bjut.edu.cn

                楊大為:首都醫科大學(xué)附屬北京友誼醫院副教授. 2020年獲得首都醫科大學(xué)博士學(xué)位. 主要研究方向為肝臟疾病影像診斷與研究. E-mail: yangdawei@ccmu.edu.cn

                楊正漢:首都醫科大學(xué)附屬北京友誼醫院教授. 1999年獲得北京醫科大學(xué)博士學(xué)位. 主要研究方向為腹部疾病影像診斷, 肝細胞癌及癌前病變的早期影像診斷, MRI新技術(shù)的開(kāi)發(fā)與應用. E-mail: yangzhenghan@vip.163.com

              A Few-shot Medical Image Segmentation Network With Iterative Boundary Refinement

              Funds: Supported by National Key Research and Development Program of China and South Korea Intergovernmental Joint Research Project (2019YFE0107800) and National Natural Science Foundation of China ((62171298, 82071876, 62476015, 82372043, 82371904))
              More Information
                Author Bio:

                JIA Xi-Bin Professor at the Faculty of Information Technology, Beijing University of Technology. Her research interest covers visual information cognition and computing, intelligent medical image analysis and diagnosis, and emotional calculation. Corresponding author of this paper

                GUO Xiong Master student at the Faculty of Information Technology, Beijing University of Technology. His research interest covers computer vision, medical image segmentation, and few-shot learning

                WANG Luo Lecturer at the Faculty of Information Technology, Beijing University of Technology. His research interest covers image retrieval, deep learning, medical image processing, and multi-modal data fusion

                YANG Da-Wei Associate professor at the Beijing Friendship Hospital, Capital Medical University. He received his Ph.D. degree from Capital Medical University in 2020. His main research interest is imaging diagnosis and research on liver disease

                YANG Zheng-Han Professor at the Beijing Friendship Hospital, Capital Medical University. He received his Ph.D. degree from Beijing Medical University in 1999. His research interest covers imaging diagnosis of abdominal diseases, early imaging diagnosis of hepatocellular carcinoma and precancerous lesions, and development and application of new MRI technology

              • 摘要: 精準的醫學(xué)圖像自動(dòng)分割是臨床影像學(xué)診斷和影像三維重建的重要基礎. 但醫學(xué)圖像數據的目標對象間對比度差異小、受器官運動(dòng)影響大, 加之標注樣本規模小, 因此在小樣本下建立高性能的醫學(xué)分割模型仍是目前的難點(diǎn)問(wèn)題. 針對主流原型學(xué)習小樣本分割網(wǎng)絡(luò )對醫學(xué)圖像邊界分割性能差的問(wèn)題, 提出一種迭代邊界優(yōu)化的小樣本分割網(wǎng)絡(luò )(Iterative boundary refinement based few-shot segmentation network, IBR-FSS-Net). 以雙分支原型學(xué)習的小樣本分割框架為基礎, 引入類(lèi)別注意力機制和密集比較模塊(Dense comparison module, DCM), 對粗分割掩碼進(jìn)行迭代優(yōu)化, 引導分割模型在多次迭代學(xué)習過(guò)程中關(guān)注邊界, 從而提升邊界分割精度. 為進(jìn)一步克服醫學(xué)圖像訓練樣本少且多樣性不足問(wèn)題, 使用超像素方法生成偽標簽, 擴充訓練數據以提升模型泛化性. 在A(yíng)BD-MR和ABD-CT醫學(xué)圖像分割公共數據集上進(jìn)行實(shí)驗, 與現有多種先進(jìn)的醫學(xué)圖像小樣本分割方法進(jìn)行對比分析和消融實(shí)驗. 實(shí)驗結果表明, 該方法有效提升了未見(jiàn)醫學(xué)類(lèi)別的分割性能.
                1)  本文責任編委 XXX Recommended by Associate Editor BIAN Wei
              • 圖  1  一種迭代邊界優(yōu)化的小樣本分割網(wǎng)絡(luò )

                Fig.  1  An iterative boundary refinement based few-shot segmentation network

                圖  2  基于注意力機制的邊界優(yōu)化模塊

                Fig.  2  Boundary refinement module based on attention mechanism

                圖  3  原型網(wǎng)絡(luò )結構圖

                Fig.  3  Prototype network structure diagram

                圖  4  密集比較模塊

                Fig.  4  Dense comparison module

                圖  5  基于超像素算法的樣本擴充方法

                Fig.  5  Sample augmentation approach based on super-pixel algorithm

                圖  6  ABD-MR數據集劃分示意圖

                Fig.  6  ABD-MR dataset partition diagram

                圖  7  醫學(xué)圖像小樣本分割網(wǎng)絡(luò )的Baseline模型

                Fig.  7  Baseline model of few-shot medical image segmentation network

                圖  8  核磁共振成像圖像中的4種器官樣例的預測分割掩碼

                Fig.  8  Predicted segmentation masks for four organ samples in magnetic resonance images

                圖  9  電子計算機斷層掃描圖像中的4種器官樣例的預測分割掩碼

                Fig.  9  Predicted segmentation masks for four organ samples in computed tomography images

                表  1  ABD-CT和ABD-MR數據集上, 不同方法的Dice系數值 (%)

                Table  1  Dice coefficient values with different models on ABD-CT and ABD-MR datasets (%)

                方法 ABD-CT ABD-MR
                脾臟 左腎 右腎 肝臟 平均值 脾臟 左腎 右腎 肝臟 平均值
                SE-Net 0.23 32.83 14.34 0.27 11.91 51.80 62.11 61.32 27.43 50.66
                PANet 25.59 32.34 17.37 38.42 29.42 50.90 53.45 38.64 42.26 46.33
                SSL-ALPNet 60.25 63.34 54.82 73.65 63.02 67.02 73.63 78.39 73.05 73.02
                GCN-DE 56.53 68.13 75.50 46.77 61.73 60.63 76.07 83.03 49.47 67.30
                RP-Net 69.85 70.48 70.00 79.62 72.48 76.35 81.40 85.78 73.51 79.26
                ADNet 75.92 75.28 83.28 80.81 78.82
                PoissonSeg 52.33 50.11 47.02 58.74 52.05 52.85 50.58 53.57 61.03 54.51
                AAS-DCL 66.36 64.71 69.95 71.61 68.16 74.86 76.90 83.75 69.94 76.36
                IBR-FSS-Net 71.73 73.78 72.02 78.13 73.92 75.12 82.19 85.64 75.89 79.71
                下載: 導出CSV

                表  2  不同組件組合方式的Dice系數值 (%)

                Table  2  Dice coefficient values with different component combinations (%)

                組合方式 脾臟 左腎 右腎 肝臟 平均值
                Baseline 62.33 63.65 66.87 64.18 64.26
                Baseline+Concat 60.62 65.55 68.53 66.56 65.32
                Baseline+BRM 66.63 72.10 74.83 69.17 70.68
                Baseline+3Concat 61.20 68.72 70.38 66.95 66.81
                Baseline+3BRM 75.12 82.19 85.64 75.89 79.71
                下載: 導出CSV

                表  3  不同邊界優(yōu)化模塊數量的Dice系數值 (%)

                Table  3  Dice coefficient values with different number of boundary refinement modules (%)

                組件 脾臟 左腎 右腎 肝臟 平均值
                Baseline 62.33 63.65 66.87 64.18 64.26
                Baseline+BRM 66.63 72.10 74.83 69.17 70.68
                Baseline+2BRM 69.88 79.98 82.12 73.56 76.39
                Baseline+3BRM 75.12 82.19 85.64 75.89 79.71
                Baseline+4BRM 68.57 77.23 78.82 69.60 73.56
                Baseline+5BRM 64.13 70.55 72.69 66.42 68.45
                下載: 導出CSV

                表  4  不同特征提取網(wǎng)絡(luò )的Dice系數值 (%)

                Table  4  Dice coefficient values with different feature extraction networks (%)

                骨干網(wǎng)絡(luò ) 脾臟 左腎 右腎 肝臟 平均值
                VGG-16 52.09 63.83 64.48 57.88 59.57
                U-Net 69.66 78.94 80.46 72.15 75.30
                Res U-Net 71.82 78.24 81.10 73.41 76.14
                Attention U-Net 73.96 79.14 83.51 73.60 77.55
                ResNet50 71.23 78.19 82.57 73.68 76.42
                ResNet101 75.12 82.19 85.64 75.89 79.71
                下載: 導出CSV

                表  5  不同度量網(wǎng)絡(luò )組合方式的Dice系數值 (%)

                Table  5  Dice coefficient values with different combination of metric networks (%)

                度量網(wǎng)絡(luò )組合方式 脾臟 左腎 右腎 肝臟 平均值
                Prototypical-Net 70.92 80.61 83.70 74.48 77.43
                DCM 71.53 81.36 83.44 74.81 77.79
                DCM+Prototypical-Net 72.97 81.49 83.68 74.83 78.24
                Prototypical-Net+DCM 75.12 82.19 85.64 75.89 79.71
                下載: 導出CSV

                表  6  ABD-CT和ABD-MR數據集上, 與其他少標注樣本下醫學(xué)圖像分割方法對比的Dice系數值 (%)

                Table  6  Dice coefficient values with other medical segmentation models in case of less annotated sample on ABD-CT and ABD-MR datasets (%)

                方法(比例) ABD-CT ABD-MR
                脾臟 左腎 右腎 肝臟 平均值 脾臟 左腎 右腎 肝臟 平均值
                MagicNet (30%) 91.42 86.19 84.64 93.89 89.04
                CVCL (部分) 95.40 94.60 94.60 96.70 95.33
                C-CAM (0%) 74.16 81.00 84.75 72.68 78.15
                IBR-FSS-Net (5%) 71.73 73.78 72.02 78.13 73.92 75.12 82.19 85.64 75.89 79.71
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Zhang B, Zhang L, Zhang L, Karray F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers in Biology and Medicine, 2010, 40(4): 438?445 doi: 10.1016/j.compbiomed.2010.02.008
                        [2] Vinyals O, Blundell C, Lillicrap T, Wierstra D. Matching networks for one shot learning. In: Proceedings of the PMLR on Advances in Neural Information Processing Systems. Barcelona, Spain: PMLR, 2016. 3637–3645
                        [3] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the PMLR on International Conference on Machine Learning. Sydney, Australia: PMLR, 2017. 1126?1135
                        [4] Sung F, Yang Y, Zhang L, Tao X, Philip H S T, Timothy M. Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE on Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 1199? 1208
                        [5] Li G, Jampani V, Sevilla-Lara L, Sun D, Kim J, Kim J. Adaptive prototype learning and allocation for few-shot segmentation. In: Proceedings of the IEEE on Conference on Computer Vision and Pattern Recognition. Virtual Event: IEEE, 2021. 8334?8343
                        [6] Yu Q, Dang K, Tajbakhsh N, Terzopoulos D, Ding X. A location-sensitive local prototype network for few-shot medical image segmentation. In: Proceedings of the IEEE on Image Processing. Anchorage, USA: IEEE, 2021. 262?266
                        [7] 孫君梅, 葛青青, 李秀梅, 趙寶奇. 具有邊界增強功能的醫學(xué)圖像分割網(wǎng)絡(luò ). 電子與信息學(xué)報, 2022, 44(5): 1643?1652 doi: 10.11999/JEIT210784

                        Sun Jun-Mei, Ge Qing-Qing, Li Xiu-Mei, Zhao Bao-Qi. A medical image segmentation network with boundary enhancement. Journal of Electronics, 2022, 44(5): 1643?1652 doi: 10.11999/JEIT210784
                        [8] Yuan Y, Chen X, Wang J. Object-contextual representations for semantic segmentation. In: Proceedings of the European Conference on Computer Vision. Virtual Event: Springer, 2020. 23?28, 173?190
                        [9] Kim T, Lee H, Kim D. UACANet: Uncertainty augmented context attention for polyp segmentation. In: Proceedings of the IEEE Conference on ACM International Conference on Multimedia. Chengdu, China: ACM, 2021. 2167?2175
                        [10] Zhang C, Lin G, Liu F, Rui Y, She C. CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE Conference on Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 5217?5226
                        [11] Ouyang C, Biffi C, Chen C, Kart T, Qiu H, Rueckert D. Self-supervision with super-pixels: Training few-shot medical image segmentation without annotation. In: Proceedings of the European Conference on Computer Vision. Virtual Event: Springer, 2020. 762?780
                        [12] Tang H, Liu X, Sun S, Yan X, Xie X. Recurrent mask refinement for few-shot medical image segmentation. In: Proceedings of the IEEE on International Conference on Computer Vision. Seoul, South Korea: IEEE, 2021. 3918?3928
                        [13] Fan D P, Ji G P, Zhou T, Chen G, Fu H, Shen J, et al. PRANet: Parallel reverse attention network for polyp segmentation. In: Proceedings of the Medical Image Computing and Computer Assisted Intervention. Lima, Peru: Springer, 2020. 263? 273
                        [14] Shaban A, Bansal S, Liu Z, Essa I, Byron B. One-shot learning for semantic segmentation. In: Proceedings of the British Machine Vision Conference. London, UK: BMVA, 2017. 1?12
                        [15] Wang K, Liew J H, Zou Y, Zhou D, Feng J. PANet: Few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE on International Conference on Computer Vision. Seoul, South Korea: IEEE, 2019. 9197?9206
                        [16] Tian Z, Zhao H, Shu M, Yang Z, Li R, Jia J. Prior guided feature enrichment network for few-shot segmentation. Pattern Analysis and Machine Intelligence, 2020, 44(2): 1050?1065
                        [17] Zhang G, Kang G, Yang Y, Wei Y. Few-shot segmentation via cycle-consistent transformer. In: Proceedings of the Advances in Neural Information Processing Systems. Montreal, Canada: NeurIPS, 2021. 21984?21996
                        [18] Roy A G, Siddiqui S, Polsterl S, Navab N, Wachinger C. “Squeeze & Excite” guided few-shot segmentation of volumetric images. Medical Image Analysis, 2020, 59: Article No. 101587
                        [19] Sun L, Li C, Ding X, Huang Y, Chen Z, Wang G, et al. Few-shot medical image segmentation using a global correlation network with discriminative embedding. Computers in Biology an Medicine, 2022, 140: Article No. 105067
                        [20] Tang H, Liu X, Sun S, Yan X, Xie X. Recurrent mask refinement for few-shot medical image segmentation. In: Proceedings of the IEEE on International Conference on Computer Vision. Montreal, Canada: IEEE, 2021. 3918?3928
                        [21] Hansen S, Gautam S, Jenssen R, Kampffmeyer M. Anomaly detection-inspired few-shot medical image segmentation through self-supervision with super-voxels. Medical Image Analysis, 2022, 78: Article No. 102385
                        [22] Shen X, Zhang G, Lai H, Luo J, Lu J. PoissonSeg: Semi-supervised few-shot medical image segmentation via Poisson learning. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine. Houston, USA: IEEE, 2021. 1513? 1518
                        [23] Wu H, Xiao F, Liang C. Dual contrastive learning with anatomical auxiliary supervision for few-shot medical image segmentation. In: Proceedings of the European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022. 417?434
                        [24] Chen D, Bai Y, Shen W, Li Q, Yu L, Wang Y. MagicNet: Semi-supervised multi-organ segmen-tation via magic-cube partition and recovery. In: Proceedings of the IEEE on Computer Vision and Pattern Recognition. Oxford, UK: IEEE, 2023. 23869?23878
                        [25] Liu P, Zheng G. Context-aware voxel-wise contrastive learning for label efficient multi-organ segmentation. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Singapore: Springer, 2022. 653? 662
                        [26] Chen Z, Tian Z, Zhu J, Li C, Du S. C-CAM: Causal cam for weakly supervised semantic segmentation on medical image. In: Proceedings of the IEEE on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022. 11676?11685
                        [27] Chen S, Tan X, Wang B, Hu X. Reverse attention for salient object detection. In: Proceedings of the European Conference on Computer Vision. Munich, Germany: Springer, 2018. 234?250
                        [28] 陳瓊, 楊永, 黃田琳, 馮媛. 新型全向立體視覺(jué)系統設計. 數據與計算發(fā)展前沿, 2022, 3(6): 17?34

                        Chen Qiong, Yang Yong, Huang Tian-Lin, Feng Yuan. A survey on few-shot image semantic segmentation. Frontiers of Data and Computing, 2022, 3(6): 17?34
                        [29] Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning. In: Proceedings of the Conference on Neural Information Processing Systems. Long Beach, USA: NeurIPS, 2017. 4080–4090
                        [30] Landman B, Xu Z, Igelsias J, Styner M, Langerak T, Klein A. Miccai multi-atlas labeling beyond the cranial vault-workshop and challenge. In: Proceedings of the Medical Image Computing and Computer Assisted Intervention. Munich, Germany: Springer, 2015. 1–12
                        [31] Kavur A E, Gezer N S, Baris M, Aslan S, Conze P H, Groza V. Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. Medical Image Analysis, 2021, 69: Article No. 101950
                        [32] Irving B. MaskSLIC: Regional super-pixel generation with application to local pathology characterisation in medical images. In: Proceedings of the IEEE on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. Article No. 9518
                        [33] Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common objects in context. In: Proceed-ings of the European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 740?755
                        [34] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations. San Diego, USA: ICLR, 2015. 1?14
                        [35] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Proceedings of the Medical Image Computing and Computer-assisted Intervention. Munich, Germany: Springer, 2015. 234?241
                        [36] Xiao X, Lian S, Luo Z, Li S. Weighted Res U-Net for high-quality retina vessel segmentation. In: Proceedings of the International Conference on Information Technology in Medicine and Education. Hangzhou, China: IEEE, 2018. 327?331
                        [37] Oktay O, Schlemper J, Folgoc L L, Lee M, Heinrich M, Misawa K. Attention U-Net: Learning where to look for the pancreas. In: Proceedings of the IEEE on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. Atricle No. 3999
                        [38] Kervadec H, Bouchtiba J, Desrosiers C, Granger E, Dolz J, Ayed I B. Boundary loss for highly unbalanced segmentation. In: Proceedings of the International Conference on Medical Imaging With Deep Learning. Shanghai, China: PMLR, 2019. 285? 296
                      2. 加載中
                      3. 圖(9) / 表(6)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  557
                        • HTML全文瀏覽量:  586
                        • PDF下載量:  108
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2022-12-26
                        • 錄用日期:  2023-07-22
                        • 網(wǎng)絡(luò )出版日期:  2023-10-15
                        • 刊出日期:  2024-10-21

                        目錄

                          /

                          返回文章
                          返回