帶有雙球面擺和變繩長(cháng)效應的橋式起重機軌跡規劃
doi: 10.16383/j.aas.c220988
-
1.
山東大學(xué)控制科學(xué)與工程學(xué)院機器人研究中心 濟南 250061
Trajectory Planning for Overhead Crane With Double Spherical Pendulum and Varying Cable Length Effect
-
1.
Center for Robotics, School of Control Science and Engineering, Shandong University, Jinan 250061
-
摘要: 帶有雙球面擺和變繩長(cháng)效應的橋式起重機具有多輸入多輸出以及欠驅動(dòng)的動(dòng)力學(xué)特性, 目前仍缺乏有效的控制策略. 在臺車(chē)移動(dòng)、橋架移動(dòng)、負載升降同步作業(yè)過(guò)程中, 吊鉤和負載兩級球面擺動(dòng)特性更為復雜, 各狀態(tài)量之間的非線(xiàn)性耦合關(guān)系更強, 橋式起重機的防擺控制更具挑戰性. 不僅如此, 現有方法無(wú)法保證橋式起重機系統全狀態(tài)量的暫態(tài)控制性能. 為解決上述問(wèn)題, 提出一種基于多項式的優(yōu)化軌跡規劃方法. 首先, 在未進(jìn)行近似簡(jiǎn)化的前提下, 使用拉格朗日方法建立帶有雙球面擺和變繩長(cháng)效應的7自由度 (Seven degree-of-freedom, 7-DOF) 橋式起重機的精確動(dòng)力學(xué)模型. 在此基礎上, 構造一組包含各狀態(tài)量的輔助信號, 將施加在臺車(chē)、橋架、繩長(cháng)以及吊鉤、負載擺動(dòng)上的約束轉化為對輔助信號的約束, 從而將橋式起重機的軌跡規劃問(wèn)題轉化為與輔助信號相關(guān)的時(shí)間優(yōu)化問(wèn)題, 并使用二分法求解. 該軌跡規劃方法不僅縮短了吊運時(shí)間, 而且確保了全狀態(tài)量滿(mǎn)足約束條件. 最后, 仿真結果證明了動(dòng)力學(xué)模型的準確性和軌跡規劃方法的有效性.
-
關(guān)鍵詞:
- 欠驅動(dòng)起重機 /
- 多輸入多輸出系統 /
- 軌跡規劃 /
- 防擺控制
Abstract: Due to the multi-input multi-output and underactuated dynamic characteristics, the overhead crane with double spherical pendulum and varying cable length effect still lacks efficient control approaches. During the simultaneous operation of trolley moving, bridge moving and payload hoisting/lowing, the double spherical pendulum of hook and payload is more complex, and the nonlinear coupling characteristics of various state variables are stronger. It makes anti-swing control of overhead crane much more challenging. Moreover, the existing control methods cannot guarantee the desired transient control performance of the overhead crane system. To address the abovementioned issues, this paper proposes a novel polynomial-based optimal trajectory planning approach. Firstly, an accurate dynamic model for seven degree-of-freedom (7-DOF) overhead crane with double spherical pendulum and varying cable length effects is established by Lagrangian method without any simplifications. Based on this, a group of auxiliary signals containing various states are constructed. Then, the constraints imposed on the trolley/bridge moving, cable length varying, hook/payload swing are equivalently transformed to some new constraints on the auxiliary signals. Therefore, the trajectory planning problem of the overhead crane is transformed into a time optimization problem related to the auxiliary signals and solved by using the bisection method. The proposed trajectory planner not only makes transportation time as short as possible, but also ensures that full-states constraints are satisfied. At last, the simulation results prove the accuracy of the dynamic model and the effectiveness of the trajectory planning method. -
表 1 本文與橋式起重機相關(guān)工作的比較
Table 1 Comparison between our work and the relevant work about overhead crane
自由度 參考文獻 臺車(chē)移動(dòng) 橋架移動(dòng) 變繩長(cháng) 吊鉤搖擺 負載搖擺 2 [7?8] $\checkmark$ $\times$ $\times$ $\times$ $\checkmark$ 3 [9?11] $\checkmark$ $\times$ $\times$ $\checkmark$ $\checkmark$ 3 [12?14] $\checkmark$ $\times$ $\checkmark$ $\times$ $\checkmark$ 4 [15?17] $\checkmark$ $\times$ $\checkmark$ $\checkmark$ $\checkmark$ 4 [18?19] $\checkmark$ $\checkmark$ $\times$ $\times$ $\checkmark$ 5 [20?21] $\checkmark$ $\checkmark$ $\checkmark$ $\times$ $\checkmark$ 6 [22?24] $\checkmark$ $\checkmark$ $\times$ $\checkmark$ $\checkmark$ 7 本文 $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ 下載: 導出CSV表 2 系統參數
Table 2 System parameters
參數 物理意義 單位 $M_1$ 臺車(chē)質(zhì)量 kg $M_2$ 臺車(chē)和橋架質(zhì)量之和 kg $m_1,m_2$ 吊鉤、負載質(zhì)量 kg $x,y$ 臺車(chē)、橋架位移 m $l_1,l_2$ 吊繩、索具繩長(cháng)度 m $\theta_1,\theta_2,\theta_3,\theta_4$ 吊鉤、負載三維空間擺角 ° $F_x,F_y,F_z$ 臺車(chē)、橋架、吊繩驅動(dòng)力 N $g$ 重力加速度 m/s2 下載: 導出CSV表 3 量化指標對比結果
Table 3 Comparison results of quantitative indices
控制方法 $t_s\;({\rm{s}})$ ${\theta _{1\max }}\; (^\circ)$ ${\theta _{1\,{\rm{res} } } } \;(^\circ )$ ${\theta _{3\max }}\;(^\circ)$ ${\theta _{3\,{\rm{res} } } }\;(^\circ )$ EI $>15.00$ 2.69 0.79 3.63 1.46 光滑器 $>15.00$ 2.29 0.23 2.46 0.35 EAB $>15.00$ 3.14 0.22 5.39 1.21 CTP 4.82 3.03 0.01 3.24 0.02 本文方法 4.91 1.92 0 1.97 0 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 曹海昕, 郝運嵩, 林靜正, 盧彪, 方勇純. 繩長(cháng)時(shí)變情況下輪胎式集裝箱起重機非線(xiàn)性防擺控制算法. 自動(dòng)化學(xué)報, 2021, 47(8): 1876?1884Cao Hai-Xin, Hao Yun-Song, Lin Jing-Zheng, Lu Biao, Fang Yong-Chun. Nonlinear anti-swing control for rubber tyre container gantry crane with rope length variation. Acta Automatica Sinica, 2021, 47(8): 1876?1884 [2] Li G, Ma X, Li Z, Guo P J, Li Y B. Kinematic coupling-based trajectory planning for rotary crane system with double-pendulum effects and output constraints. Journal of Field Robotics, 2023, 40(2): 289?305 doi: 10.1002/rob.22130 [3] 魏萃, 柴天佑, 賈瑤, 王良勇. 補償信號法驅動(dòng)的Pendubot自適應平衡控制. 自動(dòng)化學(xué)報, 2019, 45(6): 1146?1156Wei Cui, Chai Tian-You, Jia Yao, Wang Liang-Yong. Compensation signal driven adaptive balance control of the Pendubot. Acta Automatica Sinica, 2019, 45(6): 1146?1156 [4] 武憲青, 徐可心, 張益波. 基于輸出反饋的欠驅動(dòng)TORA系統的有界輸入控制. 自動(dòng)化學(xué)報, 2020, 46(1): 200?204Wu Xian-Qing, Xu Ke-Xin, Zhang Yi-Bo. Output-based feedback control of underactuated TORA systems by bounded inputs. Acta Automatica Sinica, 2020, 46(1): 200?204 [5] 王岳, 孫寧, 吳易鳴, 梁瀟, 陳鶴, 方勇純. 深海起重機系統的實(shí)時(shí)軌跡規劃方法. 自動(dòng)化學(xué)報, 2021, 47(12): 2761?2770Wang Yue, Sun Ning, Wu Yi-Ming, Liang Xiao, Chen He, Fang Yong-Chun. Real-time motion planning of deep sea-oriented flexible crane systems. Acta Automatica Sinica, 2021, 47(12): 2761?2770 [6] Ouyang H M, Zhao B Q, Zhang G M. Enhanced-coupling nonlinear controller design for load swing suppression in three-dimensional overhead cranes with double-pendulum effect. ISA Transactions, 2021, 115: 95?107 doi: 10.1016/j.isatra.2021.01.009 [7] Zhang S Z, He X X, Zhu H Y, Li X C, Liu X G. PID-like coupling control of underactuated overhead cranes with input constraints. Mechanical Systems & Signal Processing, 2022, 178: Article No. 109274 [8] Zhu X, Wang N. Hairpin RNA genetic algorithm based ANFIS for modeling overhead cranes. Mechanical Systems and Signal Processing, 2022, 165: Article No. 108326 doi: 10.1016/j.ymssp.2021.108326 [9] 陳鶴, 方勇純, 孫寧, 錢(qián)彧哲. 基于偽譜法的雙擺吊車(chē)時(shí)間最優(yōu)消擺軌跡規劃策略. 自動(dòng)化學(xué)報, 2016, 42(1): 153?160Chen He, Fang Yong-Chun, Sun Ning, Qian Yu-Zhe. Pseudo-spectral method based time optimal anti-swing trajectory planning for double pendulum crane systems. Acta Automatica Sinica, 2016, 42(1): 153?160 [10] Mar R, Goyal A, Nguyen V, Yang T L, Singhose W. Combined input shaping and feedback control for double-pendulum systems. Mechanical Systems and Signal Processing, 2017, 85: 267?277 doi: 10.1016/j.ymssp.2016.08.012 [11] Chen H, Sun N. Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7702?7714 doi: 10.1109/TIE.2019.2946541 [12] Sun N, Fang Y C. Nonlinear tracking control of underactuated cranes with load transferring and lowering: Theory and experimentation. Automatica, 2014, 50(9): 2350?2357 doi: 10.1016/j.automatica.2014.07.023 [13] Shen P, Schatz J, Caverly R J. Passivity-based adaptive trajectory control of an underactuated 3-DOF overhead crane. Control Engineering Practice, 2021, 112: Article No. 104834 doi: 10.1016/j.conengprac.2021.104834 [14] Kim J, Lee D, Kiss B, Kim D. An adaptive unscented Kalman filter with selective scaling (AUKF-SS) for overhead cranes. IEEE Transactions on Industrial Electronics, 2021, 68(7): 6131?6140 doi: 10.1109/TIE.2020.2996150 [15] Lu B, Fang Y C, Sun N. Enhanced-coupling adaptive control for double-pendulum overhead cranes with payload hoisting and lowering. Automatica, 2019, 101: 241?251 doi: 10.1016/j.automatica.2018.12.009 [16] Shi H T, Yao F X, Yuan Z, Tong S H, Tang Y H, Han G. Research on nonlinear coupled tracking controller for double pendulum gantry cranes with load hoisting/lowering. Nonlinear Dynamics, 2022, 108(1): 223?238 doi: 10.1007/s11071-021-07185-6 [17] Zhang W, Chen H, Yao X Y, Li D L. Adaptive tracking of double pendulum crane with payload hoisting/lowering. Automation in Construction, 2022, 141: Article No. 104368 doi: 10.1016/j.autcon.2022.104368 [18] Chwa D. Sliding-mode-control-based robust finite-time antisway tracking control of 3-D overhead cranes. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6775?6784 doi: 10.1109/TIE.2017.2701760 [19] Zhang M H, Zhang Y F, Chen H, Cheng X G. Model-independent PD-SMC method with payload swing suppression for 3D overhead crane systems. Mechanical Systems and Signal Processing, 2019, 129: 381?393 doi: 10.1016/j.ymssp.2019.04.046 [20] Maghsoudi M J, Mohamed Z, Sudin S, Buyamin S, Jaafar H I, Ahmad S M. An improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction. Mechanical Systems and Signal Processing, 2017, 92: 364?378 doi: 10.1016/j.ymssp.2017.01.036 [21] Maghsoudi M J, Ramli L, Sudin S, Mohamed Z, Husain A R, Wahid H. Improved unity magnitude input shaping scheme for sway control of an underactuated 3D overhead crane with hoisting. Mechanical Systems & Signal Processing, 2019, 123: 466?482 [22] Gao T T, Huang J, Singhose W. Eccentric-load dynamics and oscillation control of industrial cranes transporting heterogeneous loads. Mechanism and Machine Theory, 2022, 172: Article No. 104800 doi: 10.1016/j.mechmachtheory.2022.104800 [23] Ouyang H M, Zhao B Q, Zhang G M. Swing reduction for double-pendulum three-dimensional overhead cranes using energy-analysis-based control method. International Journal of Robust and Nonlinear Control, 2021, 31(9): 4184?4202 doi: 10.1002/rnc.5466 [24] Zhao B Q, Ouyang H M, Iwasaki M. Motion trajectory tracking and sway reduction for double-pendulum overhead cranes using improved adaptive control without velocity feedback. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3648?3659 doi: 10.1109/TMECH.2021.3126665 [25] Li G, Ma X, Li Z, Li Y B. Optimal trajectory planning strategy for underactuated overhead crane with pendulum-sloshing dynamics and full-state constraints. Nonlinear Dynamics, 2022, 109: 815?835 doi: 10.1007/s11071-022-07480-w [26] Li G, Ma X, Li Z, Li Y B. Time-polynomial-based optimal trajectory planning for double-pendulum tower crane with full-state constraints and obstacle avoidance. IEEE/ASME Transactions on Mechatronics, 2023, 28(2): 919?932 doi: 10.1109/TMECH.2022.3210536 [27] 孫寧, 方勇純, 錢(qián)彧哲. 帶有狀態(tài)約束的雙擺效應吊車(chē)軌跡規劃. 控制理論與應用, 2014, 31(7): 974?980Sun Ning, Fang Yong-Chun, Qian Yu-Zhe. Motion planning for cranes with double pendulum effects subject to state constraints. Control Theory and Applications, 2014, 31(7): 974?980 [28] Hou M X, Cao H R, Li Q, Shi J H. Industry-oriented method for dynamic force identification in peripheral milling based on FSC-LSQR using acceleration signals. The International Journal of Advanced Manufacturing Technology, 2022, 121: 7793?7809 doi: 10.1007/s00170-022-09697-w [29] 歐陽(yáng)慧珉, 王健, 張廣明, 梅磊, 鄧歆. 基于新型滑模算法的雙擺旋轉起重機消擺跟蹤控制. 自動(dòng)化學(xué)報, 2019, 45(7): 1344?1353Ouyang Hui-Min, Wang Jian, Zhang Guang-Ming, Mei Lei, Deng Xin. Tracking and anti-sway control for double-pendulum rotary cranes using novel sliding mode algorithm. Acta Automatica Sinica, 2019, 45(7): 1344?1353 [30] Shi H T, Li R R, Bai X T, Zhang Y X, Min L G, Wang D, et al. A review for control theory and condition monitoring on construction robots. Journal of Field Robotics, 2023, 40(4): 934?954 doi: 10.1002/rob.22156 [31] Zhang M H, Ma X, Chai H, Rong X W, Tian X C, Li Y B. A novel online motion planning method for double-pendulum overhead cranes. Nonlinear Dynamics, 2016, 85: 1079?1090 doi: 10.1007/s11071-016-2745-x [32] Yang T, Sun N, Chen H, Fang Y C. Motion trajectory-based transportation control for 3-D boom cranes: Analysis, design, and experiments. IEEE Transactions on Industrial Electronics, 2018, 66(5): 3636?3646