融合實(shí)體和上下文信息的篇章關(guān)系抽取研究
doi: 10.16383/j.aas.c220966
-
1.
北京理工大學(xué)計算機學(xué)院 北京 100081
-
2.
北京理工大學(xué)自然語(yǔ)言處理實(shí)驗室 北京 100081
Document-level Relation Extraction With Entity and Context Information
-
1.
School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081
-
2.
Natural Language Processing Laboratory, Beijing Institute of Technology, Beijing 100081
-
摘要: 篇章關(guān)系抽取旨在識別篇章中實(shí)體對之間的關(guān)系. 相較于傳統的句子級別關(guān)系抽取, 篇章級別關(guān)系抽取任務(wù)更加貼近實(shí)際應用, 但是它對實(shí)體對的跨句子推理和上下文信息感知等問(wèn)題提出了新的挑戰. 本文提出融合實(shí)體和上下文信息(Fuse entity and context information, FECI)的篇章關(guān)系抽取方法, 它包含兩個(gè)模塊, 分別是實(shí)體信息抽取模塊和上下文信息抽取模塊. 實(shí)體信息抽取模塊從兩個(gè)實(shí)體中自動(dòng)地抽取出能夠表示實(shí)體對關(guān)系的特征. 上下文信息抽取模塊根據實(shí)體對的提及位置信息, 從篇章中抽取不同的上下文關(guān)系特征. 本文在三個(gè)篇章級別的關(guān)系抽取數據集上進(jìn)行實(shí)驗, 效果得到顯著(zhù)提升.
-
關(guān)鍵詞:
- 篇章關(guān)系抽取 /
- 實(shí)體信息 /
- 上下文信息 /
- 提及位置信息 /
- 跨句子推理
Abstract: Document-level relation extraction aims to identify the relations among entities from the document. Compared with traditional sentence-level relation extraction, document-level relation extraction is more realistic and poses new challenges of cross-sentence inference and context information understanding. In this paper, we propose a novel method for document-level relation extraction by fusing entity and context information (FECI), which contains two modules: Entity information extraction module and context information extraction module. Entity information extraction module automatically extracts crucial relation features about entity pair. Context information extraction module extracts different context relation features from the document according to mentions' position information of entity pair. We have conducted experiments on three document-level relation extraction datasets, and the effect has been significantly improved. -
圖 1 篇章級別關(guān)系抽取數據集DocRED中的一個(gè)實(shí)例
Fig. 1 An example of document-level relation extraction dataset DocRED
圖 2 模型框架圖主要有兩個(gè)部分, 分別是實(shí)體信息抽取模塊和上下文信息抽取模塊
Fig. 2 Architecture of the proposed model, which contains two parts: Entity information extraction module and context information extraction module
圖 3 篇章級別關(guān)系抽取開(kāi)發(fā)集中的一個(gè)實(shí)例分析
Fig. 3 An example analysis on the document-level relation extraction development set
表 1 數據集的統計
Table 1 Statistics of the datasets
統計 DocRED CDR GDA 訓練集 3053 500 23353 開(kāi)發(fā)集 1000 500 5839 測試集 1000 500 1000 關(guān)系種類(lèi) 97 2 2 每篇的關(guān)系數量 19.5 7.6 5.4 下載: 導出CSV表 2 模型的超參數
Table 2 Hyper-parameters of model
參數名稱(chēng) DocRED CDR GDA 批次大小 4 4 4 迭代次數 30 30 10 學(xué)習率 (編碼) $5\times 10^{-5}$ $5\times 10^{-5}$ $5\times 10^{-5}$ 學(xué)習率 (分類(lèi)) $1\times 10^{-4}$ $1\times 10^{-4}$ $1\times 10^{-4}$ 分組大小 64 64 64 Dropout 0.1 0.1 0.1 梯度裁剪 1.0 1.0 1.0 下載: 導出CSV表 3 在DocRED開(kāi)發(fā)集和測試集上的實(shí)驗結果(%)
Table 3 Experiment results on the development and test sets of DocRED (%)
模型 開(kāi)發(fā)集 測試集 Ign F1 F1 Ign F1 F1 CNN 41.58 43.45 40.33 42.26 LSTM 48.44 50.68 47.71 50.07 Bi-LSTM 48.87 50.94 48.78 51.06 Context-Aware 48.94 51.09 48.40 50.70 HIN-GloVe 51.06 52.95 51.15 53.30 GAT-GloVe 45.17 51.44 47.36 49.51 GCNN-GloVe 46.22 51.52 49.59 51.62 EoG-GloVe 45.94 52.15 49.48 51.82 AGGCN-GloVe 46.29 52.47 48.89 51.45 LSR-GloVe 48.82 55.17 52.15 54.18 BERT-REBASE — 54.16 — 53.20 RoBERTaBASE 53.85 56.05 53.52 55.77 BERT-Two-StepBASE — 54.42 — 53.92 HIN-BERTBASE 54.29 56.31 53.70 55.60 CorefBERTBASE 55.32 57.51 54.54 56.96 LSR-BERTBASE 52.43 59.00 56.97 59.05 BERT-EBASE 56.51 58.52 — — GAINBASE 59.14 61.22 59.00 61.24 FECIBASE 59.74 61.38 59.81 61.22 下載: 導出CSV表 4 在CDR和GDA數據集上測試集F1值(%)
Table 4 F1 values of test set on CDR and GDA datasets (%)
模型 CDR GDA BRAN 62.1 — CNN 62.3 — EoG 63.6 81.5 LSR-BERT 64.8 82.2 SciBERTBASE 65.1 82.5 SciBERT-EBASE 65.9 83.3 FECIBASE 69.2 83.7 下載: 導出CSV表 5 FECIBASE在開(kāi)發(fā)集上的消融研究結果
Table 5 Ablation study results of FECIBASE on the development set
模型 開(kāi)發(fā)集 Ign F1 (%) F1 (%) P (M) T (s) FECIBASE 59.74 61.38 133.4 2962.4 w/o Entity 58.16 60.07 132.2 2831.7 w/o Context 58.67 60.89 130.5 482.3 下載: 導出CSV表 6 FECIBASE在開(kāi)發(fā)集上噪聲實(shí)體和噪聲上下文的實(shí)驗結果(%)
Table 6 The experiment results of noisy entity and noisy context of FECIBASE on the development set (%)
模型 開(kāi)發(fā)集 Ign F1 F1 FECIBASE 59.74 61.38 Head entity 58.42 60.14 Tail entity 57.97 60.08 Entity pair 58.91 60.85 Tradition 57.42 59.72 Co-occurrence 58.27 61.01 Non co-occurrence 56.72 58.86 下載: 導出CSV表 7 FECIBASE在開(kāi)發(fā)集上不同上下文信息的實(shí)驗結果(%)
Table 7 The experiment results of different context information of FECIBASE on the development set (%)
模型 開(kāi)發(fā)集 Ign F1 F1 FECIBASE 59.74 61.38 Random 58.47 60.61 Mean 59.56 60.94 Tradition 58.19 60.06 下載: 導出CSV表 8 不同方法在開(kāi)發(fā)集上的效率
Table 8 Efficiency of different methods on the development set
模型 開(kāi)發(fā)集 P (M) Train T (s) Decoder T (s) LSR-BERTBASE 112.1 282.9 38.8 GAINBASE 217.0 2271.6 817.2 FECIBASE 133.4 2962.4 829.0 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Yu M, Yin W P, Hasan K S, Santos C D, Xiang B, Zhou B W. Improved neural relation detection for knowledge base question answering. arXiv preprint arXiv: 1704.06194, 2017. [2] Chen Z Y, Chang C H, Chen Y P, Nayak J, Ku L W. UHop: An unrestricted-hop relation extraction framework for knowledge-based question answering. arXiv preprint arXiv: 1904.01246, 2019. [3] Yu H Z, Li H S, Mao D H, Cai Q. A relationship extraction method for domain knowledge graph construction. World Wide Web, 2020, 23(2): 735?753 doi: 10.1007/s11280-019-00765-y [4] Ristoski P, Gentile A L, Alba A, Gruhl D, Welch S. Large-scale relation extraction from web documents and knowledge graphs with human-in-the-loop. Journal of Web Semantics, 2020, 60: Article No. 100546 doi: 10.1016/j.websem.2019.100546 [5] Macdonald E, Barbosa D. Neural relation extraction on Wikipedia tables for augmenting knowledge graphs. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM, 2020. 2133–2136 [6] Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Suntec, Singapore: ACL, 2009. 1003–1011 [7] Lin Y K, Shen S Q, Liu Z Y, Luan H B, Sun M S. Neural relation extraction with selective attention over instances. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany: ACL, 2016. 2124–2133 [8] Miwa M, Bansal M. End-to-end relation extraction using LSTMs on sequences and tree structures. arXiv preprint arXiv: 1601.00770, 2016. [9] Zhang Y H, Qi P, Manning C D. Graph convolution over pruned dependency trees improves relation extraction. arXiv preprint arXiv: 1809.10185, 2018. [10] Guo Z J, Zhang Y, Lu W. Attention guided graph convolutional networks for relation extraction. arXiv preprint arXiv: 1906.07510, 2019. [11] Yao Y, Ye D M, Li P, Han X, Lin Y K, Liu Z H, et al. DocRED: A large-scale document-level relation extraction dataset. arXiv preprint arXiv: 1906.06127, 2019. [12] Zhou W X, Huang K, Ma T Y, Huang J. Document-level relation extraction with adaptive thresholding and localized context pooling. arXiv preprint arXiv: 2010.11304, 2020. [13] Zeng S, Xu R X, Chang B B, Li L. Double graph based reasoning for document-level relation extraction. arXiv preprint arXiv: 2009.13752, 2020. [14] Santos C N D, Xiang B, Zhou B W. Classifying relations by ranking with convolutional neural networks. arXiv preprint arXiv: 1504.06580, 2015. [15] Cho K, Merrienboer B V, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv: 1406.1078, 2014. [16] Liu Y, Wei F R, Li S J, Ji H, Zhou M, Wang H F. A dependency-based neural network for relation classification. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Short Papers). Beijing, China: ACL, 2015. 285–290 [17] Christopoulou F, Miwa M, Ananiadou S. A walk-based model on entity graphs for relation extraction. arXiv preprint arXiv: 1902.07023, 2019. [18] Christopoulou F, Miwa M, Ananiadou S. Connecting the dots: Document-level neural relation extraction with edge-oriented graphs. arXiv preprint arXiv: 1909.00228, 2019. [19] Yang B S, Mitchell T. Joint extraction of events and entities within a document context. arXiv preprint arXiv: 1609.03632, 2016. [20] Swampillai K, Stevenson M. Extracting relations within and across sentences. In: Proceedings of the Recent Advances in Natural Language Processing. Hissar, Bulgaria: DBLP, 2011. 25–32 [21] Jia R, Wong C, Poon H. Document-level n-ary relation extraction with multiscale representation learning. arXiv preprint arXiv: 1904.02347, 2019. [22] Verga P, Strubell E, McCallum A. Simultaneously self-attending to all mentions for full-abstract biological relation extraction. arXiv preprint arXiv: 1802.10569, 2018. [23] Nan G S, Guo Z J, Sekulic I, Lu W. Reasoning with latent structure refinement for document-level relation extraction. arXiv preprint arXiv: 2005.06312, 2020. [24] Wang D F, Hu W, Cao E, Sun W J. Global-to-local neural networks for document-level relation extraction. arXiv preprint arXiv: 2009.10359, 2020. [25] Devlin J, Chang M W, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding. arXiv preprint arXiv: 1810.04805, 2019. [26] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 6000–6010 [27] Sennrich R, Haddow B, Birch A. Neural machine translation of rare words with subword units. arXiv preprint arXiv: 1508.07909, 2016. [28] Li J, Sun Y P, Johnson R J, Sciaky D, Wei C, Leaman R, et al. BioCreative V CDR task corpus: A resource for chemical disease relation extraction. The Journal of Biological Databases and Curation, 2016: Article No. baw068 [29] Wu Y, Luo R B, Leung H C M, Ting H, Lam T. RENET: A deep learning approach for extracting gene-disease associations from literature. In: Proceedings of the International Conference on Research in Computational Molecular Biology. Washington, USA: Springer, 2019. 272–284 [30] Liu Y H, Ott M, Goyal N, Du J F, Joshi M, Chen D Q, et al. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint arXiv: 1907.11692, 2019. [31] Beltagy I, Lo K, Cohan A. SciBERT: A pretrained language model for scientific text. arXiv preprint arXiv: 1903.10676, 2019. [32] Micikevicius P, Narang S, Alben J, Diamos G, Elsen E, Garca D, et al. Mixed precision training. arXiv preprint arXiv: 1710.03740, 2018. [33] Loshchilov I, Hutter F. Decoupled weight decay regularization. arXiv preprint arXiv: 1711.05101, 2019. [34] Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. arXiv preprint arXiv: 1710.10903, 2018. [35] Wang H, Focke C, Sylvester R, Mishra N, Wang W. Fine-tune BERT for DocRED with two-step process. arXiv preprint arXiv: 1909.11898, 2019. [36] Tang H Z, Cao Y N, Zhang Z Y, Cao J X, Fang F, Wang S, et al. HIN: Hierarchical inference network for document-level relation extraction. arXiv preprint arXiv: 2003.12754, 2020. [37] Pennington J, Socher R, Manning C D. GloVe: Global vectors for word representation. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014. 1532–1543 [38] Ye D M, Lin Y K, Du J J, Liu Z H, Sun M S, Liu Z Y. Coreferential reasoning learning for language representation. arXiv preprint arXiv: 2004.06870, 2020. [39] Nguyen D Q, Verspoor K. Convolutional neural networks for chemical-disease relation extraction are improved with character-based word embeddings. arXiv preprint arXiv: 1805.10586, 2018.