1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              工業無線網絡實時傳輸調度算法研究綜述

              裘瑩 張敬宣 柯杰 方夢園 徐偉強

              裘瑩, 張敬宣, 柯杰, 方夢園, 徐偉強. 工業無線網絡實時傳輸調度算法研究綜述. 自動化學報, xxxx, xx(x): x?xx doi: 10.16383/j.aas.c220939
              引用本文: 裘瑩, 張敬宣, 柯杰, 方夢園, 徐偉強. 工業無線網絡實時傳輸調度算法研究綜述. 自動化學報, xxxx, xx(x): x?xx doi: 10.16383/j.aas.c220939
              Qiu Ying, Zhang Jing-xuan, Ke Jie, Fang Meng-yuan, Xu Wei-qiang. A survey of real-time transmission scheduling algorithms for industrial wireless network. Acta Automatica Sinica, xxxx, xx(x): x?xx doi: 10.16383/j.aas.c220939
              Citation: Qiu Ying, Zhang Jing-xuan, Ke Jie, Fang Meng-yuan, Xu Wei-qiang. A survey of real-time transmission scheduling algorithms for industrial wireless network. Acta Automatica Sinica, xxxx, xx(x): x?xx doi: 10.16383/j.aas.c220939

              工業無線網絡實時傳輸調度算法研究綜述

              doi: 10.16383/j.aas.c220939
              基金項目: 國家自然科學基金青年基金(62003307, 61903338), 國家自然科學基金區域創新發展聯合基金(U22A2004), 浙江省科技廳重點研發項目(2022C01079)資助
              詳細信息
                作者簡介:

                裘瑩:浙江理工大學信息科學與工程學院講師. 2017年獲得西北工業大學博士學位. 主要研究方向為工業物聯網, 無線網絡通信技術. E-mail: qiuying@zstu.edu.cn

                張敬宣:浙江理工大學信息科學與工程學院碩士研究生. 2019年獲得浙江理工大學學士學位. 主要研究方向為工業無線網絡實時調度. E-mail: 15383129121@163.com

                柯杰:2021年獲得浙江理工大學碩士學位. 主要研究方向為工業無線網絡實時調度. E-mail: kjken23@gmail.com

                方夢園:浙江理工大學信息科學與工程學院講師. 2018年獲得浙江大學博士學位. 主要研究方向為工業大數據分析與建模, 工業人工智能算法. E-mail: myfang@zstu.edu.cn

                徐偉強:浙江理工大學信息科學與工程學院教授. 2006年獲得浙江大學博士學位. 主要研究方向為工業互聯網, 物聯網, 5G/6G網絡, 大數據與人工智能, 紡織智能制造與工業互聯網. 本文通信作者. E-mail: wqxu@zstu.edu.cn

              A Survey of Real-time Transmission Scheduling Algorithms for Industrial Wireless Network

              Funds: Supported by National Natural Science Foundation of China (62003307, 61903338), Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China (U22A2004), and Key Project of Zhejiang Provincial Department of Science and Technology (2022C01079)
              More Information
                Author Bio:

                QIU Ying Lecturer at the School of Information Science and Engineering in Zhejiang Sci-Tech University. He received his Ph.D. degree Northwestern Polytechnical University in 2017. His research interest covers industrial internet of things and network protocol design for wireless networks

                ZHANG Jing-Xuan Master student at the School of Information Science and Engineering, Zhejiang Sci-Tech University. He received his bachelor degree from Zhejiang Sci-Tech University in 2019. His main research interest is real-time scheduling of industrial wireless networks

                KE Jie He received his Master student degree Zhejiang Sci-Tech University in 2021. His research interest covers real-time scheduling of industrial wireless networks

                FANG Meng-Yuan She is currently a lecturer in the School of Information Science and Engineering in Zhejiang Sci-Tech University. She received his Ph.D. degree Zhejiang University in 2018. Her research interest covers industrial big data analysis and modeling and industrial artificial intelligence algorithms

                XU Wei-Qiang Professor at the School of Information Science and Engineering in Zhejiang Sci-Tech University. He received his Ph.D. degree in Zhejiang University. His research interest covers Industrial Internet, Internet of Things, 5G/6G network, big data and artificial intelligence, textile intelligent manufacturing and industrial Internet. Corresponding author of this paper

              • 摘要: 無線網絡是工業物聯網中的一種具有良好前景的網絡互聯技術. 它的應用為工業現場設備的部署提供了極大的便利, 使設備擺脫了線纜的束縛從而在空間上的選點更為靈活, 同時能夠節省線材和人力等方面的成本. 然而, 無線通信易受環境噪聲的影響, 尤其是在復雜電磁干擾的工業環境中, 易導致無線傳輸的時延增大和數據丟失. 這些問題對于傳輸實時性要求較高的工業控制系統而言是非常不利的因素. 為了提高無線網絡在工業環境中數據傳輸的實時性, 業界設計了多種傳輸調度算法以提高無線通信的實時性和可靠性從而滿足工業應用的需求. 綜述了工業無線網絡傳輸調度算法的研究現狀, 對其發展歷程、問題定義、評價指標、分類方法和現有標準等方面進行了全面的總結, 詳細闡述了具有代表性的調度算法的工作原理, 并指出了未來的研究方向.
              • 圖  1  WirlessHART模型示意圖

                Fig.  1  The model of the WirlessHART

                圖  2  集中式調度算法的分類

                Fig.  2  Classification of centralized scheduling protocols

                圖  3  固定優先級為截止時間的調度示意圖

                Fig.  3  An example of dealine schedule

                圖  4  采用預留時隙的調度示意圖

                Fig.  4  An example of scheduling with reserved time slots

                圖  5  網狀模型中七個節點的染色過程圖

                Fig.  5  vertex coloring process diagram of seven nodes in a reticular model

                圖  6  節點5在傳輸失敗后, 在超幀中的空閑時隙進行重傳的示意圖

                Fig.  6  An example of node 5 retransmit in idle time slots after transmission failure

                圖  7  節點6失去原有鏈路后與節點7連接并與空閑節點3占用時隙交換的調度圖

                Fig.  7  An example of node 6 loses original link, it connects to node 7 and occupies time slots with idle node 3

                圖  8  分布式調度算法分類

                Fig.  8  Classification of distributed scheduling algorithms

                圖  9  節點自治協議算法Orchestra和DiGs的調度示例圖

                Fig.  9  An example diagram of scheduling for the node autonomy algorithm Orchestra and DiGs

                圖  10  鏈路自治協議算法ALICE的調度示例圖

                Fig.  10  An example of scheduling for the link autonomy algorithm ALICE

                圖  12  鏈路自治協議算法OST的調度示例圖

                Fig.  12  An example of scheduling for the link autonomy algorithm OST

                圖  11  DRAND中成功的一輪

                Fig.  11  A successful round in DRAND

                圖  13  Wave一個周期進行四次波動的調度示例圖

                Fig.  13  An example of Wave scheduling with four waves per cycle

                表  1  工業無線網絡標準和調度機制發展概況

                Table  1  Overview of the development standards and scheduling algorithms for industrial wireless network

                年份標準集中式分布式
                2008 ~ 2010 WirelessHART[28]、WIA-PA[33]TSMP[77]、Bit[61]DRAND[103]
                2011 ISA-100.11a[29]C-LLF[81]文獻[104]
                2012 ~ 2013 IEEE 802.15.4e[30]TASA[87]、RT-WiFi[38]DeTAS[109]、GCSA[107]
                2014 6TiSCH[25]、WIA-FA[33]SAandPSO[83]、MinMax[108]
                2015 SSEvent[74]、OLS[73]Orchestra[21]
                2016 LDF[63]、SchedEX[54]Wave[110]
                2017 ~ 2018 LoRaWAN[115]、5G[44]OBSSA[75]、TDMH[60]
                2019 文獻[72]、Autobahn[66]Diva[105]、TESLA[98],DiGs[96]
                2020 w-SHARP[42]OST[99]
                2021 Wi-Fi 7[45]RLSchedule[67]OSCAR[101]、ATRIA[100]、$A^{3}$[102]
                2022 ~ 2023 SmartHART[32]EDSF[111]
                下載: 導出CSV

                表  2  工業無線標準的對比表

                Table  2  Comparison table of industrial wireless standards

                標準物理層多路徑TDMA調頻介質訪問
                IEEE 802.15.4IEEE 802.15.4控制層$\times$$\times$$\times$CSMA/CA
                WirelessHATRTIEEE 802.15.4物理層$\surd$基于TDMA的時隙信道跳頻$\surd$IEEE 802.15.4控制層
                ISA100.11aIEEE 802.15.4物理層$\surd$時隙信道跳頻
                基于CMSA的慢跳頻
                混合調頻
                $\surd$IEEE 802.15.4控制層
                WIA-PA/FAIEEE 802.15.4物理層$\surd$時隙跳頻
                自適應跳頻
                自適應頻率切換
                $\surd$IEEE 802.15.4物理層
                IEEE 802.15.4eIEEE 802.15.4物理層$\surd$基于TDMA的時隙信道跳頻$\surd$TSCH DSME LLDN
                工業5G5G NR物理層$\surd$正交頻分多址$\surd$5G NR物理層
                Wi-Fi 7IEEE 802.11物理層$\surd$正交頻分多址$\surd$CSMA/CA
                下載: 導出CSV

                表  3  六種算法進的對比表

                Table  3  Comparison table of six algorithms

                文獻方法算法復雜度
                Feasible[79]非線性規劃O$\left( N\lg{N}\right)$
                C-LLF[81]凸優化O$\left(N^{2}\right)$
                rateselection[50]凸優化O$\left( N\lg{N}\right)$
                SAandPSO[83]集群智能優化算法O$\left( N\lg{N}\right)$
                DLC[80]非線性規劃O$\left({N^{3}}/\ln{N} \right) $
                MLS[85]迭代O$\left( N\lg{N}\right)$
                下載: 導出CSV

                表  4  經典算法調度方式比較表

                Table  4  Comparison table of classical algorithm scheduling modes

                調度算法網絡模型管理模式支持多跳數據流信道投遞率延遲能耗
                DiGs[96]網狀分布式周期流多信道$\surd$$\surd$$\surd$
                DistributedHART[106]網狀分布式周期流和事件流多信道$\surd$$\surd$$\surd$
                ALICE[97]樹形分布式周期流多信道$\surd$$\surd$$\surd$
                OST[99]樹形分布式周期流多信道$\surd$$\surd$$\surd$
                Diva[105]網狀分布式周期流多信道$\surd$
                Wave[110]樹狀分布式周期流多信道$\surd$
                OLS[73]樹狀集中式事件流多信道$\surd$
                Feasible[79]網狀集中式事件流多信道$\surd$
                LDF[63]樹狀集中式周期流多信道$\surd$$\surd$
                SAandPSO[83]樹狀集中式事件流單信道$\surd$
                GCSA [107]樹狀分布式周期流單信道$\surd$
                TASA[87]樹狀集中式周期流多信道$\surd$$\surd$
                OBSSA[75]網狀集中式周期流和事件流多信道$\surd$
                RS[72]樹狀集中式周期流和事件流多信道$\surd$
                DRAND[103]網狀分布式周期流多信道$\surd$$\surd$
                Tinka[104]網狀分布式周期流多信道$\surd$
                DeTAS[109]網狀分布式周期流多信道$\surd$
                Orchestra[21]網狀分布式周期流多信道$\surd$$\surd$$\surd$
                TSMP[77]網狀集中式周期流和事件流多信道$\surd$$\surd$$\surd$
                C-LLF[81]樹狀集中式周期流多信道$\surd$
                Util-base[52]樹狀集中式周期流多信道$\surd$
                TDMH[60]網狀集中式周期流多信道$\surd$
                node-base[20]網狀集中式周期流多信道$\surd$
                level-base[20]網狀集中式周期流多信道$\surd$
                DDFS[20]網狀集中式周期流多信道$\surd$
                MinMax[108]樹狀集中式周期流多信道$\surd$
                SchedEX[54]樹狀集中式周期流多信道$\surd$
                RateSelection[50]網狀集中式周期流多信道
                TESLA[98]樹狀分布式周期流多信道$\surd$$\surd$$\surd$
                JiTS[9]樹狀分布式周期流單信道$\surd$
                SSEvent[74]網狀集中式周期流和事件流多信道$\surd$
                Bit[61]網狀集中式周期流多信道$\surd$$\surd$$\surd$
                SRDR[59]網狀集中式周期流多信道$\surd$$\surd$$\surd$
                Hierarchic[76]樹狀集中式周期流和事件流多信道$\surd$$\surd$
                Segment[90]網狀集中式周期流和事件流單信道$\surd$$\surd$$\surd$
                RLSchedule[67]樹狀集中式周期流多信道$\surd$$\surd$$\surd$
                OSCAR[101]網狀分布式周期流多信道$\surd$$\surd$$\surd$
                EDFS[111]樹狀分布式周期流多信道$\surd$$\surd$$\surd$
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Venkata P M, Abusayeed S, Sanjay M. Distributed graph routing for wirelesshart networks. Association for Computing Machinery, 2018, 27(4): 1669-1682
                        [2] Wu C J, Dolvara G, Abusayeed S, Mo S. Maximizing network lifetime of wirelesshart networks under graph routing. 2016 IEEE First International Conference on Internet-of-Things Design and Implementation, 2016, DOI: 10.1109/IoTDI.2015.43
                        [3] He Y, Guo X Z, Zheng X L, Yu Z H, Zhang J, Jiang H T, et al. Cross-technology communication for the Internet of Things: A survey. ACM Computing Surveys, 2022, 55(5): 1-29
                        [4] Daniele P, Martin H. Multipath fading in wireless sensor networks: measurements and interpretation. In: Proceedings of the International Wireless Communications and Mobile Computing Conference. Amman, Jordan: IEEE, 2006. 1039?1044
                        [5] Krijn L, Jan H F. The capture effect in fm receivers. IEEE Transactions on Communications, 1976, 24(5): 531-539 doi: 10.1109/TCOM.1976.1093327
                        [6] Federico F, Marco Z, Lothar T, Olga S. Efficient network flooding and time synchronization with glossy. In: Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks. Chicago, IL, USA: IEEE, 2011. 73?84
                        [7] Luís M B, Fernando J V, António S L. Survey on the characterization and classification of wireless sensor networks applications. IEEE Communications Surveys Tutorials, 2014, 16(4): 1860-1890 doi: 10.1109/COMST.2014.2320073
                        [8] 張曉玲, 梁煒, 于海斌, 封錫盛. 無線傳感器網絡傳輸調度方法綜述. 通信學報, 2012, 33(5): 143-156 doi: 10.3969/j.issn.1000-436X.2012.05.019

                        Zhang Xiao-Ling, Liang Wei, Yu Hai-Bin, Feng Xi-Sheng. Survey of transmission scheduling methods in wireless sensor networks. Journal on Communications. 2012, 33(5): 143-156. doi: 10.3969/j.issn.1000-436X.2012.05.019
                        [9] Liu K, Nael A G, Kyoung D K. Jits: Just-in-time scheduling for real-time sensor data dissemination. In: Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications. Pisa, Italy: IEEE, 2006. 42?46
                        [10] Tengfei C, Thomas W, Xavier V, Pedro H G. Constructive interference in 802.15.4: A tutorial. IEEE Communications Surveys Tutorials, 2019, 21(1): 217-237 doi: 10.1109/COMST.2018.2870643
                        [11] Zhang K W, Shi Y, Karnouskos S, Sauter T, Fang H Z, Colombo A W. Advancements in industrial cyber-physical systems: an overview and perspectives. IEEE Transactions on Industrial Informatics, 2022, 19(1): 716-729
                        [12] Brummet R, Hossain M K, Chipara O, Herman T, Goddard S. WARP: On-the-fly program synthesis for agile, real-time, and reliable wireless networks. In: Proceedings of the 20th International Conference on Information Processing in Sensor Networks. Nashville, TN, USA: Association for Computing Machinery, 2021. 254?267
                        [13] Romain J, Marco Z, Huang P C, Jan B, Lothar T. End-to-end real-time guarantees in wireless cyber-physical systems. In: Proceedings of the IEEE Real-Time Systems Symposium. Porto, Portugal: IEEE, 2016. 167?178
                        [14] Chen Y, Zhang H W, Nathan F, Wang L Y, George Y. Probabilistic per-packet real-time guarantees for wireless networked sensing and control. IEEE Transactions on Industrial Informatics, 2018, 14(5): 2133-2145 doi: 10.1109/TII.2018.2795567
                        [15] Kayan H, Nunes M, Rana O, Burnap P, Perera C. Cybersecurity of industrial cyber-physical systems: A review. ACM Computing Surveys, 2022, 54(11): 1-35
                        [16] Shen W, Zhang T T, Mikael G. Prioritymac: A priority-enhanced mac protocol for critical traffic in industrial wireless sensor and actuator networks. IEEE Transactions on Industrial Informatics, 2014, 10(1): 824-835 doi: 10.1109/TII.2013.2280081
                        [17] Adil M, Menon V G, Balasubramanian V, Alotaibi S R, Song H, Jin Z p, et al. Survey: Self-Empowered Wireless Sensor Networks Security Taxonomy, Challenges and Future Research Directions. IEEE Sensors Journal, DOI: 10.1109/JSEN.2022.3216824
                        [18] Milanez G, Vieira M, Vieira L, Nacif J. VariBan: A variable bandwidth channel allocation algorithm for IEEE 802.15. 4e-based networks. Computer Networks, DOI: 10.1016/j.comnet.2023.109774
                        [19] Wang Q, Jiang J. Comparative examination on architecture and protocol of industrial wireless sensor network standards. IEEE Communications Surveys and Tutorials, 2016, 18(3): 2179-2219
                        [20] Sinem C E, Pravin V. TDMA scheduling algorithms for wireless sensor networks. Wireless Networks, DOI: 10.1007/s11276-009-0183-0
                        [21] Simon D, Beshr A N, Olaf L, Thomas W. Orchestra: Robust mesh networks through autonomously scheduled tsch. In: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. Seoul, South Korea: Association for Computing Machinery, 2015. 337?350
                        [22] Dominik B, Fabian M, Marco Z, Sebastian T. Control-guided communication: Efficient resource arbitration and allocation in multi-hop wireless control systems. IEEE Control Systems Letters, 2020, 4(1): 127-132 doi: 10.1109/LCSYS.2019.2922188
                        [23] Bang A O, Rao U P, Kaliyar P, Conti M. Assessment of routing attacks and mitigation techniques with RPL control messages: A survey. ACM Computing Surveys, 2022, 55(2): 1-36
                        [24] Javan N T, Sabaei M, Hakami V. Adaptive channel hopping for IEEE 802.15. 4 TSCH-based networks: a dynamic bernoulli bandit approach. IEEE Sensors Journal, 2021, 21(20): 23667-23681 doi: 10.1109/JSEN.2021.3110720
                        [25] Diego D, Thomas W, Xavier V, Pascal T. 6TiSCH: deterministic IP-enabled industrial internet (of things). IEEE Communications Magazine, 2014, 25(12): 1-36
                        [26] Gutierrez J A, Naeve M, Callaway E, Bourgeois M. IEEE 802.15.4: A developing standard for low-power low-cost wireless personal area networks. ACM Transactions on Internet of Things, 2001, 15(5): 12-19
                        [27] Wireless LAN Medium Access Control (MAC) and Physical layer (PHY) specifications, IEEE Standard 802.11, Piscataway, NJ, USA, 1997
                        [28] Foundation H C. WirelessHART Specification 75: TDMA Data-Link Layer, HART Communication Foundation Standard, Sydney NSW, Australia, 2008
                        [29] ISA-100.11 a-2011 Wireless Systems for Industrial Automation: Process Control and Related Applications, Process Control and Related Applications Standard, San Diego, CA, USA, 2011
                        [30] 802.15. 4e-2012—IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Standard Association, Piscataway, NJ, USA, 2012
                        [31] Moon S, Park H, Chwa H S, Park K. AdaptiveHART: An Adaptive Real-Time MAC Protocol for Industrial Internet-of-Things. IEEE Systems Journal, 2022, 16(3): 4849-4860 doi: 10.1109/JSYST.2022.3171962
                        [32] Chilukuri S, Gupta A, Sai P, Hemanth S. SmartHART: A priority-aware scheduling and routing scheme for ⅡoT networks using deep reinforcement learning. In: Proceedings of the 15th International Conference on COMmunication Systems and NETworkS. Bangalore, India: IEEE, 2023. 452?456
                        [33] Liang We, Zheng M, Zhang J L, Shi H G, Yu H B, Yang Y T, et al. WIA-FA and its applications to digital factory: A wireless network solution for factory automation. Proceedings of the IEEE, 2019, 107(6): 1053-1073 doi: 10.1109/JPROC.2019.2897627
                        [34] Wun C J, Junhee L. Performance evaluation of IEEE 802.15.4e DSME MAC protocol for wireless sensor networks. In: Proceedings of the The First IEEE Workshop on Enabling Technologies for Smartphone and Internet of Things. Seoul, Korea: IEEE, 2012. 452?456
                        [35] Gianluca C, Lucia S, Adriano V, Claudio Z. On the Performance of IEEE 802.11e Wireless Infrastructures for Soft-Real-Time Industrial Applications. IEEE Transactions on Industrial Informatics, 2010, 6(3): 425-437 doi: 10.1109/TII.2010.2052058
                        [36] Michal S, Martin M, Zdenek H. Experiments for real-time communication contracts in ieee 802.11e edca networks. In: Proceedings of the IEEE International Workshop on Factory Communication Systems. Dresden, Germany: IEEE, 2008. 89?92
                        [37] Junyoung H, Jiman H, Yookun C. Earq: Energy aware routing forreal-time and reliable communication in wireless industrial sensornetworks. IEEE Transactions on Industrial Informatics, 2009, 5(1): 3-11 doi: 10.1109/TII.2008.2011052
                        [38] Wei Y H, Leng Q, Han S, Aloysius K M, Zhang W L. Rt-wifi: Real-time high-speed communication protocol for wireless cyber-physical control applications. In: Proceedings of the IEEE 34th Real-Time Systems Symposium. Vancouver, Canada: IEEE, 2013. 140?149
                        [39] Tian G S, Seyit C, Tian Y C. A deadline-constrained 802.11mac protocol with qos differentiation for soft real-time control. IEEE Transactions on Industrial Informatics, 2016, 12(2): 544-554 doi: 10.1109/TII.2016.2520398
                        [40] Lucia S, Gianluca C, Stefano S, Adriano V, Claudio Z. Enhancing communication determinism in wi-fi networks for softreal-time industrial applications. IEEE Transactions on Industrial Informatics, 2009, 13(2): 866-876
                        [41] Leng Q, Wei Y H, Han S, Aloysius K, Zhang W L. Improving control performance by minimizing jitter in rt-wifi networks. In: Proceedings of the IEEE Real-Time Systems Symposium. Rome, Italy: IEEE, 2014. 63?73
                        [42] Seijo O, Val I, Fernandez J L. w-SHARP: Implementation of a High-Performance Wireless Time-Sensitive Network for Low Latency and Ultra-low Cycle Time Industrial Applications IEEE Transactions on Industrial Informatics, 2020, 17(5): 3651-3662
                        [43] Yun Z L, Wu P, Zhou S L, Mok A K, Mark N, Han S. RT-WiFi on Software-Defined Radio: Design and Implementation. In: Proceedings of the IEEE 28th Real-Time and Embedded Technology and Applications Symposium. Milano, Italy: IEEE, 2022. 254?266
                        [44] Morgado A, Huq K M S, Mumtaz S. A survey of 5G technologies: regulatory, standardization and industrial perspectives. Digital Communications and Networks, 2018, 4(2): 87-97 doi: 10.1016/j.dcan.2017.09.010
                        [45] Garcia-Rodriguez A, Lopez-Perez D, Galati-Giordano L. IEEE 802.11 be: Wi-Fi 7 strikes back. IEEE Communications Magazine, 2021, 59(4): 102-108 doi: 10.1109/MCOM.001.2000711
                        [46] Azzino T, Ropitault T, Zorzi M. Scheduling the data transmission interval in IEEE 802.11 ad: A reinforcement learning approach. In: Proceedings of the International Conference on Computing, Networking and Communications. Big Island, HI, USA: IEEE, 2020. 602?607
                        [47] Chen C, Li J C, Balasubramaniam V, Wu Y Q, Zhang Y R and Wan S H. Contention resolution in Wi-Fi 6-enabled Internet of Things based on deep learning. IEEE Internet of Things Journal, 2021, 8(7): 5309-5320 doi: 10.1109/JIOT.2020.3037774
                        [48] Cheng C Y, Li C Y, Chiu C H. An experience driven design for IEEE 802.11 ac rate adaptation based on reinforcement learning. In: Proceedings of the IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. Vancouver, British Columbia, Canad: IEEE, 2021. 1?10
                        [49] Sha M, Dolvara G, Wu C J, Lu C Y. Empirical study and enhancements of industrial wireless sensor actuator network protocols. IEEE Internet of Things Journal, 2017, 4(3): 696-704 doi: 10.1109/JIOT.2017.2653362
                        [50] Abusayeed S, Chengjie Wu, Paras B Ti, Xu Y, Fu Y, Lu C Y. Near optimal rate selection for wireless control systems. IEEE Real-Time and Embedded Technology and Applications Symposium, 2012, 13(45): 231-240
                        [51] Pablo S, Zhang H B, Johansson M. Deadline-constrained transmission scheduling and data evacuation in wirelesshart networks. In: Proceedings of the European Control Conference. Budapest, Hungary: IEEE, 2009. 4320?4325
                        [52] Venkata P M, Dali I, Mahbubur R, and Abusayeed S. A utilization-based approach for schedulability analysis in wireless control systems. In: Proceedings of the IEEE International Conference on Industrial Internet. Bellevue, Washington, USA: IEEE, 2008. 49?58
                        [53] 王恒, 朱元杰, 楊杭, 王平. 基于優先級分類的工業無線網絡確定性調度算法. 自動化學報, 2020, 46(2): 373-384 doi: 10.16383/j.aas.c170722

                        Wang Heng, Zhu Yuan-Jie, Yang Hang, Wang Ping. Deterministic scheduling algorithm with priority classification for industrial wireless networks. Acta Automatica Sinica, 2020, 46(2): 373-384 doi: 10.16383/j.aas.c170722
                        [54] Felix D, Zhang T T, Mikael G. End-to-end reliability-aware scheduling for wireless sensor networks. IEEE Transactions on Industrial Informatics, 2016, 12(2): 758-767 doi: 10.1109/TII.2014.2382335
                        [55] Alharbi N, Mackenzie L, Pezaros D. Enhancing graph routing algorithm of industrial wireless sensor networks using the covariance-matrix adaptation evolution strategy. Sensors, DOI: 10.3390/s22197462
                        [56] Park M, Paek J. On-demand scheduling of command and responses for low-power multihop wireless networks. Sensors, 2021, 21(3): 738 doi: 10.3390/s21030738
                        [57] Abusayeed S, Xu Y, Lu C Y, Chen Y X. End-to-end communication delay analysisin industrial wireless networks. IEEE Transactions on Computers, 2015, 64(5): 1361-1374 doi: 10.1109/TC.2014.2322609
                        [58] Abusayeed S, Dolvara G, Paras T, Mo S, Lu C Y. Schedulability analysis under graph routing in wirelesshart networks. In: Proceedings of the IEEE Real-Time Systems Symposium. San Antonio, Texas, USA: IEEE, 2015. 165?174
                        [59] Song H, Zhu X M, Aloysius K M, Chen D J, Nixon M. Reliable and real-time communication in industrial wireless meshnetworks. In: Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposiumn. Chicago, Illinois, USA : IEEE, 2011: 3?12
                        [60] Terraneo F, Polidori P, Leva A, Fornaciari W. Tdmh-mac: Real-time and multi-hop in the same wireless mac. In: Proceedings of the IEEE Real-Time Systems Symposium. Nashville, TN, USA: IEEE, 2018: 277?287
                        [61] Yu G, Tian H, Lin M G, Xu J H. Spatiotemporal delay control for low-duty-cycle sensor networks. In: Proceedings of the IEEE Real-Time Systems Symposium. Washington DC, USA: IEEE, 2009. 127?137
                        [62] Kiszka J, Wagner B. Rtnet - a flexible hard real-time networking framework. In: Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation. Prague, Czech Republic: IEEE, 2005. 449?456
                        [63] Kang X H, Wang W N, José J, Ying L. On the performance of largest-deficit-first for scheduling real-time traffic in wireless networks. ACM Transactions on Networking, 2016, 24(1): 72-84 doi: 10.1109/TNET.2014.2360365
                        [64] Abusayeed S, You X, Lu C Y, Chen Y X. Real-time scheduling for wirelesshart networks. In: Proceedings of the 31st IEEE Real-Time Systems Symposium. San Diego, USA: IEEE, 2010. 150?159
                        [65] Harms O, Landsiedel O. MASTER: Long-term stable routing and scheduling in low-power wireless networks In: Proceedings of the 16th International Conference on Distributed Computing in Sensor Systems. Marina del Rey, USA: IEEE, 2020. 86-94
                        [66] Harms O, Landsiedel O. Opportunistic routing and synchronous transmissions meet TSCH. In: Proceedings of the IEEE 46th Conference on Local Computer Networks. Edmonton, AB, Canada: IEEE, 2021.107?114
                        [67] Chilukuri S, Piao G, Lugones D. Deadline-aware TDMA scheduling for multihop networks using reinforcement learning. In: Proceedings of the IFIP Networking Conference. Espoo, Finland: IEEE, 2021. 1?9
                        [68] Chilukuri S, Pesch D. RECCE: Deep reinforcement learning for joint routing and scheduling in time-constrained wireless networks. IEEE Access, DOI: 10.1109/ACCESS.2021.3114967
                        [69] Paulo T. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control, 2007, 52(9): 1680-1685 doi: 10.1109/TAC.2007.904277
                        [70] Wang X F, Michael D L. Self-triggered feedback control systems with finite-gain l2 stability, IEEE Transactions on Automatic Control, 2009, 54(3): 452-467 doi: 10.1109/TAC.2009.2012973
                        [71] Lunze J, Lehmann D. A state-feedback approach to event-based control. Automatica, 2010, 46(1): 211-215 doi: 10.1016/j.automatica.2009.10.035
                        [72] Xi Jin, Abusayeed Saifullah, Chenyang Lu, Peng Zeng. Real-time scheduling for event-triggered and time-triggered flows in industrial wireless sensor-actuator networks. In: Proceedings of the IEEE INFOCOM IEEE Conference on Computer Communications. Paris, France: IEEE, 2019: 1684?1692
                        [73] Hong S Y, Han X B, Sharon H G. On-line data link layer scheduling in wireless networked control systems. In: Proceedings of the 27th Euromicro Conference on Real-Time Systems. Lund, Sweden: IEEE, 2015. 57?65
                        [74] Li B, Nie L S, Wu C J, Humberto G, Lu C Y. Incorporating emergency alarms in reliable wireless process control. In: Proceedings of the IEEE International Conference on Cyber-Physical System. Seattle Washington, USA: Association for Computing Machinery, 2015. 218?227
                        [75] Xia C Q, Xi J, Kong L H, Zeng P. Scheduling for emergency tasks in industrial wireless sensor networks. Sensors, DOI: 10.3390/s17071674
                        [76] Jin X, Kong F X, Kong L H, Wang H H, Xia C Q. A hierarchical data transmission framework for industrial wireless sensor and actuator networks. IEEE Transactions on Industrial Informatics, 2017, 13(4): 2019-2029 doi: 10.1109/TII.2017.2685689
                        [77] Kristofer S J P, Lance D. Tsmp: Time synchronized mesh protocol. In: Proceedings of the IASTED Distributed Sensor Networks. Crete, Greece: IEEE, 2008. 391?398
                        [78] Dimitri B. Nonlinear Programming: 3nd Edition. Athena Scientific. Nashua: Athena Scientific, 2016. 97?123
                        [79] Hou I H, Borkar V, Kumar P R. A Theory of QoS for Wireless. In: Proceedings of the IEEE INFOCOM 2009. Rio de Janeiro, Brazil: IEEE, 2009. 486?494
                        [80] Ma Y H, Guo J L, Wang Y B, Chakrabarty A, Ahn H J, Lu C Y. Optimal dynamic scheduling of wireless networked control systems. In: Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems. Montreal, Quebec, Canada: Association for Computing Machinery, 2019. 77?89
                        [81] Saifullah A, Xu Y, Lu C Y, Chen Y X. Real-time scheduling for wirelesshart networks. In: Proceedings of the Real-time Systems Symposium. San Diego, USA: IEEE, 2011. 150?159
                        [82] Karadag G, Iqbal M S, Coleri S. Optimal Power Control, Scheduling, and Energy Harvesting for Wireless Networked Control Systems. IEEE Transactions on Communications, 2021, 69(3): 1789-1801 doi: 10.1109/TCOMM.2020.3042792
                        [83] Yang G K, Myung J L. Scheduling multi-channel and multi-timeslot in time constrained wireless sensor networks via simulated annealing and particle swarm optimization. IEEE Communications Magazine, 2014, 52(1): 122-129 doi: 10.1109/MCOM.2014.6710073
                        [84] Thong H, Fabrice T, Won J H. On the interest of opportunistic anycast scheduling for wireless low power lossy networks. Computer Communications, DOI: 10.1016/j.comcom.2016.06.001
                        [85] Iqbal M S, Sadi Y, Coleri S. Minimum Length Scheduling for Discrete-Rate Full-Duplex Wireless Powered Communication Networks. IEEE Transactions on Wireless Communications, 2022, 21(1): 135-148 doi: 10.1109/TWC.2021.3094138
                        [86] Zoppi S, Champati J P, Gross J, Kellerer W. Scheduling of Wireless Edge Networks for Feedback-Based Interactive Applications. IEEE Transactions on Communications, 2022, 70(5): 3295-3309 doi: 10.1109/TCOMM.2022.3163761
                        [87] Palattella M, Accettura N, Dohler M, Grieco L, Boggia G. Traffic aware scheduling algorithm for reliable low-power multi-hop ieee 802.15.4e networks. In: Proceedings of the 23rd IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Sydney, Australia: IEEE, 2012. 327?332
                        [88] Wu C J, Gunatilaka D, Sha M, Lu C Y. Real-time wireless routing for industrial internet of things. In: Proceedings of the IEEE International Conference on Internet-of-Things Design and Implementation. Orlando, USA: IEEE, 2018. 261?266
                        [89] Jonsson M, Kunert K. Towards reliable wireless industrial communication with real-time guarantees. IEEE Transactions on Industrial Informatics, 2009, 5(4): 429-442 doi: 10.1109/TII.2009.2031921
                        [90] Yang D, Xu Y Z, Wang H C, Zheng T, Zhang H, Zhang H K, Gidlund M. Assignment of segmented slots enabling reliable real-time transmission in industrial wireless sensor networks. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3966-3977
                        [91] Munir S, Lin S, Hoque E, Shahriar S M. Addressing burstiness for reliable communicationand latency bound generation in wireless sensor networks. In: Proceedings of the International Conference on Information Processing in Sensor Networks. Stockholm, Sweden: Association for Computing Machinery, 2010. 303?314
                        [92] Gamba G, Tramarin F, Willigt A. Retransmission strategies for cyclic polling over wireless channels in the presence of interference. IEEE Transactions on Industrial Informatics, 2009, 6(3): 405-415
                        [93] Shi H, Zheng M and Liang W. AODR: an automatic on-demand retransmission scheme for WIA-FA networks. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6094-6107 doi: 10.1109/TVT.2021.3076988
                        [94] Venkata P. M, Abusayeed S, Sanjay M. A Distributed Real-time Scheduling System for Industrial Wireless Networks. ACM Transactions on Embedded Computing Systems, 2021, 20(5): 1-28
                        [95] Rekik S, Baccour N, Jmaiel M, Drira K, Grieco L. Autonomous and traffic-aware scheduling for tsch networks. Computer Networks, DOI: 10.1016/j.comnet.2018.02.023
                        [96] Shi J Y, Sha M, Yang Z C. Distributed graph routing and scheduling for industrial wireless sensor-actuator networks. IEEE/ACM Transactions on Networking, 2019, 27(4): 1669-1682 doi: 10.1109/TNET.2019.2925816
                        [97] Kim S, Kim H S, Kim C. Alice: Autonomous link-based cell scheduling for tsch. In: Proceedings of the 18th ACM/IEEE International Conference on Information Processing in Sensor Networks. Montreal, Quebec, Canada: Association for Computing Machinery, 2019: 121?132
                        [98] Jeong S, Paek J, Kim H S, Bahk S. Tesla: Traffic-aware elastic slotframe adjustment in tsch networks. IEEE Access, DOI: 10.1109/ACCESS.2019.2940457
                        [99] Jeong S, Kim H S, Paek J, Bahk S. Ost: On-demand tsch scheduling with traffic-awareness. In: Proceedings of the IEEE Conference on Computer Communications. Toronto, ON, Canada: IEEE, 2020. 69?78
                        [100] Cheng X, Sha M. Autonomous traffic-aware scheduling for industrial wireless sensor-actuator networks. Association for Computing Machinery, 2021, 19(2): 1-25
                        [101] Osman M, Nabki F. OSCAR: An optimized scheduling cell allocation algorithm for convergecast in IEEE 802.15. 4e TSCH networks. Sensors, DOI: 10.3390/s21072493
                        [102] Kim S, Kim H S, Kim C. A3: Adaptive autonomous allocation of TSCH slots. In: Proceedings of the 20th International Conference on Information Processing in Sensor Networks. Nashville, TN, USA : Association for Computing Machinery, 2021. 299?314
                        [103] Rhee I, Warrier A, Min J, Xu L. Drand: Distributed randomized tdma scheduling for wireless ad hoc networks. In: Proceedings of the 7th ACM international symposium on Mobile ad hoc networking and computing. Florence Italy: Association for Computing Machinery, 2006. 190?201
                        [104] Tinka A, Watteyne T, Kristofer S J, Bayen A M. A decentralized scheduling algorithm for time synchronized channel hopping. EAI Endorsed Transactions Mobile Communications Application, DOI: 10.4108/icst.trans.mca.2011.e5
                        [105] Bilgili A K. Diva: a distributed divergecast scheduling algorithm for ieee 802.15.4e tsch networks. Wireless Networks, 2019, 25(2): 625-635
                        [106] Modekurthy V P, Saifullah A, Madria S. Distributedhart: A distributed real-time scheduling system for wirelesshart networks. In: Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium. Montreal, Canada: IEEE, 2019. 216?227
                        [107] Kang H, Zhao Y N, Mei F. A graph coloring based tdma scheduling algorithm for wireless sensor networks. Wireless Personal Communications, DOI: 10.1007/s11277-013-1052-9
                        [108] Abusayeed S, Xu Y, Lu C Y, Chen Y X. Distributed channel allocation protocolsfor wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(9): 2264-2274 doi: 10.1109/TPDS.2013.185
                        [109] Nicola A, Palattella M R, Gennaro B, Alfredo G, Mischa D. Decentralized traffic aware scheduling for multi-hop low power lossy networks in the internet of things. In: Proceedings of the IEEE 14th International Symposium on “A World of Wireless, Mobile and Multimedia Networks”. Madrid, Spain: IEEE, 2013. 1?6
                        [110] Soua R, Minet P, Livolant E. Wave: a distributed scheduling algorithm for convergecast in ieee 802.15.4e tsch networks. European transactions on telecommunications, 2016, 27(4): 557-575
                        [111] Emiliano S, Paolo F, Fernandes C D, Stefano R, Pasetti Marco, Alessandra Flammini, and Alessandro Depari. EDSF: Efficient Distributed Scheduling Function for IETF 6TiSCH-based Industrial Wireless Networks. Mobile Networks and Applications, DOI: 0.1007/s11036-022-02004-7
                        [112] Marco Z, Luca M, Silvia S. Synchronous transmissions in low-power wireless: A survey of communication protocols and network services. ACM Computing Surveys, 2020, 53(6): 1-39
                        [113] Jonathan O, Yang F, Sam M, Danny H. Zero-wire: A deterministic and low-latency wireless bus through symbol-synchronous transmission of optical signals. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems. Virtual Event Japan: Association for Computing Machinery, 2020. 164?178
                        [114] Matteo T, Gabriel G, Timofei I, Manuel M J, Pietro P G. The wireless control bus: Enabling efficient multi-hop event-triggered control with concurrent transmissions. ACM Transactions on Cyber-Physical Systems, 2022, 6(1): 1-25
                        [115] Lorawan 1.1 specification. [Online], available: https://lora-alliance.org/resource_hub/lorawan-specification-v1-1. 2017
                        [116] Luca L, Filippo B, Lucia L B. Rt-lora: A medium access strategy to support real-time flows over lora-based networks for industrial iot applications. IEEE Internet of Things Journal, 2019, 6(6): 10812-10823 doi: 10.1109/JIOT.2019.2942776
                        [117] Quy L H, Hoon O. A real-time lora protocol using logical frame partitioning for periodic and aperiodic data transmission. IEEE Internet of Things Journal, 2022, 9(16). 15401-15412 doi: 10.1109/JIOT.2022.3162019
                        [118] Emiliano S, Paolo F, Fernandes C D, Stefano R, Pasetti Marco, Alessandra Flammini, and Alessandro Depari. Lorawan range extender for industrial iot. IEEE Transactions on Industrial Informatics, 2019, 16(8): 5607-5616
                      2. 加載中
                      3. 計量
                        • 文章訪問數:  418
                        • HTML全文瀏覽量:  368
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2022-12-04
                        • 錄用日期:  2023-04-14
                        • 網絡出版日期:  2023-07-03

                        目錄

                          /

                          返回文章
                          返回