1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              無(wú)人機使能的無(wú)線(xiàn)傳感網(wǎng)總能耗優(yōu)化方法

              李敏 包富瑜 王恒

              李敏, 包富瑜, 王恒. 無(wú)人機使能的無(wú)線(xiàn)傳感網(wǎng)總能耗優(yōu)化方法. 自動(dòng)化學(xué)報, 2024, 50(11): 2259?2270 doi: 10.16383/j.aas.c220914
              引用本文: 李敏, 包富瑜, 王恒. 無(wú)人機使能的無(wú)線(xiàn)傳感網(wǎng)總能耗優(yōu)化方法. 自動(dòng)化學(xué)報, 2024, 50(11): 2259?2270 doi: 10.16383/j.aas.c220914
              Li Min, Bao Fu-Yu, Wang Heng. Optimization of total energy consumption for unmanned aerial vehicle-enabled wireless sensor networks. Acta Automatica Sinica, 2024, 50(11): 2259?2270 doi: 10.16383/j.aas.c220914
              Citation: Li Min, Bao Fu-Yu, Wang Heng. Optimization of total energy consumption for unmanned aerial vehicle-enabled wireless sensor networks. Acta Automatica Sinica, 2024, 50(11): 2259?2270 doi: 10.16383/j.aas.c220914

              無(wú)人機使能的無(wú)線(xiàn)傳感網(wǎng)總能耗優(yōu)化方法

              doi: 10.16383/j.aas.c220914 cstr: 32138.14.j.aas.c220914
              基金項目: 國家自然科學(xué)基金(92267106, 61972061), 重慶英才計劃基礎研究與前沿探索項目(cstc2021ycjh-bgzxm0017)資助
              詳細信息
                作者簡(jiǎn)介:

                李敏:重慶郵電大學(xué)自動(dòng)化學(xué)院教授. 2014年獲得重慶大學(xué)博士學(xué)位. 主要研究方向為無(wú)線(xiàn)傳感網(wǎng), 無(wú)人機和無(wú)線(xiàn)功率傳輸. 本文通信作者. E-mail: limin@cqupt.edu.cn

                包富瑜:重慶郵電大學(xué)自動(dòng)化學(xué)院碩士研究生. 主要研究方向為無(wú)線(xiàn)傳感網(wǎng), 無(wú)人機. E-mail: baofuyu1218@163.com

                王恒:重慶郵電大學(xué)自動(dòng)化學(xué)院教授. 2010年獲得重慶大學(xué)博士學(xué)位. 主要研究方向為工業(yè)物聯(lián)網(wǎng), 無(wú)線(xiàn)傳感網(wǎng)和時(shí)間同步. E-mail: wangheng@cqupt.edu.cn

              Optimization of Total Energy Consumption for Unmanned Aerial Vehicle-enabled Wireless Sensor Networks

              Funds: Supported by National Natural Science Foundation of China (92267106, 61972061) and Fundamental Research and Frontier Exploration Program of Chongqing (cstc2021ycjh-bgzxm0017)
              More Information
                Author Bio:

                LI Min Professor at the College of Automation, Chongqing University of Posts and Telecommunications. She received her Ph.D. degree from Chongqing University in 2014. Her research interest covers wireless sensor networks, unmanned aerial vehicle, and wireless power transfer. Corresponding author of this paper

                BAO Fu-Yu Master student at the College of Automation, Chongqing University of Posts and Telecommunications. His research interest covers wireless sensor networks and unmanned aerial vehicle

                WANG Heng Professor at the College of Automation, Chongqing University of Posts and Telecommunications. He received his Ph.D. degree from Chongqing University in 2010. His research interest covers industrial internet of things, wireless sensor networks, and clock synchronization

              • 摘要: 為降低無(wú)人機(Unmanned aerial vehicle, UAV)使能的無(wú)線(xiàn)傳感網(wǎng)(Wireless sensor networks, WSNs)的能耗, 延長(cháng)網(wǎng)絡(luò )生命周期, 提出一種在地面節點(diǎn)能量預算下系統總能耗優(yōu)化方法. 首先, 提出地面節點(diǎn)聚類(lèi)方法, 利用目標函數確定最優(yōu)簇數, 改進(jìn)模糊C均值(Fuzzy C-mean, FCM)算法構建能量均衡的集群, 采用退避定時(shí)器機制根據隸屬度和能量值選擇各集群的最優(yōu)簇頭, 減少地面節點(diǎn)的能耗; 然后, 根據已選簇頭位置, 利用遺傳算法規劃UAV飛行軌跡, 減少UAV能耗; 最后, 通過(guò)單純形搜索算法和連續凸逼近(Successive convex approximation, SCA)算法聯(lián)合優(yōu)化簇頭發(fā)射功率和UAV懸停位置, 減少數據采集時(shí)系統的總能耗. 仿真結果表明, 該方法優(yōu)于其他方法.
              • 圖  1  系統模型

                Fig.  1  System model

                圖  2  不同簇頭個(gè)數的系統總能耗

                Fig.  2  Total energy consumption of the system with different numbers of cluster head

                圖  3  集群規模變化

                Fig.  3  Variation in size of clusters

                圖  4  集群內距離成本

                Fig.  4  Cost of the intra-cluster distance

                圖  5  節點(diǎn)存活數

                Fig.  5  The number of alive nodes

                圖  6  網(wǎng)絡(luò )剩余能量

                Fig.  6  Residual energy of network

                圖  7  系統能耗

                Fig.  7  System energy consumption

                圖  8  UAV飛行軌跡

                Fig.  8  UAV flight trajectory

                圖  9  不同簇成員個(gè)數時(shí)簇頭發(fā)射功率與系統能耗/懸停位置的關(guān)系

                Fig.  9  Relationship between cluster head transmit power and system energy consumption/hovering positions with different numbers of cluster members

                圖  10  不同簇頭能量預算對系統能耗的影響

                Fig.  10  Impact of different cluster head energy budgets on system energy consumption

                表  1  仿真參數

                Table  1  Simulation parameter

                參數參數值參數參數值
                $\alpha$0.03${{v}_{v}}$10 m/s
                $\beta$10${{E}_{cap}}$50 J
                $\eta LoS$3 dB$l$1 Mb
                $\eta NLoS$13 dB${{\alpha }_{1}}$,${{\alpha }_{2}}$0.5
                ${rf50c1hsl6_{0}}$1 m$\phi $1000
                ${{\sigma }^{2}}$?174 dBm/Hz${{v}_{u}}$15 m/s
                下載: 導出CSV

                表  2  不同算法的VSC值比較

                Table  2  Comparison of VSC values for different algorithms

                實(shí)驗次數OCM-FCMIEECPSHM-FCM
                1428.4052.8548.50
                2362.3549.0546.70
                3271.1566.5557.65
                4254.2051.7543.45
                5272.4058.6550.50
                6387.5052.9031.75
                7329.1549.3543.54
                8289.4558.4562.55
                9290.2555.8055.20
                10319.1546.7537.50
                下載: 導出CSV

                表  3  網(wǎng)絡(luò )穩定性比較

                Table  3  Comparison of network stability

                算法名稱(chēng)FNDHNDLNDWFND
                OCM-FCM1751540.0065
                IEECP21042260.0089
                SHM-FCM91764160.0220
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Li J X, Zhao H T, Wang H J, Gu F L, Wei J B, Yin H, et al. Joint optimization on trajectory, altitude, velocity, and link scheduling for minimum mission time in UAV-aided data collection. IEEE Internet of Things Journal, 2019, 7(2): 1464?1475
                        [2] 王峰, 黃子路, 韓孟臣, 邢立寧, 王凌. 基于KnCMPSO算法的異構無(wú)人機協(xié)同多任務(wù)分配. 自動(dòng)化學(xué)報, 2023, 49(2): 399?414 doi: 10.16383/j.aas.c210696

                        Wang Feng, Huang Zi-Lu, Han Meng-Chen, Xing Li-Ning, Wang Ling. A knee point based coevolution multi-objective particle swarm optimization algorithm for heterogeneous UAV cooperative multi-task allocation. Acta Automatica Sinica, 2023, 49(2): 399?414 doi: 10.16383/j.aas.c210696
                        [3] Samir M, Sharafeddine S, Assi C M, Nguyen T M, Ghrayeb A. UAV trajectory planning for data collection from time-constr-ained IoT devices. IEEE Transactions on Wireless Communications, 2019, 19(1): 34?46
                        [4] 劉志新, 趙松晗, 楊毅, 袁亞洲. 智能反射面輔助的無(wú)人機無(wú)線(xiàn)攜能通信網(wǎng)絡(luò )吞吐量最大化算法研究. 電子與信息學(xué)報, 2022, 44(7): 2325?2331 doi: 10.11999/JEIT220195

                        Liu Zhi-Xin, Zhao Song-Han, Yang Yi, Yuan Ya-Zhou. Thro-ugh put maximization algorithm for intelligent reflecting surface-aided unmanned aerial vehicle communication networks with wireless energy transfer. Journal of Electronics & Information Technology, 2022, 44(7): 2325?2331 doi: 10.11999/JEIT220195
                        [5] Heinzelman W B, Chandrakasan A P, Balakrishnan H. Approximate policy-based accelerated deep reinforcement learning. An Application-specific Protocol Architecture for Wireless Microsensor Networks, 2002, 1(4): 660?670
                        [6] Behera T M, Mohapatra S K, Samal U C, Khan S M, Daneshmand M, Gandomi A H. Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 2019, 6(3): 5132?5139 doi: 10.1109/JIOT.2019.2897119
                        [7] Su S C, Zhao S G. An optimal clustering mechanism based on Fuzzy-C means for wireless sensor networks. Sustainable Computing: Informatics and Systems, 2018, 18: 127?134 doi: 10.1016/j.suscom.2017.08.001
                        [8] Hassan A A H, Shah W M, Habeb A H H, Othman M F I, Al-Mhiqani M N. An improved energy-efficient clustering protocol to prolong the lifetime of the WSN-based IoT. IEEE Access, 2020, 8: 200500?200517 doi: 10.1109/ACCESS.2020.3035624
                        [9] Zhan C, Lai H. Energy minimization in internet-of-things system based on rotary-wing UAV. IEEE Wireless Communications Letters, 2019, 8(5): 1341?1344 doi: 10.1109/LWC.2019.2916549
                        [10] Zhan C, Zeng Y, Zhang R. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wireless Communications Letters, 2017, 7(3): 328?331
                        [11] Ebrahimi D, Sharafeddine S, Ho P H, Assi C. UAV-aided projection-based compressive data gathering in wireless sensor networks. IEEE Internet of Things Journal, 2018, 6(2): 1893?1905
                        [12] Chen J M, Li S Y, Chen S, He S B, Shi Z G. Q-charge: A quadcopter-based wireless charging platform for large-scale sensing applications. IEEE Network, 2017, 31(6): 56?61 doi: 10.1109/MNET.2017.1700071
                        [13] Zeng Y, Xu J, Zhang R. Energy minimization for wireless communication with rotary-wing UAV. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329?2345 doi: 10.1109/TWC.2019.2902559
                        [14] Zeng Y, Zhang R. Energy-efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747?3760 doi: 10.1109/TWC.2017.2688328
                        [15] Ghdiri O, Jaafar W, Alfattani S, Abderrazak J B, Yanikomeroglu H. Offline and online UAV-enabled data collection in time-constrained IoT networks. IEEE Transactions on Green Communications and Networking, 2021, 5(4): 1918?1933 doi: 10.1109/TGCN.2021.3104801
                        [16] Yang D C, Wu Q Q, Zeng Y, Zhang R. Energy tradeoff in ground-to-UAV communication via trajectory design. IEEE Transactions on Vehicular Technology, 2018, 67(7): 6721?6726 doi: 10.1109/TVT.2018.2816244
                        [17] Zhan C, Huang R J. Energy minimization for data collection in wireless sensor networks with UAV. In: Proceedings of the IEEE Global Communications Conference. Waikoloa, USA: IEEE, 2019. 1?6
                        [18] 王巍, 彭力, 趙繼軍, 朱天宇, 崔益豪, 田立勤. 基于旋翼無(wú)人機近地面空間應急物聯(lián)網(wǎng)節點(diǎn)動(dòng)態(tài)協(xié)同部署. 自動(dòng)化學(xué)報, 2021, 47(8): 2002?2015 doi: 10.16383/j.aas.c180146

                        Wang Wei, Peng Li, Zhao Ji-Jun, Zhu Tian-Yu, Cui Yi-Hao, Tian Li-Qin. Dynamic cooperative deployment of emergency internet of things near ground space based on drone. Acta Automatica Sinica, 2021, 47(8): 2002?2015 doi: 10.16383/j.aas.c180146
                        [19] 李安, 戴龍斌, 余禮蘇, 王振. 加權能耗最小化的無(wú)人機輔助移動(dòng)邊緣計算資源分配策略. 電子與信息學(xué)報, 2022, 44(11): 3858?3865 doi: 10.11999/JEIT210832

                        Li An, Dai Long-Bin, Yu Li-Su, Wang Zhen. Resource allocation for unmanned aerial vehicle-assisted mobile edge computing to minimize weighted energy consumption. Journal of Electronics & Information Technology, 2022, 44(11): 3858?3865 doi: 10.11999/JEIT210832
                        [20] Zhu B T, Bedeer E, Nguyen H H, Barton R, Henry J. UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning. IEEE Transactions on Vehicular Technology, 2021, 70(5): 9540?9554
                        [21] Zhu B T, Bedeer E, Nguyen H H, Barton R, Henry J. Joint cluster head selection and trajectory planning in UAV-aided IoT networks by reinforcement learning with sequential model. IEEE Internet of Things Journal, 2021, 9(14): 12071?12084
                        [22] Mozaffari M, Saad W, Bennis M, Debbah M. Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications. IEEE Internet of Things Journal, 2017, 16(11): 7574?7589
                      2. 加載中
                      3. 圖(10) / 表(3)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  571
                        • HTML全文瀏覽量:  177
                        • PDF下載量:  42
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2022-11-24
                        • 錄用日期:  2023-04-04
                        • 網(wǎng)絡(luò )出版日期:  2023-04-28
                        • 刊出日期:  2024-11-26

                        目錄

                          /

                          返回文章
                          返回