1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              基于捕獲點理論的混合驅動水下刀鋒腿機器人穩定性判據

              陳樂鵬 崔榮鑫 嚴衛生 馬飛宇

              陳樂鵬, 崔榮鑫, 嚴衛生, 馬飛宇. 基于捕獲點理論的混合驅動水下刀鋒腿機器人穩定性判據. 自動化學報, xxxx, xx(x): x?xx doi: 10.16383/j.aas.c220889
              引用本文: 陳樂鵬, 崔榮鑫, 嚴衛生, 馬飛宇. 基于捕獲點理論的混合驅動水下刀鋒腿機器人穩定性判據. 自動化學報, xxxx, xx(x): x?xx doi: 10.16383/j.aas.c220889
              Chen Le-Peng, Cui Rong-Xin, Yan Wei-Sheng, Ma Fei-Yu. A stability criterion for hybrid-driven underwater bladed legged robot based on capture point theory. Acta Automatica Sinica, xxxx, xx(x): x?xx doi: 10.16383/j.aas.c220889
              Citation: Chen Le-Peng, Cui Rong-Xin, Yan Wei-Sheng, Ma Fei-Yu. A stability criterion for hybrid-driven underwater bladed legged robot based on capture point theory. Acta Automatica Sinica, xxxx, xx(x): x?xx doi: 10.16383/j.aas.c220889

              基于捕獲點理論的混合驅動水下刀鋒腿機器人穩定性判據

              doi: 10.16383/j.aas.c220889
              基金項目: 國家自然科學基金 (61733014, U22A2066, U1813225, U21B2047), 陜西省重點研發計劃 (2022ZDLGY03-05) 資助
              詳細信息
                作者簡介:

                陳樂鵬:西北工業大學航海學院博士研究生.主要研究方向為水下機器人建模與控制. E-mail: chenlepeng@mail.nwpu.edu.cn

                崔榮鑫:西北工業大學航海學院教授. 主要研究方向為水下機器人智能控制、自主感知與規劃, 多機器人協作. 本文通信作者. E-mail: r.cui@nwpu.edu.cn

                嚴衛生:西北工業大學航海學院教授.主要研究方向為水下航行器導引、導航與控制. E-mail: wsyan@nwpu.edu.cn

                馬飛宇:西北工業大學航海學院博士研究生.主要研究方向為水下機器人控制與規劃. E-mail: mfy_nwpu@mail.nwpu.edu.cn

              A Stability Criterion for Hybrid-Driven Underwater Bladed Legged Robot Based on Capture Point Theory

              Funds: Supported by National Natural Science Foundation of China (61733014, U22A2066, U1813225, U21B2047) and Key Research and Development Program of Shaanxi Province (2022ZDLGY03-05)
              More Information
                Author Bio:

                CHEN Le-Peng Ph. D. candidate at the School of Marine Science and Technology, Northwestern Polytechnical University. His research interest covers modeling and control of underwater robots

                CUI Rong-Xin Professor at the School of Marine Science and Technology, Northwestern Polytechnical University. His research interest covers intelligent control, perception, and planning for underwater robots, the cooperation for multiple robots. Corresponding author of this paper

                YAN Wei-Sheng Professor at the School of Marine Science and Technology, Northwestern Polytechnical University. Her current research interests include guidance, navigation, and control of underwater vehicles

                MA Fei-Yu Ph. D. candidate at the School of Marine Science and Technology, Northwestern Polytechnical University. His current research interests include control and planning of underwater vehicles

              • 摘要: 由8個推進器和6條刀鋒腿混合驅動的水下機器人可在水底或壁面上行走. 本文旨在研究這類機器人運動穩定性的評判準則, 即穩定性判據. 現有的穩定性判據多集中于同一機構(腿)驅動的陸地機器人, 未涉及混合驅動的水下刀鋒腿機器人. 針對該問題, 提出了基于捕獲點理論的混合驅動水下刀鋒腿機器人穩定性判據. 首先, 在建立混合驅動水下滾動倒立擺模型的基礎上, 利用機器人運動狀態預測擺動腿和支撐腿切換瞬間機器人的動能. 然后, 根據推進器所能提供的推力范圍, 計算迫使機器人靜止的捕獲點變化范圍, 即獲取捕獲域. 最后, 根據捕獲域與支撐域的空間關系, 判斷機器人是否穩定, 并計算穩定裕度. 水下實驗表明, 所提出的穩定性判據具有較好的充要性和普適性.
              • 圖  1  混合驅動水下刀鋒腿機器人系統結構

                Fig.  1  Diagram of hybrid-driven underwater bladed legged robot

                圖  2  倒立擺系統及參數定義

                Fig.  2  Inverted pendulum and parameter definition

                圖  3  兩種時刻下刀鋒腿的旋轉角度

                Fig.  3  Rotation angles of bladed leg under two moments

                圖  4  線性倒立擺與滾動倒立擺

                Fig.  4  Linear and rolling inverted pendulums

                圖  5  混合驅動水下刀鋒腿機器人的受力分析

                Fig.  5  Forces analysis of the hybrid-driven underwater bladed legged robot

                圖  6  ${{t}_{2}}$時刻支撐域示意圖

                Fig.  6  Diagram of support domain at ${{t}_{2}}$ momen

                圖  7  支撐域與捕獲域示意圖

                Fig.  7  Diagram of support domain and capture domain

                圖  8  支撐域與捕獲域之間的四類重疊情況

                Fig.  8  Four types of overlap between support domain and capture domain

                圖  9  混合驅動水下刀鋒腿機器人穩定性判據框圖

                Fig.  9  Block diagram of stability criterion for hybrid-driven underwater bladed legged robot

                圖  10  水池實驗場景圖

                Fig.  10  Scene of pool experiment

                圖  11  池底行走連拍圖

                Fig.  11  Snapshots of walking on pool bottom.

                圖  12  五組互異垂推推力的穩定裕度

                Fig.  12  Stability margin of underwater bladed legged robot in five experiments

                圖  13  五組實驗中水下刀鋒腿機器人穩定裕度平均值

                Fig.  13  Average stability margin of underwater bladed legged robot in five experiments

                圖  14  十五組互異推力上下界的穩定裕度

                Fig.  14  Stability margin under fifteen different upper and lower bounds of thrust

                圖  15  十五組互異推力上下界的穩定裕度平均值

                Fig.  15  Average value of stability margin under 15 groups of different thrust upper and lower bounds

                表  1  十五組實驗中推力上下界

                Table  1  Upper and lower bounds of thrust in 15 groups of experiments

                實例 垂向推進器
                推力上界(N)
                垂向推進器
                推力下界(N)
                水平推進器
                推力上界(N)
                水平推進器
                推力下界(N)
                1 ?10 ?10 0 0
                2 ?10 ?10 1 ?1
                3 ?10 ?10 2 ?2
                4 ?10 ?10 5 ?5
                5 ?9 ?11 0 0
                6 ?6 ?14 0 0
                7 0 ?20 0 0
                8 30 ?20 0 0
                9 30 ?25 0 0
                10 30 ?30 0 0
                11 30 ?40 0 0
                12 30 ?60 0 0
                13 30 ?100 0 0
                14 30 ?30 5 ?5
                15 30 ?30 30 ?30
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Ma F, Yan W, Chen L, Cui R. CPG-based motion planning of hybrid underwater hexapod robot for wall climbing and transition. IEEE Robotics and Automation Letters, 2022, 7(4):12299-12306. doi: 10.1109/LRA.2022.3216233
                        [2] 陳懇, 付成龍. 仿人機器人理論與技術. 清華大學出版社, 2010. 56-64

                        Chen Ken, Fu Cheng-Long. Humanoid robot theory and technology. Beijing: Tsinghua University Press, 2010, 56?64
                        [3] 田彥濤, 孫中波, 李宏揚, 王靜. 動態雙足機器人的控制與優化研究進展. 自動化學報, 2016, 42(8):1142-1157 doi: 10.16383/j.aas.2016.c150821

                        Tian Yan-Tao, Sun Zhong-Bo, Li Hong-Yang, Wang Jing. A review of optimal and control strategies for dynamic walking bipedal robots. Acta Automatica Sinica, 2016, 42(8):1142-1157. doi: 10.16383/j.aas.2016.c150821
                        [4] Hu C J, Huang C K, Lin P C. A torque-actuated dissipative spring loaded inverted pendulum model with rolling contact and its use as the template for design and dynamic behavior generation on a hexapod robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Seattle, Washington, USA, IEEE. 2015: 5177?5183
                        [5] Lu W, Yu M, and Lin P. Clock-torqued rolling SLIP model and its application to variable-speed running in a hexapod robot. IEEE Transactions on Robotics, 2018, 34(6): 1643-1650. doi: 10.1109/TRO.2018.2862903
                        [6] Calisti M, Laschi C. Morphological and control criteria for self-stable underwater hopping. Bioinspiration & Biomimetics, 2018, 13: Article No. 016001.
                        [7] Picardi G, Lovecchio R, Calisti M. Towards autonomous area inspection with a bio-inspired underwater legged robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic, IEEE. 2021: 930?935.
                        [8] Vukobratovi M, Borovac B. Zero-moment point-thirty five years of its Life. International Journal of Humanoid Robotics, 2004, 1(1):157-173. doi: 10.1142/S0219843604000083
                        [9] Winkler W, Farshidian F, Pardo D, Neunert M, Buchli J. Fast trajectory optimization for legged robots using vertex-based zmp constraints. IEEE Robotics and Automation Letters, 2017, 2(4):2201-2208. doi: 10.1109/LRA.2017.2723931
                        [10] Viragh Y, Bjelonic M, Bellicoso C, Jenelten F, Hutter M. Trajectory optimization for wheeled-legged quadrupedal robots using linearized zmp constraints. IEEE Robotics and Automation Letters, 2019, 4(2):1633-1640. doi: 10.1109/LRA.2019.2896721
                        [11] Guckenheimer J and Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science & Business Media, 2013. 8?32
                        [12] Grizzle J W, Abba G, Plestan F. Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control, 2001, 46(1): 51-64. doi: 10.1109/9.898695
                        [13] Fu C, Chen K. Section-map stability criterion for biped robots part I: theory. In: Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA). Harbin, China, IEEE. 2007: 1529?1534.
                        [14] Hirukawa H, Hattori S, Harada K, Kajita S, Kaneko K, Kanehiro F, Fujiwara K, Morisawa M. A universal stability criterion of the foot contact of legged robots-adios ZMP. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Orlando, USA, IEEE. 2006: 1976?1983.
                        [15] Harada K, Kajita S, Kaneko K, Hirukawa H. Dynamics and balance of a humanoid robot during manipulation tasks. IEEE Transactions on Robotics, 2006, 22(3), 568-575. doi: 10.1109/TRO.2006.870649
                        [16] Audren H, Kheddar A. 3-D robust stability polyhedron in multicontact. IEEE Transactions on Robotics, 2022, 38(6): 3395-3413. doi: 10.1109/TRO.2022.3186804
                        [17] Jenelten F, Grandia R, Farshidian, F, Hutter M. TAMOLS: Terrain-aware motion optimization for legged systems. IEEE Transactions on Robotics, 2018, 34(2): 388-403. doi: 10.1109/TRO.2017.2786683
                        [18] Pratt J, Koolen T, Boer T, Rebula J, Cotton S, Carff J, Johnson M, Neuhaus P. Capturability-based analysis and control of legged locomotion, Part 2: application to M2V2, a lower-body humanoid. The International Journal of Robotics Research, 2012, 31(10): 1117-1133. doi: 10.1177/0278364912452762
                        [19] 劉飛, 陳小平.基于軌道能量模型的步行機器人平衡恢復方法. 機器人, 2011, 33(2):244-250 doi: 10.3724/SP.J.1218.2011.00244

                        Liu Fei, Chen Xiao-Ping. Balance recovery method of walking robot based on orbital energy model. ROBOT, 2011, 33(2):244-250 doi: 10.3724/SP.J.1218.2011.00244
                        [20] Liu J, Chen, H, Wensing, P M, Zhang W. Instantaneous capture input for balancing the variable height inverted pendulum. IEEE Robotics and Automation Letters, 2021, 6(4): 7421-7428. doi: 10.1109/LRA.2021.3097074
                        [21] Caron S, Escande A, Lanari L, Mallein B. Capturability-based pattern generation for walking with variable height. IEEE Transactions on Robotics, 2019, 36(2): 517-536.
                        [22] Koolen T, De Boer T, Rebula J, Goswami A, Pratt J. Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models. The International Journal of Robotics Research, 2012, 31(9): 1094-1113. doi: 10.1177/0278364912452673
                        [23] Liu J, Chen, H, Wensing, P M, Zhang W. Quadruped capturability and push recovery via a switched-systems characterization of dynamic balance. IEEE Transactions on Robotics, 2023, 39(3):2111-2130. doi: 10.1109/TRO.2023.3240622
                        [24] 嚴衛生, 陳樂鵬, 崔榮鑫, 許暉, 張守旭, 馬飛宇. 一種水下機器人定向和穩定行走方法, 中國專利, ZL202110837326.X, 2022-11-22.
                      2. 加載中
                      3. 計量
                        • 文章訪問數:  477
                        • HTML全文瀏覽量:  116
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2022-11-16
                        • 錄用日期:  2023-03-03
                        • 網絡出版日期:  2023-10-24

                        目錄

                          /

                          返回文章
                          返回