基于捕獲點(diǎn)理論的混合驅動(dòng)水下刀鋒腿機器人穩定性判據
doi: 10.16383/j.aas.c220889
-
1.
西北工業(yè)大學(xué)航海學(xué)院 西安 710072
A Stability Criterion for Hybrid-driven Underwater Bladed Legged Robot Based on Capture Point Theory
-
1.
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072
-
摘要: 由8個(gè)推進(jìn)器和6條刀鋒腿混合驅動(dòng)的水下機器人可在水底或水下結構物表面上行走. 所提方法旨在研究這類(lèi)機器人運動(dòng)穩定性的評判準則, 即穩定性判據. 現有的穩定性判據多集中于同一機構(腿)驅動(dòng)的陸地機器人, 未涉及混合驅動(dòng)的水下刀鋒腿機器人. 針對該問(wèn)題, 提出了基于捕獲點(diǎn)理論的混合驅動(dòng)水下刀鋒腿機器人穩定性判據. 首先, 在建立混合驅動(dòng)水下滾動(dòng)倒立擺模型的基礎上, 利用機器人運動(dòng)狀態(tài)預測擺動(dòng)腿和支撐腿切換瞬間機器人的動(dòng)能; 然后, 根據推進(jìn)器所能提供的推力范圍, 計算迫使機器人靜止的捕獲點(diǎn)變化范圍, 即獲取捕獲域; 最后, 根據捕獲域與支撐域的空間關(guān)系, 判斷機器人是否穩定, 并計算機器人的穩定裕度. 水下實(shí)驗結果表明, 所提出的穩定性判據具有較好的充要性和普適性.
-
關(guān)鍵詞:
- 混合驅動(dòng) /
- 水下刀鋒腿機器人 /
- 穩定性判據 /
- 水下滾動(dòng)倒立擺 /
- 捕獲域
Abstract: The underwater bladed legged robot hybrid-driven by 8 thrusters and 6 blade legs can walk on seafloor and the surface of underwater structure. This paper aims at investigating the evaluation criteria of the motion stability of this kind of robot, where the evaluation criteria is called as stability criterion. The existing stability criterions mainly focus on the robot that is driven by single mechanisms (legs), and not consider the hybrid-driven underwater bladed legged robot. Using capture point theory, we propose a stability criterion for hybrid-driven underwater bladed legged robot. Firstly, a hybrid-driven rolling inverted pendulum model that can reflect the dynamic characteristics of the robot is proposed, and the kinetic energy of the robot that the swinging legs are just touching the ground is predicted. Then, according to the maximum and minimum thrusts of the thrusters, we calculate the variation range of the expected capture point that can enforce the kinetic energy of the robot becoming zero, and the variation range is called as capture domain. Finally, the spatial relationship between the capture domain and the support domain can be employed to judge whether the robot is stable, and calculate the stability margin of the robot. Underwater experimental results show that the proposed stability criterion has better sufficiency and universality. -
圖 5 混合驅動(dòng)水下刀鋒腿機器人的受力分析
Fig. 5 Forces analysis of the hybrid-driven underwater bladed legged robot
圖 9 混合驅動(dòng)水下刀鋒腿機器人穩定性判據框圖
Fig. 9 Block diagram of stability criterion for hybrid-driven underwater bladed legged robot
圖 12 5 組互異垂推推力的水下刀鋒腿機器人穩定裕度
Fig. 12 Stability margin of underwater bladed legged robot in five kinds of different vertical thrusters
圖 13 5組實(shí)驗中水下刀鋒腿機器人穩定裕度平均值
Fig. 13 Average stability margin of underwater bladed legged robot in five experiments
圖 14 15組互異推力上下界的穩定裕度
Fig. 14 Stability margin under fifteen different upper and lower bounds of thrust
圖 15 15組互異推力上下界的穩定裕度平均值
Fig. 15 Average value of stability margin under 15 groups of different thrust upper and lower bounds
表 1 15組實(shí)驗中推力上下界(N)
Table 1 Upper and lower bounds of thrust in 15 groups of experiments (N)
實(shí)例 垂向推進(jìn)器
推力上界垂向推進(jìn)器
推力下界水平推進(jìn)器
推力上界水平推進(jìn)器
推力下界1 ?10 ?10 0 0 2 ?10 ?10 1 ?1 3 ?10 ?10 2 ?2 4 ?10 ?10 5 ?5 5 ?9 ?11 0 0 6 ?6 ?14 0 0 7 0 ?20 0 0 8 30 ?20 0 0 9 30 ?25 0 0 10 30 ?30 0 0 11 30 ?40 0 0 12 30 ?60 0 0 13 30 ?100 0 0 14 30 ?30 5 ?5 15 30 ?30 30 ?30 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Ma F, Yan W, Chen L, Cui R. CPG-based motion planning of hybrid underwater hexapod robot for wall climbing and transition. IEEE Robotics and Automation Letters, 2022, 7(4): 12299?12306 doi: 10.1109/LRA.2022.3216233 [2] 陳懇, 付成龍. 仿人機器人理論與技術(shù). 清華大學(xué)出版社, 2010. 56?64Chen Ken, Fu Cheng-Long. Humanoid Robot Theory and Technology. Beijing: Tsinghua University Press, 2010. 56?64 [3] 田彥濤, 孫中波, 李宏揚, 王靜. 動(dòng)態(tài)雙足機器人的控制與優(yōu)化研究進(jìn)展. 自動(dòng)化學(xué)報, 2016, 42(8): 1142?1157 doi: 10.16383/j.aas.2016.c150821Tian Yan-Tao, Sun Zhong-Bo, Li Hong-Yang, Wang Jing. A review of optimal and control strategies for dynamic walking bipedal robots. Acta Automatica Sinica, 2016, 42(8): 1142?1157 doi: 10.16383/j.aas.2016.c150821 [4] Hu C J, Huang C K, Lin P C. A torque-actuated dissipative spring loaded inverted pendulum model with rolling contact and its use as the template for design and dynamic behavior generation on a hexapod robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Seattle, Washington, USA: IEEE, 2015. 5177?5183 [5] Lu W, Yu M, Lin P. Clock-torqued rolling SLIP model and its application to variable-speed running in a hexapod robot. IEEE Transactions on Robotics, 2018, 34(6): 1643?1650 doi: 10.1109/TRO.2018.2862903 [6] Calisti M, Laschi C. Morphological and control criteria for self-stable underwater hopping. Bioinspiration and Biomimetics, 2018, 13: Article No. 016001 [7] Picardi G, Lovecchio R, Calisti M. Towards autonomous area inspection with a bio-inspired underwater legged robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic: IEEE, 2021. 930?935 [8] Vukobratovi M, Borovac B. Zero-moment point-thirty five years of its life. International Journal of Humanoid Robotics, 2004, 1(1): 157?173 doi: 10.1142/S0219843604000083 [9] Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science and Business Media, 2013. 8?32 [10] Grizzle J W, Abba G, Plestan F. Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control, 2001, 46(1): 51?64 doi: 10.1109/9.898695 [11] Fu C, Chen K. Section-map stability criterion for biped robots part I: Theory. In: Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA). Harbin, China: IEEE, 2007. 1529?1534 [12] Hirukawa H, Hattori S, Harada K, Kajita S, Kaneko K, Kanehiro F, et al. A universal stability criterion of the foot contact of legged robots-adios ZMP. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Orlando, USA: IEEE, 2006. 1976?1983 [13] Harada K, Kajita S, Kaneko K, Hirukawa H. Dynamics and balance of a humanoid robot during manipulation tasks. IEEE Transactions on Robotics, 2006, 22(3): 568?575 doi: 10.1109/TRO.2006.870649 [14] Audren H, Kheddar A. 3-D robust stability polyhedron in multicontact. IEEE Transactions on Robotics, 2018, 34(2): 388?403 doi: 10.1109/TRO.2022.3186804 [15] Jenelten F, Grandia R, Farshidian F, Hutter M. TAMOLS: Terrain-aware motion optimization for legged systems. IEEE Transactions on Robotics, 2022, 38(6): 3395?3413 doi: 10.1109/TRO.2017.2786683 [16] Winkler W, Farshidian F, Pardo D, Neunert M, Buchli J. Fast trajectory optimization for legged robots using vertex-based zmp constraints. IEEE Robotics and Automation Letters, 2017, 2(4): 2201?2208 doi: 10.1109/LRA.2017.2723931 [17] Viragh Y, Bjelonic M, Bellicoso C, Jenelten F, Hutter M. Trajectory optimization for wheeled-legged quadrupedal robots using linearized zmp constraints. IEEE Robotics and Automation Letters, 2019, 4(2): 1633?1640 doi: 10.1109/LRA.2019.2896721 [18] Pratt J, Koolen T, Boer T, Rebula J, Cotton S, Carff J, et al. Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid. The International Journal of Robotics Research, 2012, 31(10): 1117?1133 doi: 10.1177/0278364912452762 [19] 劉飛, 陳小平. 基于軌道能量模型的步行機器人平衡恢復方法. 機器人, 2011, 33(2): 244?250 doi: 10.3724/SP.J.1218.2011.00244Liu Fei, Chen Xiao-Ping. Balance recovery method of walking robot based on orbital energy model. ROBOT, 2011, 33(2): 244?250 doi: 10.3724/SP.J.1218.2011.00244 [20] Liu J, Chen H, Wensing P M, Zhang W. Instantaneous capture input for balancing the variable height inverted pendulum. IEEE Robotics and Automation Letters, 2021, 6(4): 7421?7428 doi: 10.1109/LRA.2021.3097074 [21] Caron S, Escande A, Lanari L, Mallein B. Capturability-based pattern generation for walking with variable height. IEEE Transactions on Robotics, 2019, 36(2): 517?536 [22] Koolen T, De Boer T, Rebula J, Goswami A, Pratt J. Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models. The International Journal of Robotics Research, 2012, 31(9): 1094?1113 doi: 10.1177/0278364912452673 [23] Liu J, Chen H, Wensing P M, Zhang W. Quadruped capturability and push recovery via a switched-systems characterization of dynamic balance. IEEE Transactions on Robotics, 2023, 39(3): 2111?2130 doi: 10.1109/TRO.2023.3240622 [24] 嚴衛生, 陳樂(lè )鵬, 崔榮鑫, 許暉, 張守旭, 馬飛宇. 一種水下機器人定向和穩定行走方法, 中國專(zhuān)利, ZL202110837326.X, 2022-11-22Yan Wei-Sheng, Chen Le-Peng, Cui Rong-Xin, Xu Hui, Zhang Shou-Xu, Ma Fei-Yu. A Directional and Stable Walking Method for Underwater Robots, China Patent ZL202110837326.X, November 22, 2022