1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              基于捕獲點(diǎn)理論的混合驅動(dòng)水下刀鋒腿機器人穩定性判據

              陳樂(lè )鵬 崔榮鑫 嚴衛生 馬飛宇

              陳樂(lè )鵬, 崔榮鑫, 嚴衛生, 馬飛宇. 基于捕獲點(diǎn)理論的混合驅動(dòng)水下刀鋒腿機器人穩定性判據. 自動(dòng)化學(xué)報, 2024, 50(8): 1565?1576 doi: 10.16383/j.aas.c220889
              引用本文: 陳樂(lè )鵬, 崔榮鑫, 嚴衛生, 馬飛宇. 基于捕獲點(diǎn)理論的混合驅動(dòng)水下刀鋒腿機器人穩定性判據. 自動(dòng)化學(xué)報, 2024, 50(8): 1565?1576 doi: 10.16383/j.aas.c220889
              Chen Le-Peng, Cui Rong-Xin, Yan Wei-Sheng, Ma Fei-Yu. A stability criterion for hybrid-driven underwater bladed legged robot based on capture point theory. Acta Automatica Sinica, 2024, 50(8): 1565?1576 doi: 10.16383/j.aas.c220889
              Citation: Chen Le-Peng, Cui Rong-Xin, Yan Wei-Sheng, Ma Fei-Yu. A stability criterion for hybrid-driven underwater bladed legged robot based on capture point theory. Acta Automatica Sinica, 2024, 50(8): 1565?1576 doi: 10.16383/j.aas.c220889

              基于捕獲點(diǎn)理論的混合驅動(dòng)水下刀鋒腿機器人穩定性判據

              doi: 10.16383/j.aas.c220889
              基金項目: 國家自然科學(xué)基金 (61733014, U22A2066, U1813225, U21B2047), 陜西省重點(diǎn)研發(fā)計劃 (2022ZDLGY03-05) 資助
              詳細信息
                作者簡(jiǎn)介:

                陳樂(lè )鵬:西北工業(yè)大學(xué)航海學(xué)院博士研究生. 主要研究方向為水下機器人建模與控制. E-mail: chenlepeng@mail.nwpu.edu.cn

                崔榮鑫:西北工業(yè)大學(xué)航海學(xué)院教授. 主要研究方向為水下機器人智能控制, 自主感知與規劃, 多機器人協(xié)作. 本文通信作者. E-mail: r.cui@nwpu.edu.cn

                嚴衛生:西北工業(yè)大學(xué)航海學(xué)院教授. 主要研究方向為水下航行器導引, 導航與控制. E-mail: wsyan@nwpu.edu.cn

                馬飛宇:西北工業(yè)大學(xué)航海學(xué)院博士研究生. 主要研究方向為水下機器人控制與規劃. E-mail: mfy_nwpu@mail.nwpu.edu.cn

              A Stability Criterion for Hybrid-driven Underwater Bladed Legged Robot Based on Capture Point Theory

              Funds: Supported by National Natural Science Foundation of China (61733014, U22A2066, U1813225, U21B2047) and Key Research and Development Program of Shaanxi Province (2022ZDLGY03-05)
              More Information
                Author Bio:

                CHEN Le-Peng Ph.D. candidate at the School of Marine Science and Technology, Northwestern Polytechnical University. His research interest covers modeling and control of underwater robots

                CUI Rong-Xin Professor at the School of Marine Science and Technology, Northwestern Polytechnical University. His research interest covers intelligent control, perception, and planning for underwater robots, and the cooperation for multiple robots. Corresponding author of this paper

                YAN Wei-Sheng Professor at the School of Marine Science and Technology, Northwestern Polytechnical University. His research interest covers guidance, navigation, and control of underwater vehicles

                MA Fei-Yu Ph.D. candidate at the School of Marine Science and Technology, Northwestern Polytechnical University. Her research interest covers control and planning of underwater vehicles

              • 摘要: 由8個(gè)推進(jìn)器和6條刀鋒腿混合驅動(dòng)的水下機器人可在水底或水下結構物表面上行走. 所提方法旨在研究這類(lèi)機器人運動(dòng)穩定性的評判準則, 即穩定性判據. 現有的穩定性判據多集中于同一機構(腿)驅動(dòng)的陸地機器人, 未涉及混合驅動(dòng)的水下刀鋒腿機器人. 針對該問(wèn)題, 提出了基于捕獲點(diǎn)理論的混合驅動(dòng)水下刀鋒腿機器人穩定性判據. 首先, 在建立混合驅動(dòng)水下滾動(dòng)倒立擺模型的基礎上, 利用機器人運動(dòng)狀態(tài)預測擺動(dòng)腿和支撐腿切換瞬間機器人的動(dòng)能; 然后, 根據推進(jìn)器所能提供的推力范圍, 計算迫使機器人靜止的捕獲點(diǎn)變化范圍, 即獲取捕獲域; 最后, 根據捕獲域與支撐域的空間關(guān)系, 判斷機器人是否穩定, 并計算機器人的穩定裕度. 水下實(shí)驗結果表明, 所提出的穩定性判據具有較好的充要性和普適性.
              • 圖  1  混合驅動(dòng)水下刀鋒腿機器人系統結構

                Fig.  1  Diagram of hybrid-driven underwater bladed legged robot

                圖  2  倒立擺系統及參數定義

                Fig.  2  Inverted pendulum and parameter definition

                圖  3  兩種時(shí)刻下刀鋒腿的旋轉角度

                Fig.  3  Rotation angles of bladed leg under two moments

                圖  4  線(xiàn)性倒立擺與滾動(dòng)倒立擺

                Fig.  4  Linear and rolling inverted pendulums

                圖  5  混合驅動(dòng)水下刀鋒腿機器人的受力分析

                Fig.  5  Forces analysis of the hybrid-driven underwater bladed legged robot

                圖  6  ${{t}_{2}}$時(shí)刻支撐域示意圖

                Fig.  6  Diagram of support domain at ${{t}_{2}}$ moment

                圖  7  支撐域與捕獲域示意圖

                Fig.  7  Diagram of support domain and capture domain

                圖  8  支撐域與捕獲域之間的4類(lèi)重疊情況

                Fig.  8  Four types of overlap between support domain and capture domain

                圖  9  混合驅動(dòng)水下刀鋒腿機器人穩定性判據框圖

                Fig.  9  Block diagram of stability criterion for hybrid-driven underwater bladed legged robot

                圖  10  水池實(shí)驗場(chǎng)景圖

                Fig.  10  Scene of pool experiment

                圖  11  池底行走連拍圖

                Fig.  11  Snapshots of walking on pool bottom

                圖  12  5 組互異垂推推力的水下刀鋒腿機器人穩定裕度

                Fig.  12  Stability margin of underwater bladed legged robot in five kinds of different vertical thrusters

                圖  13  5組實(shí)驗中水下刀鋒腿機器人穩定裕度平均值

                Fig.  13  Average stability margin of underwater bladed legged robot in five experiments

                圖  14  15組互異推力上下界的穩定裕度

                Fig.  14  Stability margin under fifteen different upper and lower bounds of thrust

                圖  15  15組互異推力上下界的穩定裕度平均值

                Fig.  15  Average value of stability margin under 15 groups of different thrust upper and lower bounds

                表  1  15組實(shí)驗中推力上下界(N)

                Table  1  Upper and lower bounds of thrust in 15 groups of experiments (N)

                實(shí)例 垂向推進(jìn)器
                推力上界
                垂向推進(jìn)器
                推力下界
                水平推進(jìn)器
                推力上界
                水平推進(jìn)器
                推力下界
                1 ?10 ?10 0 0
                2 ?10 ?10 1 ?1
                3 ?10 ?10 2 ?2
                4 ?10 ?10 5 ?5
                5 ?9 ?11 0 0
                6 ?6 ?14 0 0
                7 0 ?20 0 0
                8 30 ?20 0 0
                9 30 ?25 0 0
                10 30 ?30 0 0
                11 30 ?40 0 0
                12 30 ?60 0 0
                13 30 ?100 0 0
                14 30 ?30 5 ?5
                15 30 ?30 30 ?30
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Ma F, Yan W, Chen L, Cui R. CPG-based motion planning of hybrid underwater hexapod robot for wall climbing and transition. IEEE Robotics and Automation Letters, 2022, 7(4): 12299?12306 doi: 10.1109/LRA.2022.3216233
                        [2] 陳懇, 付成龍. 仿人機器人理論與技術(shù). 清華大學(xué)出版社, 2010. 56?64

                        Chen Ken, Fu Cheng-Long. Humanoid Robot Theory and Technology. Beijing: Tsinghua University Press, 2010. 56?64
                        [3] 田彥濤, 孫中波, 李宏揚, 王靜. 動(dòng)態(tài)雙足機器人的控制與優(yōu)化研究進(jìn)展. 自動(dòng)化學(xué)報, 2016, 42(8): 1142?1157 doi: 10.16383/j.aas.2016.c150821

                        Tian Yan-Tao, Sun Zhong-Bo, Li Hong-Yang, Wang Jing. A review of optimal and control strategies for dynamic walking bipedal robots. Acta Automatica Sinica, 2016, 42(8): 1142?1157 doi: 10.16383/j.aas.2016.c150821
                        [4] Hu C J, Huang C K, Lin P C. A torque-actuated dissipative spring loaded inverted pendulum model with rolling contact and its use as the template for design and dynamic behavior generation on a hexapod robot. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Seattle, Washington, USA: IEEE, 2015. 5177?5183
                        [5] Lu W, Yu M, Lin P. Clock-torqued rolling SLIP model and its application to variable-speed running in a hexapod robot. IEEE Transactions on Robotics, 2018, 34(6): 1643?1650 doi: 10.1109/TRO.2018.2862903
                        [6] Calisti M, Laschi C. Morphological and control criteria for self-stable underwater hopping. Bioinspiration and Biomimetics, 2018, 13: Article No. 016001
                        [7] Picardi G, Lovecchio R, Calisti M. Towards autonomous area inspection with a bio-inspired underwater legged robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, Czech Republic: IEEE, 2021. 930?935
                        [8] Vukobratovi M, Borovac B. Zero-moment point-thirty five years of its life. International Journal of Humanoid Robotics, 2004, 1(1): 157?173 doi: 10.1142/S0219843604000083
                        [9] Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer Science and Business Media, 2013. 8?32
                        [10] Grizzle J W, Abba G, Plestan F. Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control, 2001, 46(1): 51?64 doi: 10.1109/9.898695
                        [11] Fu C, Chen K. Section-map stability criterion for biped robots part I: Theory. In: Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA). Harbin, China: IEEE, 2007. 1529?1534
                        [12] Hirukawa H, Hattori S, Harada K, Kajita S, Kaneko K, Kanehiro F, et al. A universal stability criterion of the foot contact of legged robots-adios ZMP. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Orlando, USA: IEEE, 2006. 1976?1983
                        [13] Harada K, Kajita S, Kaneko K, Hirukawa H. Dynamics and balance of a humanoid robot during manipulation tasks. IEEE Transactions on Robotics, 2006, 22(3): 568?575 doi: 10.1109/TRO.2006.870649
                        [14] Audren H, Kheddar A. 3-D robust stability polyhedron in multicontact. IEEE Transactions on Robotics, 2018, 34(2): 388?403 doi: 10.1109/TRO.2022.3186804
                        [15] Jenelten F, Grandia R, Farshidian F, Hutter M. TAMOLS: Terrain-aware motion optimization for legged systems. IEEE Transactions on Robotics, 2022, 38(6): 3395?3413 doi: 10.1109/TRO.2017.2786683
                        [16] Winkler W, Farshidian F, Pardo D, Neunert M, Buchli J. Fast trajectory optimization for legged robots using vertex-based zmp constraints. IEEE Robotics and Automation Letters, 2017, 2(4): 2201?2208 doi: 10.1109/LRA.2017.2723931
                        [17] Viragh Y, Bjelonic M, Bellicoso C, Jenelten F, Hutter M. Trajectory optimization for wheeled-legged quadrupedal robots using linearized zmp constraints. IEEE Robotics and Automation Letters, 2019, 4(2): 1633?1640 doi: 10.1109/LRA.2019.2896721
                        [18] Pratt J, Koolen T, Boer T, Rebula J, Cotton S, Carff J, et al. Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid. The International Journal of Robotics Research, 2012, 31(10): 1117?1133 doi: 10.1177/0278364912452762
                        [19] 劉飛, 陳小平. 基于軌道能量模型的步行機器人平衡恢復方法. 機器人, 2011, 33(2): 244?250 doi: 10.3724/SP.J.1218.2011.00244

                        Liu Fei, Chen Xiao-Ping. Balance recovery method of walking robot based on orbital energy model. ROBOT, 2011, 33(2): 244?250 doi: 10.3724/SP.J.1218.2011.00244
                        [20] Liu J, Chen H, Wensing P M, Zhang W. Instantaneous capture input for balancing the variable height inverted pendulum. IEEE Robotics and Automation Letters, 2021, 6(4): 7421?7428 doi: 10.1109/LRA.2021.3097074
                        [21] Caron S, Escande A, Lanari L, Mallein B. Capturability-based pattern generation for walking with variable height. IEEE Transactions on Robotics, 2019, 36(2): 517?536
                        [22] Koolen T, De Boer T, Rebula J, Goswami A, Pratt J. Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models. The International Journal of Robotics Research, 2012, 31(9): 1094?1113 doi: 10.1177/0278364912452673
                        [23] Liu J, Chen H, Wensing P M, Zhang W. Quadruped capturability and push recovery via a switched-systems characterization of dynamic balance. IEEE Transactions on Robotics, 2023, 39(3): 2111?2130 doi: 10.1109/TRO.2023.3240622
                        [24] 嚴衛生, 陳樂(lè )鵬, 崔榮鑫, 許暉, 張守旭, 馬飛宇. 一種水下機器人定向和穩定行走方法, 中國專(zhuān)利, ZL202110837326.X, 2022-11-22

                        Yan Wei-Sheng, Chen Le-Peng, Cui Rong-Xin, Xu Hui, Zhang Shou-Xu, Ma Fei-Yu. A Directional and Stable Walking Method for Underwater Robots, China Patent ZL202110837326.X, November 22, 2022
                      2. 加載中
                      3. 圖(15) / 表(1)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  3777
                        • HTML全文瀏覽量:  183
                        • PDF下載量:  87
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2022-11-16
                        • 錄用日期:  2023-03-03
                        • 網(wǎng)絡(luò )出版日期:  2023-10-24
                        • 刊出日期:  2024-08-22

                        目錄

                          /

                          返回文章
                          返回