含有輸入時(shí)滯的非線(xiàn)性系統的輸出反饋采樣控制
doi: 10.16383/j.aas.c220774 cstr: 32138.14.j.aas.c220774
-
1.
南京理工大學(xué)自動(dòng)化學(xué)院 南京 210094
Sampled-data Output Feedback Control for Nonlinear Systems With Input Delay
-
1.
School of Automation, Nanjing University of Science and Technology, Nanjing 210094
-
摘要: 針對含有輸入時(shí)滯和低階非線(xiàn)性項的非線(xiàn)性系統, 提出一種基于采樣機制的無(wú)記憶輸出反饋控制方法. 該方法移除了傳統預測控制方法預測映射難以確定的限制, 同時(shí)避免了時(shí)滯依賴(lài)方法對過(guò)去時(shí)刻狀態(tài)信息的依賴(lài)性, 在實(shí)際中更易實(shí)現. 首先, 根據系統輸出在采樣時(shí)刻的信息, 利用加冪積分技術(shù)和齊次占優(yōu)思想設計了無(wú)記憶輸出反饋采樣控制器. 然后, 利用齊次系統理論提出了閉環(huán)系統的穩定性條件. 最后, 仿真結果驗證了所提方法的有效性和優(yōu)越性.
-
關(guān)鍵詞:
- 無(wú)記憶采樣控制 /
- 輸出反饋 /
- 低階非線(xiàn)性項 /
- 輸入時(shí)滯
Abstract: For nonlinear systems subject to input delay and low-order nonlinearities, a memoryless sampled-data output feedback control approach is proposed. This method removes the limitations that the traditional predictor mapping is difficult to determine and avoids the dependence on past state information, which is easy to be implemented. Firstly, based on the output information at sampling points, the memoryless sampled-data output feedback controller is successfully constructed by using the adding a power integrator technique and the homogeneous domination approach. Then, the stability conditions of the closed-loop system are proposed with the help of the homogeneous system theory. Finally, the effectiveness and advantages of the proposed method are demonstrated by using simulation examples. -
圖 4 系統(90)中狀態(tài)$ x_1 $在不同控制方法下的曲線(xiàn)
Fig. 4 The curve of state $ x_1 $ in system (90) under different control methods
圖 5 系統(90)中狀態(tài)$ x_2 $在不同控制方法下的曲線(xiàn)
Fig. 5 The curve of state $ x_2 $ in system (90) under different control methods
圖 9 系統(92)中狀態(tài)$ x_1 $在不同控制方法下的曲線(xiàn)
Fig. 9 The curve of state $ x_1 $ in system (92) under different control methods
圖 10 系統(92)中狀態(tài)$ x_2 $在不同控制方法下的曲線(xiàn)
Fig. 10 The curve of state $ x_2 $ in system (92) under different control methods
亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 王煥清, 陳明, 劉曉平. 一類(lèi)非線(xiàn)性系統模糊自適應固定時(shí)間量化反饋控制. 自動(dòng)化學(xué)報, 2021, 47(12): 2823?2830 doi: 10.16383/j.aas.c190681Wang Huan-Qing, Chen Ming, Liu Xiao-Ping. Fuzzy adaptive fixed-time quantized feedback control for a class of nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 2823?2830 doi: 10.16383/j.aas.c190681 [2] Liu L, Chen A Q, Liu Y J. Adaptive fuzzy output-feedback control for switched uncertain nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 2022, 52(8): 7340?7351 doi: 10.1109/TCYB.2021.3050510 [3] Wang Q F, Zhang Z Q, Xie X J. Globally adaptive neural network tracking for uncertain output-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 814?823 doi: 10.1109/TNNLS.2021.3102274 [4] Qian C J, Lin W. Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm. IEEE Transactions on Automatic Control, 2002, 47(10): 1710?1715 doi: 10.1109/TAC.2002.803542 [5] Yan X H, Liu Y G, Zheng W X. Global adaptive output-feedback stabilization for a class of uncertain nonlinear systems with unknown growth rate and unknown output function. Automatica, 2019, 104: 173?181 doi: 10.1016/j.automatica.2019.02.040 [6] Li H F, Zhang X F, Liu S. An improved dynamic gain method to global regulation of feedforward nonlinear systems. IEEE Transactions on Automatic Control, 2022, 67(6): 2981?2988 doi: 10.1109/TAC.2021.3088787 [7] Xie X J, Duan N, Zhao C R. A combined homogeneous domination and sign function approach to output-feedback stabilization of stochastic high-order nonlinear systems. IEEE Transactions on Automatic Control, 2014, 59(5): 1303?1309 doi: 10.1109/TAC.2013.2286912 [8] Zhang X H, Zhang K M, Xie X J. Finite-time output feedback stabilization of nonlinear high-order feedforward systems. International Journal of Robust and Nonlinear Control, 2016, 26(8): 1794?1814 doi: 10.1002/rnc.3384 [9] Liu Z G, Tian Y P, Sun Z Y. An adaptive homogeneous domination method to time-varying control of nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(1): 527?540 doi: 10.1002/rnc.5806 [10] Zhai J Y, Liu C. Global dynamic output feedback stabilization for a class of high-order nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(3): 1828?1843 doi: 10.1002/rnc.5911 [11] Xie X J, Wu Y, Hou Z G. Further results on adaptive practical tracking for high-order nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 2022, 52(10): 9978?9985 doi: 10.1109/TCYB.2021.3069865 [12] Lin X Z, Xue J L, Zheng E L, Park J H. State-feedback stabilization for high-order output-constrained switched nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(12): 7401?7410 doi: 10.1109/TSMC.2022.3154753 [13] 劉玉發(fā), 劉勇華, 蘇春翌, 魯仁全. 一類(lèi)具有未知冪次的高階不確定非線(xiàn)性系統的自適應控制. 自動(dòng)化學(xué)報, 2022, 48(8): 2018?2027 doi: 10.16383/j.aas.c200893Liu Yu-Fa, Liu Yong-Hua, Su Chun-Yi, Lu Ren-Quan. Adaptive control for a class of high-order uncertain nonlinear systems with unknown powers. Acta Automatica Sinica, 2022, 48(8): 2018?2027 doi: 10.16383/j.aas.c200893 [14] 黃亞欣, 張星慧, 蔣蒙蒙. 帶有輸入和狀態(tài)時(shí)滯的高階非線(xiàn)性前饋系統的自適應控制. 自動(dòng)化學(xué)報, 2017, 43(7): 1273?1279 doi: 10.16383/j.aas.2017.e140146Huang Ya-Xin, Zhang Xing-Hui, Jiang Meng-Meng. Adaptive control for high-order nonlinear feedforward systems with input and state delays. Acta Automatica Sinica, 2017, 43(7): 1273?1279 doi: 10.16383/j.aas.2017.e140146 [15] Krstic M. Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(2): 287?303 doi: 10.1109/TAC.2009.2034923 [16] Karafyllis I. Stabilization by means of approximate predictors for systems with delayed input. SIAM Journal on Control and Optimization, 2011, 49(3): 1100?1123 doi: 10.1137/100781973 [17] Mazenc F, Bliman P A. Backstepping design for time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(1): 149?154 doi: 10.1109/TAC.2005.861701 [18] Zhou B, Yang X F. Global stabilization of feedforward nonlinear time-delay systems by bounded controls. Automatica, 2018, 88: 21?30 doi: 10.1016/j.automatica.2017.10.021 [19] Zhang M X, Liu L L, Zhao C R. Memoryless output feedback control for a class of stochastic nonlinear systems with large delays in the state and input. Systems and Control Letters, 2023, 171: Article No. 105431 doi: 10.1016/j.sysconle.2022.105431 [20] Zhao C R, Lin W. Global stabilization by memoryless feedback for nonlinear systems with a limited input delay and large state delays. IEEE Transactions on Automatic Control, 2021, 66(8): 3702?3709 doi: 10.1109/TAC.2020.3021053 [21] Meng Q T, Ma Q, Shi Y. Fixed-time stabilization for nonlinear systems with low-order and high-order nonlinearities via event-triggered control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(7): 3006?3015 doi: 10.1109/TCSI.2022.3164552 [22] 都海波, 李世華, 錢(qián)春江, 何怡剛. 基于采樣控制的一類(lèi)本質(zhì)非線(xiàn)性系統的全局鎮定. 自動(dòng)化學(xué)報, 2014, 40(2): 379?384Du Hai-Bo, Li Shi-Hua, Qian Chun-Jiang, He Yi-Gang. Global stabilization of a class of inherently nonlinear systems under sampled-data control. Acta Automatica Sinica, 2014, 40(2): 379?384 [23] Ne?i? D, Teel A R, Kokotovi? P V. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Systems and Control Letters, 1999, 38(4?5): 259?270 doi: 10.1016/S0167-6911(99)00073-0 [24] Qian C J, Du H B. Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control. IEEE Transactions on Automatic Control, 2012, 57(11): 2934?2939 doi: 10.1109/TAC.2012.2193707 [25] Zhai J Y, Du H B, Fei S M. Global sampled-data output feedback stabilisation for a class of nonlinear systems with unknown output function. International Journal of Control, 2016, 89(3): 469?480 doi: 10.1080/00207179.2015.1081294 [26] Li Z J, Zhao J. Output feedback stabilization for a general class of nonlinear systems via sampled-data control. International Journal of Robust and Nonlinear Control, 2018, 28(7): 2853?2867 doi: 10.1002/rnc.4053 [27] Bacciotti A, Rosier L. Liapunov Functions and Stability in Control Theory. New York: Springer, 2001. [28] Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge University Press, 1952. [29] Hermes H. Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. Differential Equations. New York: Marcel Dekker, 1991. 249?260