1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              含有輸入時(shí)滯的非線(xiàn)性系統的輸出反饋采樣控制

              馬倩 盛兆明 徐勝元

              馬倩, 盛兆明, 徐勝元. 含有輸入時(shí)滯的非線(xiàn)性系統的輸出反饋采樣控制. 自動(dòng)化學(xué)報, 2024, 50(9): 1772?1784 doi: 10.16383/j.aas.c220774
              引用本文: 馬倩, 盛兆明, 徐勝元. 含有輸入時(shí)滯的非線(xiàn)性系統的輸出反饋采樣控制. 自動(dòng)化學(xué)報, 2024, 50(9): 1772?1784 doi: 10.16383/j.aas.c220774
              Ma Qian, Sheng Zhao-Ming, Xu Sheng-Yuan. Sampled-data output feedback control for nonlinear systems with input delay. Acta Automatica Sinica, 2024, 50(9): 1772?1784 doi: 10.16383/j.aas.c220774
              Citation: Ma Qian, Sheng Zhao-Ming, Xu Sheng-Yuan. Sampled-data output feedback control for nonlinear systems with input delay. Acta Automatica Sinica, 2024, 50(9): 1772?1784 doi: 10.16383/j.aas.c220774

              含有輸入時(shí)滯的非線(xiàn)性系統的輸出反饋采樣控制

              doi: 10.16383/j.aas.c220774 cstr: 32138.14.j.aas.c220774
              基金項目: 國家自然科學(xué)基金(62173183)資助
              詳細信息
                作者簡(jiǎn)介:

                馬倩:南京理工大學(xué)自動(dòng)化學(xué)院教授. 主要研究方向為時(shí)滯系統、多智能體系統和非線(xiàn)性系統的分析與控制. 本文通信作者. E-mail: qianmashine@gmail.com

                盛兆明:南京理工大學(xué)自動(dòng)化學(xué)院博士研究生. 主要研究方向為非線(xiàn)性系統的分析與控制. E-mail: kzzxtmcszm@163.com

                徐勝元:南京理工大學(xué)自動(dòng)化學(xué)院教授. 主要研究方向為廣義系統、時(shí)滯系統和非線(xiàn)性系統的分析與控制. E-mail: syxu@njust.edu.cn

              Sampled-data Output Feedback Control for Nonlinear Systems With Input Delay

              Funds: Supported by National Natural Science Foundation of China (62173183)
              More Information
                Author Bio:

                MA Qian Professor at the School of Automation, Nanjing University of Science and Technology. Her research interest covers analysis and control of time-delay systems, multi-agent systems, and nonlinear systems. Corresponding author of this paper

                SHENG Zhao-Ming Ph.D. candidate at the School of Automation, Nanjing University of Science and Technology. His research interest covers analysis and control of nonlinear systems

                XU Sheng-Yuan Professor at the School of Automation, Nanjing University of Science and Technology. His research interest covers analysis and control of singular systems, time-delay systems, and nonlinear systems

              • 摘要: 針對含有輸入時(shí)滯和低階非線(xiàn)性項的非線(xiàn)性系統, 提出一種基于采樣機制的無(wú)記憶輸出反饋控制方法. 該方法移除了傳統預測控制方法預測映射難以確定的限制, 同時(shí)避免了時(shí)滯依賴(lài)方法對過(guò)去時(shí)刻狀態(tài)信息的依賴(lài)性, 在實(shí)際中更易實(shí)現. 首先, 根據系統輸出在采樣時(shí)刻的信息, 利用加冪積分技術(shù)和齊次占優(yōu)思想設計了無(wú)記憶輸出反饋采樣控制器. 然后, 利用齊次系統理論提出了閉環(huán)系統的穩定性條件. 最后, 仿真結果驗證了所提方法的有效性和優(yōu)越性.
              • 圖  1  系統(90)中狀態(tài)$ x_1 $的曲線(xiàn)

                Fig.  1  The curve of state $ x_1 $ in system (90)

                圖  2  系統(90)中狀態(tài)$ x_2 $的曲線(xiàn)

                Fig.  2  The curve of state $ x_2 $ in system (90)

                圖  3  系統(90)中控制輸入$ u $的曲線(xiàn)

                Fig.  3  The curve of control input $ u $ in system (90)

                圖  4  系統(90)中狀態(tài)$ x_1 $在不同控制方法下的曲線(xiàn)

                Fig.  4  The curve of state $ x_1 $ in system (90) under different control methods

                圖  5  系統(90)中狀態(tài)$ x_2 $在不同控制方法下的曲線(xiàn)

                Fig.  5  The curve of state $ x_2 $ in system (90) under different control methods

                圖  6  系統(92)中狀態(tài)$ x_1 $的曲線(xiàn)

                Fig.  6  The curve of state $ x_1 $ in system (92)

                圖  7  系統(92)中狀態(tài)$ x_2 $的曲線(xiàn)

                Fig.  7  The curve of state $ x_2 $ in system (92)

                圖  8  系統(92)中控制輸入$ u $的曲線(xiàn)

                Fig.  8  The curve of control input $ u $ in system (92)

                圖  9  系統(92)中狀態(tài)$ x_1 $在不同控制方法下的曲線(xiàn)

                Fig.  9  The curve of state $ x_1 $ in system (92) under different control methods

                圖  10  系統(92)中狀態(tài)$ x_2 $在不同控制方法下的曲線(xiàn)

                Fig.  10  The curve of state $ x_2 $ in system (92) under different control methods

                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] 王煥清, 陳明, 劉曉平. 一類(lèi)非線(xiàn)性系統模糊自適應固定時(shí)間量化反饋控制. 自動(dòng)化學(xué)報, 2021, 47(12): 2823?2830 doi: 10.16383/j.aas.c190681

                        Wang Huan-Qing, Chen Ming, Liu Xiao-Ping. Fuzzy adaptive fixed-time quantized feedback control for a class of nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 2823?2830 doi: 10.16383/j.aas.c190681
                        [2] Liu L, Chen A Q, Liu Y J. Adaptive fuzzy output-feedback control for switched uncertain nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 2022, 52(8): 7340?7351 doi: 10.1109/TCYB.2021.3050510
                        [3] Wang Q F, Zhang Z Q, Xie X J. Globally adaptive neural network tracking for uncertain output-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 814?823 doi: 10.1109/TNNLS.2021.3102274
                        [4] Qian C J, Lin W. Output feedback control of a class of nonlinear systems: A nonseparation principle paradigm. IEEE Transactions on Automatic Control, 2002, 47(10): 1710?1715 doi: 10.1109/TAC.2002.803542
                        [5] Yan X H, Liu Y G, Zheng W X. Global adaptive output-feedback stabilization for a class of uncertain nonlinear systems with unknown growth rate and unknown output function. Automatica, 2019, 104: 173?181 doi: 10.1016/j.automatica.2019.02.040
                        [6] Li H F, Zhang X F, Liu S. An improved dynamic gain method to global regulation of feedforward nonlinear systems. IEEE Transactions on Automatic Control, 2022, 67(6): 2981?2988 doi: 10.1109/TAC.2021.3088787
                        [7] Xie X J, Duan N, Zhao C R. A combined homogeneous domination and sign function approach to output-feedback stabilization of stochastic high-order nonlinear systems. IEEE Transactions on Automatic Control, 2014, 59(5): 1303?1309 doi: 10.1109/TAC.2013.2286912
                        [8] Zhang X H, Zhang K M, Xie X J. Finite-time output feedback stabilization of nonlinear high-order feedforward systems. International Journal of Robust and Nonlinear Control, 2016, 26(8): 1794?1814 doi: 10.1002/rnc.3384
                        [9] Liu Z G, Tian Y P, Sun Z Y. An adaptive homogeneous domination method to time-varying control of nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(1): 527?540 doi: 10.1002/rnc.5806
                        [10] Zhai J Y, Liu C. Global dynamic output feedback stabilization for a class of high-order nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(3): 1828?1843 doi: 10.1002/rnc.5911
                        [11] Xie X J, Wu Y, Hou Z G. Further results on adaptive practical tracking for high-order nonlinear systems with full-state constraints. IEEE Transactions on Cybernetics, 2022, 52(10): 9978?9985 doi: 10.1109/TCYB.2021.3069865
                        [12] Lin X Z, Xue J L, Zheng E L, Park J H. State-feedback stabilization for high-order output-constrained switched nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(12): 7401?7410 doi: 10.1109/TSMC.2022.3154753
                        [13] 劉玉發(fā), 劉勇華, 蘇春翌, 魯仁全. 一類(lèi)具有未知冪次的高階不確定非線(xiàn)性系統的自適應控制. 自動(dòng)化學(xué)報, 2022, 48(8): 2018?2027 doi: 10.16383/j.aas.c200893

                        Liu Yu-Fa, Liu Yong-Hua, Su Chun-Yi, Lu Ren-Quan. Adaptive control for a class of high-order uncertain nonlinear systems with unknown powers. Acta Automatica Sinica, 2022, 48(8): 2018?2027 doi: 10.16383/j.aas.c200893
                        [14] 黃亞欣, 張星慧, 蔣蒙蒙. 帶有輸入和狀態(tài)時(shí)滯的高階非線(xiàn)性前饋系統的自適應控制. 自動(dòng)化學(xué)報, 2017, 43(7): 1273?1279 doi: 10.16383/j.aas.2017.e140146

                        Huang Ya-Xin, Zhang Xing-Hui, Jiang Meng-Meng. Adaptive control for high-order nonlinear feedforward systems with input and state delays. Acta Automatica Sinica, 2017, 43(7): 1273?1279 doi: 10.16383/j.aas.2017.e140146
                        [15] Krstic M. Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Transactions on Automatic Control, 2010, 55(2): 287?303 doi: 10.1109/TAC.2009.2034923
                        [16] Karafyllis I. Stabilization by means of approximate predictors for systems with delayed input. SIAM Journal on Control and Optimization, 2011, 49(3): 1100?1123 doi: 10.1137/100781973
                        [17] Mazenc F, Bliman P A. Backstepping design for time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(1): 149?154 doi: 10.1109/TAC.2005.861701
                        [18] Zhou B, Yang X F. Global stabilization of feedforward nonlinear time-delay systems by bounded controls. Automatica, 2018, 88: 21?30 doi: 10.1016/j.automatica.2017.10.021
                        [19] Zhang M X, Liu L L, Zhao C R. Memoryless output feedback control for a class of stochastic nonlinear systems with large delays in the state and input. Systems and Control Letters, 2023, 171: Article No. 105431 doi: 10.1016/j.sysconle.2022.105431
                        [20] Zhao C R, Lin W. Global stabilization by memoryless feedback for nonlinear systems with a limited input delay and large state delays. IEEE Transactions on Automatic Control, 2021, 66(8): 3702?3709 doi: 10.1109/TAC.2020.3021053
                        [21] Meng Q T, Ma Q, Shi Y. Fixed-time stabilization for nonlinear systems with low-order and high-order nonlinearities via event-triggered control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(7): 3006?3015 doi: 10.1109/TCSI.2022.3164552
                        [22] 都海波, 李世華, 錢(qián)春江, 何怡剛. 基于采樣控制的一類(lèi)本質(zhì)非線(xiàn)性系統的全局鎮定. 自動(dòng)化學(xué)報, 2014, 40(2): 379?384

                        Du Hai-Bo, Li Shi-Hua, Qian Chun-Jiang, He Yi-Gang. Global stabilization of a class of inherently nonlinear systems under sampled-data control. Acta Automatica Sinica, 2014, 40(2): 379?384
                        [23] Ne?i? D, Teel A R, Kokotovi? P V. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Systems and Control Letters, 1999, 38(4?5): 259?270 doi: 10.1016/S0167-6911(99)00073-0
                        [24] Qian C J, Du H B. Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control. IEEE Transactions on Automatic Control, 2012, 57(11): 2934?2939 doi: 10.1109/TAC.2012.2193707
                        [25] Zhai J Y, Du H B, Fei S M. Global sampled-data output feedback stabilisation for a class of nonlinear systems with unknown output function. International Journal of Control, 2016, 89(3): 469?480 doi: 10.1080/00207179.2015.1081294
                        [26] Li Z J, Zhao J. Output feedback stabilization for a general class of nonlinear systems via sampled-data control. International Journal of Robust and Nonlinear Control, 2018, 28(7): 2853?2867 doi: 10.1002/rnc.4053
                        [27] Bacciotti A, Rosier L. Liapunov Functions and Stability in Control Theory. New York: Springer, 2001.
                        [28] Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge University Press, 1952.
                        [29] Hermes H. Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. Differential Equations. New York: Marcel Dekker, 1991. 249?260
                      2. 加載中
                      3. 圖(10)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  1004
                        • HTML全文瀏覽量:  350
                        • PDF下載量:  194
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2022-09-28
                        • 錄用日期:  2023-04-12
                        • 網(wǎng)絡(luò )出版日期:  2023-08-21
                        • 刊出日期:  2024-09-19

                        目錄

                          /

                          返回文章
                          返回