形式背景上近似推理生成決策蘊涵研究
doi: 10.16383/j.aas.c220705 cstr: 32138.14.j.aas.c220705
-
1.
湘南學(xué)院數學(xué)與信息科學(xué)學(xué)院 郴州 423000
Study on the Approximate Reasoning Models of Decision Implication in Formal Decision Context
-
1.
College of Mathematics and Information Science, Xiangnan University, Chenzhou 423000
-
摘要: 基于形式背景獲取決策蘊涵、概念規則等知識是數據分析、機器學(xué)習的重要研究?jì)热葜? 首先, 利用屬性邏輯語(yǔ)義對決策蘊涵的特性進(jìn)行刻畫(huà). 其次, 在經(jīng)典二值邏輯框架下分析決策蘊涵、概念規則的基于全蘊涵三I推理思想及分離規則(Modus ponens, MP)和逆分離規則(Modus tonens, MT)的近似推理模式的特征, 證明決策蘊涵的MP、MT近似推理結論是決策蘊涵, 概念規則的MP、MT近似推理結論是概念規則等結論. 引進(jìn)屬性邏輯公式的偽距離, 在屬性邏輯偽距離空間中分析推理對象范圍參數變化對決策蘊涵MP、MT近似推理結論的影響. 最后, 提出若干通過(guò)MP、MT近似推理生成決策蘊涵、概念規則及擬決策蘊涵的模式和方法, 數值實(shí)驗驗證了所提方法的有效性.Abstract: It is one of the contents of data analysis and machine learning to obtain the knowledge of decision implication and conceptual rule from formal decision context. Firstly, attribute logic semantics is used to analyze the characteristics of decision implication. Secondly, in the classical binary logic framework, the characteristics of modus ponens (MP) and modus tonens (MT) approximate reasoning models based on the all implication three-I inference idea is analyzed. It is proved that the MP and MT approximate reasoning conclusions of decision implications are decisions implications, the MP and MT approximate reasoning conclusions of concept rules are concept rules. The pseudo-metric of attribute logic formula is introduced, and the influence of MP and MT approximate reasoning conclusions of decision implication as the reasoning object range parameter changes in attribute logic pseudo-metric space is analyzed. Finally, some models and methods of generating decision implication, concept rules and quasi-decision implication through MP and MT approximate reasoning based on existing decision implication, concept rules and quasi-decision implication are proposed, numerical experiments show that the proposed methods are effective.
-
表 1 形式背景$K=(G,M,I)$
Table 1 A formal context $K=(G,M,I)$
$G$ $a_1$ $a_2$ $a_3$ $a_4$ $a_5$ $u_1$ 1 1 0 0 1 $u_2$ 0 0 1 1 0 $u_3$ 1 0 1 0 0 $u_4$ 0 1 0 1 0 $u_5$ 0 1 0 1 1 $u_6$ 1 0 1 0 1 下載: 導出CSV表 2 決策形式背景$K=(G,C,D,I,J)$
Table 2 A formal decision context $K=(G,C,D,I,J)$
$G$ $a_1$ $a_2$ $a_3$ $a_4$ $d_1$ $d_2$ $d_3$ $u_1$ 1 1 1 1 1 0 1 $u_2$ 0 0 1 0 0 1 0 $u_3$ 1 0 0 0 0 1 1 $u_4$ 0 1 1 0 1 0 0 下載: 導出CSV表 3 決策形式背景$K=(G,C,D,I,J)$
Table 3 A formal decision context $K=(G,C,D,I,J)$
$G$ $a_1$ $a_2$ $a_3$ $a_4$ $a_5$ $a_6$ $d_1$ $d_2$ $d_3$ $u_1$ 1 1 0 0 1 1 1 0 1 $u_2$ 0 0 1 1 1 1 1 1 0 $u_3$ 1 0 1 0 0 1 0 0 1 $u_4$ 0 1 0 1 0 1 1 0 0 $u_5$ 0 1 0 1 1 1 1 1 0 $u_6$ 1 0 1 0 1 1 0 1 1 $u_7$ 0 1 1 1 0 0 1 1 1 下載: 導出CSV表 4 生成的擬決策蘊涵個(gè)數
Table 4 The number of generated quasi-decision implications
數據組別 生成的擬決策蘊涵個(gè)數 數據組1 62 數據組2 58 數據組3 74 數據組4 71 下載: 導出CSV表 5 生成的擬決策蘊涵后件與后件合取公式的偽距離
Table 5 The pseudo-metric between the consequent of generated quasi-decision implications and the consequent conjunctive
數據組別 最大偽距離 最小偽距離 數據組1 0.195 0.147 數據組2 0.189 0.160 數據組3 0.197 0.152 數據組4 0.194 0.161 下載: 導出CSV表 6 測試數據變化生成的擬決策蘊涵表
Table 6 A table of generated quasi-decision implication as test data changes
數據組別 擬決策蘊涵個(gè)數 最小偽距離 數據組1 3 0.0082 數據組2 5 0.0157 數據組3 8 0.0256 數據組4 12 0.0324 數據組5 16 0.0418 數據組6 21 0.0527 數據組7 25 0.0619 數據組8 29 0.0718 數據組9 34 0.0821 數據組10 39 0.0913 下載: 導出CSV表 7 后件集對結論的支持度和獲取擬決策蘊涵時(shí)間成本對比
Table 7 Comparison of the support degree of consequent set to the conclusion and time consumption of obtaining quasi-decision implications
數據組別 $L$的后件集對結論支持度$\tau_{\Delta}$ 方式1)總時(shí)間成本(s) 方式2)總時(shí)間成本 (s) 增量獲取所用時(shí)間成本(s) 數據組1 0.933 0.204 0.223 0.103 數據組2 0.923 0.283 0.304 0.147 數據組3 0.914 0.361 0.389 0.198 數據組4 0.903 0.450 0.484 0.258 數據組5 0.893 0.539 0.258 0.326 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 張文修, 梁怡, 吳偉志. 信息系統與知識發(fā)現. 北京: 科學(xué)出版社, 2003.Zhang Wen-Xiu, Liang Yi, Wu Wei-Zhi. Information Systems and Knowledge Discoveries. Beijing: Science Press, 2003. [2] 李金海, 魏玲, 張卓, 翟巖慧, 張濤, 智慧來(lái), 等. 概念格理論與方法及其研究展望. 模式識別與人工智能, 2020, 33(7): 619?642Li Jin-Hai, Wei Ling, Zhang Zhuo, Zhai Yan-Hui, Zhang Tao, Zhi Hui-Lai, et al. Concept lattice theory and method and their research prospect. Pattern Recognition and Artificial Intelligence, 2020, 33(7): 619?642 [3] Ganter B, Wille R. Formal Concept Analysis Mathematical Foundations 3. Berlin: Germany Springer-Verlag, 1999. [4] Li J H, Mei C L, Kumar C A, Zhang X. On rule acquisition in decision formal contexts. International Journal of Machine Learning and Cybernetics, 2013, 4(6): 721?731 doi: 10.1007/s13042-013-0150-z [5] Zhai Y H, Li D Y, Qu K S. Decision implications: A logical point of view. International Journal of Machine Learning and Cybernetics, 2014, 5: 509?516 doi: 10.1007/s13042-013-0204-2 [6] Zhai Y H, Li D Y, Qu K S. Fuzzy decision implications. Knowledge-Based Systems, 2013, 37: 230?236 doi: 10.1016/j.knosys.2012.08.004 [7] 賈楠, 張少霞, 翟巖慧, 李德玉. 決策蘊涵上的推理規則和推理過(guò)程研究. 計算機科學(xué)與探索, 2020, 14(2): 344?352Jia Nan, Zhang Shao-Xia, Zhai Yan-Hui, Li De-Yu. Study of inference rules and deduction process on decision implications. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 344?352 [8] 王琪, 李德玉, 翟巖慧, 張少霞. 含參決策蘊涵. 計算機研究與發(fā)展, 2022, 59(9): 2066?2074Wang Qi, Li De-Yu, Zhai Yan-Hui, Zhang Shao-Xia. Parameterized fuzzy decision implication. Journal of Computer Research and Development, 2022, 59(9): 2066?2074 [9] 張少霞, 李德玉, 翟巖慧. 邏輯型決策蘊涵. 鄭州大學(xué)學(xué)報 (理學(xué)版), 2020, 52(1): 1?7Zhang Shao-Xia, Li De-Yu, Zhai Yan-Hui. Logic-type decision implication. Journal of Zhengzhou University (Natural Science), 2020, 52(1): 1?7 [10] Zhang S X, Li D Y, Zhai Y H, Kang X P. A comparative study of decision implication, concept rule and granule. Information Sciences, 2020, 508: 33?49 doi: 10.1016/j.ins.2019.08.053 [11] 李金海, 李玉斐, 米允龍, 吳偉志. 多粒度形式概念分析的介粒度標記方法. 計算機研究與發(fā)展, 2020, 57(2): 447?458Li Jin-Hai, Li Yu-Fei, Mi Yun-Long, Wu Wei-Zhi. Meso-granularity labeled method for multi-granularity formal concept analysis. Journal of Computer Research and Development, 2020, 57(2): 447?458 [12] 李金海, 王飛, 吳偉志, 徐偉華, 楊習貝, 折延宏. 基于粒計算的多粒度數據分析方法綜述. 數據采集與處理, 2021, 36(3): 418?435Li Jin-Hai, Wang Fei, Wu Wei-Zhi, Xu Wei-Hua, Yang Xi-Bei, She Yan-Hong. Review of multi-granularity data analysis methods based on granular computing. Journal of Data Acquisition and Processing, 2021, 36(3): 418?435 [13] Wang G J, Zhou H J. Quantitative logic. Information Science, 2009, 179: 226?247 doi: 10.1016/j.ins.2008.09.008 [14] Linden G, Smith B, York J. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76?80 doi: 10.1109/MIC.2003.1167344 [15] Freyer D A, Hsieh Y H, Levin S R, Pines J M, Mareiniss D P, Mohareb A, et al. Goolgle flu trends: Correlation with emergency department influenza rates and crowding metrics. Clinical Infectious Diseases, 2012, 54(4): 463?469 doi: 10.1093/cid/cir883 [16] 梁吉業(yè), 馮晨嬌, 宋鵬. 大數據相關(guān)分析綜述. 計算機學(xué)報, 2016, 39(1): 1?18Liang Ji-Ye, Feng Chen-Jiao, Song Peng. A survey on correlation analysis of big data. Chinese Journal of Computers, 2016, 39(1): 1?18 [17] 張家錄, 吳霞. 屬性邏輯的近似推理模式研究. 計算機科學(xué)與探索, 2023, 17(4): 848?856Zhang Jia-Lu, Wu Xia. Study on the approximate reasoning models based on the attribute logic. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 848?856 [18] 王國俊. 非經(jīng)典數理邏輯與近似推理. 北京: 科學(xué)出版社, 2000.Wang Guo-Jun. Non-classical Mathematical Logic and Approximate Reasoning. Beijing: Science Press, 2000. [19] 王國俊. 模糊推理的全蘊涵三I算法. 中國科學(xué)(E輯), 1999, 29(1): 43?53Wang Guo-Jun. The triple I algorithm for all implication of fuzzy reasoning. Science in China (Series E), 1999, 29(1): 43?53 [20] 張文修, 魏玲, 祁建軍. 概念格的屬性約簡(jiǎn)理論與方法. 中國科學(xué)(E輯), 2005, 35(6): 628?639Zhang Wen-Xiu, Wei Ling, Qi Jian-Jun. Attribute reduction theory and approach to concept lattice. Science in China (Series E), 2005, 35(6): 628?639 [21] 羅佳琪, 吳霞, 張家錄, 杜佳甜. 基于形式概念的對象粒的屬性公式描述. 模糊系統與數學(xué), 2020, 34(1): 41?48Luo Jia-Qi, Wu Xia, Zhang Jia-Lu, Du Jia-Tian. The description of object granules by using attribute logic formulas based on formal concept. Fuzzy Systems and Mathematics, 2020, 34(1): 41?48 [22] Zhang J L, Wu X, Lu R H. Decision analysis methods combining quantitative logic and fuzzy soft sets. International Journal of Fuzzy Systems, 2020, 22(6): 1801?1814 doi: 10.1007/s40815-020-00899-6 [23] 吳霞, 張家錄. 基于面向屬性(對象)概念的對象粒的屬性公式描述. 模式識別與人工智能, 2020, 33(9): 767?775Wu Xia, Zhang Jia-Lu. Attribute logical formulas description of object granules based on the property-oriented (object-oriented) concepts. Pattern Recognition and Artificial Intelligence, 2020, 33(9): 767?775 [24] 張家錄, 陳雪剛, 趙曉東. 經(jīng)典命題邏輯的概率語(yǔ)義及其應用. 計算機學(xué)報, 2014, 37(8): 1775?1785Zhang Jia-Lu, Chen Xue-Gang, Zhao Xiao-Dong. Theory of probability semantics of classical propositional logic and its application. Chinese Journal of Computers, 2014, 37(8): 1775?1785 [25] Mi Y L, Liu W Q, Shi Y, Li J H. Semi-supervised concept learning by concept-cognitive learning and concept space. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2429?2442 doi: 10.1109/TKDE.2020.3010918