基于相關(guān)性的Swarm聯(lián)邦降維方法
doi: 10.16383/j.aas.c220690 cstr: 32138.14.j.aas.c220690
-
1.
嘉興學(xué)院信息科學(xué)與工程學(xué)院 嘉興 314001
基金項目: 教育部人文社會(huì )科學(xué)研究規劃基金 (23YJAZH068), 嘉興市科技特派員專(zhuān)項項目(K2022A015)資助
Swarm Federated Dimensionality Reduction Method Based on Correlation
-
1.
College of Information Science and Engineering, Jiaxing University, Jiaxing 314001
Funds: Supported by Humanity and Social Science Planning Foundation of Ministry of Education of China (23YJAZH068) and Jiaxing Science and Technology Commissioner Special Project (K2022A015)
-
摘要: 聯(lián)邦學(xué)習(Federated learning, FL)在解決人工智能(Artificial intelligence, AI)面臨的隱私泄露和數據孤島問(wèn)題方面具有顯著(zhù)優(yōu)勢. 針對聯(lián)邦學(xué)習的已有研究未考慮聯(lián)邦數據之間的關(guān)聯(lián)性和高維性問(wèn)題, 提出一種基于聯(lián)邦數據相關(guān)性的去中心化聯(lián)邦降維方法. 該方法基于Swarm學(xué)習(Swarm learning, SL)思想, 通過(guò)分離耦合特征, 構建典型相關(guān)分析(Canonical correlation analysis, CCA)的Swarm聯(lián)邦框架, 以提取Swarm節點(diǎn)的低維關(guān)聯(lián)特征. 為保護協(xié)作參數的隱私安全, 還構建一種隨機擾亂策略來(lái)隱藏Swarm特征隱私. 在真實(shí)數據集上的實(shí)驗驗證了所提方法的有效性.
-
關(guān)鍵詞:
- 隱私保護 /
- Swarm學(xué)習 /
- 聯(lián)邦學(xué)習 /
- 典型相關(guān)分析
Abstract: Federated learning (FL) has significant advantages in solving the problems of privacy disclosure and data islands faced by artificial intelligence (AI). Previous studies on federated learning do not consider the problems of relevance and high dimensionality of data distributed among different federations. Based on the relevance of federated data, a decentralized federated dimensionality reduction method is proposed. This method draws on the idea of Swarm learning (SL). Based on the separation of coupling features, a Swarm federated framework for canonical correlation analysis (CCA) is constructed to extract the low dimensional correlation features of Swarm nodes. In order to protect the privacy of collaboration parameters, a random disturbance strategy is also constructed to hide the privacy of Swarm features. Experiments on real data sets verify the effectiveness of the proposed method. -
亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
-
[1] Kels C G. HIPAA in the era of data sharing. Journal of the American Medical Association, 2020, 323(5): 476?477 doi: 10.1001/jama.2019.19645 [2] Raymond N. Reboot ethical review for the age of big data. Nature, DOI: https://doi.org/10.1038/d41586-019-01164-z [3] Taddeo M, Floridi L. How AI can be a force for good. Science, 2018, 361(6404): 751?752 doi: 10.1126/science.aat5991 [4] Jobin A, Ienca M, Vayena E. The global landscape of AI ethics guidelines. Nature Machine Intelligence, 2019, 1(9): 389?399 doi: 10.1038/s42256-019-0088-2 [5] Stahl B C, Wright D. Ethics and privacy in AI and big data: Implementing responsible research and innovation. IEEE Security & Privacy, 2018, 16(3): 26?33 [6] Stadler T, Troncoso C. Why the search for a privacy-preserving data sharing mechanism is failing. Nature Computational Science, 2022, 2(4): 208?210 doi: 10.1038/s43588-022-00236-x [7] Wu C H, Wu F Z, Lyu L J, Huang Y F, Xie X. Communication-efficient federated learning via knowledge distillation. Nature Communications, 2022, 13(1): Article No. 2032 [8] Nguyen D C, Ding M, Pathirana P N, Seneviratne A, Li J, Poor H V. Federated learning for internet of things: A comprehensive survey. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1622?1658 [9] 梁鋒, 羊恩躍, 潘微科, 楊強, 明仲. 基于聯(lián)邦學(xué)習的推薦系統綜述. 中國科學(xué): 信息科學(xué), 2022, 52(5): 713?741 doi: 10.1360/SSI-2021-0329Liang Feng, Yang En-Yue, Pan Wei-Ke, Yang Qiang, Ming Zhong. Survey of recommender systems based on federated learning. Scientia Sinica Informationis, 2022, 52(5): 713?741 doi: 10.1360/SSI-2021-0329 [10] 郭艷卿, 王鑫磊, 付海燕, 劉航, 姚明. 面向隱私安全的聯(lián)邦決策樹(shù)算法. 計算機學(xué)報, 2021, 44(10): 2090?2103 doi: 10.11897/SP.J.1016.2021.02090Guo Yan-Qing, Wang Xin-Lei, Fu Hai-Yan, Liu Hang, Yao Ming. Federated decision tree algorithm for privacy security. Chinese Journal of Computers, 2021, 44(10): 2090?2103 doi: 10.11897/SP.J.1016.2021.02090 [11] 張澤輝, 富瑤, 高鐵杠. 支持數據隱私保護的聯(lián)邦深度神經(jīng)網(wǎng)絡(luò )模型研究. 自動(dòng)化學(xué)報, 2022, 48(5): 1273?1284Zhang Ze-Hui, Fu Yao, Gao Tie-Gang. Research on federated deep neural network model for data privacy preserving. Acta Automatica Sinica, 2022, 48(5): 1273?1284 [12] 高勝, 袁麗萍, 朱建明, 馬鑫迪, 章睿, 馬建峰. 一種基于區塊鏈的隱私保護異步聯(lián)邦學(xué)習. 中國科學(xué): 信息科學(xué), 2021, 51(10): 1755?1774 doi: 10.1360/SSI-2021-0087Gao Sheng, Yuan Li-Ping, Zhu Jian-Ming, Ma Xin-Di, Zhang Rui, Ma Jian-Feng. A blockchain-based privacy-preserving asynchronous federated learning. Scientia Sinica Informationis, 2021, 51(10): 1755?1774 doi: 10.1360/SSI-2021-0087 [13] 朱建明, 張沁楠, 高勝, 丁慶洋, 袁麗萍. 基于區塊鏈的隱私保護可信聯(lián)邦學(xué)習模型. 計算機學(xué)報, 2021, 44(12): 2464?2484 doi: 10.11897/SP.J.1016.2021.02464Zhu Jian-Ming, Zhang Qin-Nan, Gao Sheng, Ding Qing-Yang, Yuan Li-Ping. Privacy preserving and trustworthy federated learning model based on blokchain. Chinese Journal of Computers, 2021, 44(12): 2464?2484 doi: 10.11897/SP.J.1016.2021.02464 [14] 馮霽, 蔡其志, 姜遠. 聯(lián)邦學(xué)習下對抗訓練樣本表示的研究. 中國科學(xué): 信息科學(xué), 2021, 51(6): 900?911 doi: 10.1360/SSI-2019-0145Feng Ji, Cai Qi-Zhi, Jiang Yuan. Towards training time attacks for federated machine learning systems. Scientia Sinica Informationis, 2021, 51(6): 900?911 doi: 10.1360/SSI-2019-0145 [15] 張澤輝, 李慶丹, 富瑤, 何寧昕, 高鐵杠. 面向非獨立同分布數據的自適應聯(lián)邦深度學(xué)習算法. 自動(dòng)化學(xué)報, 2023, 49(12): 2493?2506Zhang Ze-Hui, Li Qing-Dan, Fu Yao, He Ning-Xin, Gao Tie-Gang. Adaptive federated deep learning with Non-IID data. Acta Automatica Sinica, 2023, 49(12): 2493?2506 [16] 朱靜, 王飛躍, 王戈, 田永林, 袁勇, 王曉, 等. 聯(lián)邦控制: 面向信息安全和權益保護的分布式控制方法. 自動(dòng)化學(xué)報, 2021, 47(8): 1912?1920Zhu Jing, Wang Fei-Yue, Wang Ge, Tian Yong-Lin, Yuan Yong, Wang Xiao, et al. Federated control: A distributed control approach towards information security and rights protection. Acta Automatica Sinica, 2021, 47(8): 1912?1920 [17] 方晨, 郭淵博, 王一豐, 胡永進(jìn), 馬佳利, 張晗, 等. 基于區塊鏈和聯(lián)邦學(xué)習的邊緣計算隱私保護方法. 通信學(xué)報, 2021, 42(11): 28?40Fang Chen, Guo Yuan-Bo, Wang Yi-Feng, Hu Yong-Jin, Ma Jia-Li, Zhang Han, et al. Edge computing privacy protection method based on blockchain and federated learning. Journal on Communications, 2021, 42(11): 28?40 [18] 張沁楠, 朱建明, 高勝, 熊澤輝, 丁慶洋, 樸桂榮. 基于區塊鏈和貝葉斯博弈的聯(lián)邦學(xué)習激勵機制. 中國科學(xué): 信息科學(xué), 2022, 52(6): 971?991 doi: 10.1360/SSI-2022-0020Zhang Qin-Nan, Zhu Jian-Ming, Gao Sheng, Xiong Ze-Hui, Ding Qing-Yang, Piao Gui-Rong. Incentive mechanism for federated learning based on block-chain and Bayesian game. Scientia Sinica Informationis, 2022, 52(6): 971?991 doi: 10.1360/SSI-2022-0020 [19] Warnat-Herresthal S, Schultze H, Shastry K L, Manamohan S, Mukherjee S, Garg V, et al. Swarm learning for decentralized and confidential clinical machine learning. Nature, 2021, 594(7862): 265?270 doi: 10.1038/s41586-021-03583-3 [20] Sun C, Wu S T, Cui T. User selection for federated learning in a wireless environment: A process to minimize the negative effect of training data correlation and improve performance. IEEE Vehicular Technology Magazine, 2022, 17(3): 26?33 doi: 10.1109/MVT.2022.3153274 [21] Uddin M P, Xiang Y, Lu X Q, Yearwood J, Gao L X. Mutual information driven federated learning. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(7): 1526?1538 [22] Gao Y, Zhang G M, Zhang C C, Wang J K, Yang L T, Zhao Y L. Federated tensor decomposition-based feature extraction approach for industrial IoT. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8541?8549 doi: 10.1109/TII.2021.3074152 [23] Hotelling H. The most predictable criterion. Journal of Educational Psychology, 1935, 26(2): 139?142 doi: 10.1037/h0058165 [24] Yang X H, Liu W F, Liu W, Tao D C. A survey on canonical correlation analysis. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6): 2349?2368 doi: 10.1109/TKDE.2019.2958342 [25] Ewerbring L M, Luk F T. Canonical correlations and generalized SVD: Applications and new algorithms. Journal of Computational and Applied Mathematics, 1989, 27(1?2): 37?52 doi: 10.1016/0377-0427(89)90360-9 [26] Uurtio V, Monteiro J M, Kandola J, Shawe-Taylor J, Fernandez-Reyes D, Rousu J. A tutorial on canonical correlation methods. ACM Computing Surveys, 2018, 50(6): Article No. 95 [27] Drma? Z. Accurate computation of the product-induced singular value decomposition with application. Siam Journal on Numerical Analysis, 1998, 35(5): 1969?1994 doi: 10.1137/S0036142995292633 [28] Reyes-Ortiz J L, Oneto L, Sama A, Parra X, Anguita D. Transition-aware human activity recognition using smartphones. Neurocomputing, 2016, 171: 754?767 doi: 10.1016/j.neucom.2015.07.085 [29] Rothe R, Timofte R, Gool L V. Deep expectation of real and apparent age from a single image without facial landmarks. International Journal of Computer Vision, 2018, 126(2): 144?157