基于自組織遞歸小波神經(jīng)網(wǎng)絡(luò )的污水處理過(guò)程多變量控制
doi: 10.16383/j.aas.c220679
-
1.
北京工業(yè)大學(xué)信息學(xué)部計算智能與智能系統北京重點(diǎn)實(shí)驗室 北京 100124
-
2.
嘉興大學(xué)信息科學(xué)與工程學(xué)院 嘉興 314001
Multivariate Control of Wastewater Treatment Process Based on Self-organized Recurrent Wavelet Neural Network
-
1.
Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124
-
2.
College of Information Science and Engineering, Jiaxing University, Jiaxing 314001
-
摘要: 污水處理過(guò)程(Wastewater treatment process, WWTP)是一個(gè)包含多個(gè)生化反應的復雜過(guò)程, 具有非線(xiàn)性和動(dòng)態(tài)特性. 因此, 實(shí)現污水處理過(guò)程的精準控制是一項挑戰. 為解決這個(gè)問(wèn)題, 提出一種基于自組織遞歸小波神經(jīng)網(wǎng)絡(luò )(Self-organized recurrent wavelet neural network, SRWNN)的污水處理過(guò)程多變量控制. 首先, 針對污水處理過(guò)程的動(dòng)態(tài)特性, 根據小波基的激活強度設計一種自組織機制來(lái)動(dòng)態(tài)調整遞歸小波神經(jīng)網(wǎng)絡(luò )控制器的結構, 提高控制的性能. 然后, 采用結合自適應學(xué)習率的在線(xiàn)學(xué)習算法, 實(shí)現控制器的參數學(xué)習. 此外, 通過(guò)李雅普諾夫穩定性定理證明此控制器的穩定性. 最后, 采用基準仿真平臺進(jìn)行仿真驗證, 實(shí)驗結果表明, 此控制方法可以有效提高污水處理過(guò)程的控制絕對誤差積分(Integral of absolute error, IAE)和積分平方誤差(Integral of squared error, ISE)的精度.
-
關(guān)鍵詞:
- 神經(jīng)網(wǎng)絡(luò )控制 /
- 污水處理過(guò)程 /
- 自組織機制 /
- 多變量控制
Abstract: The wastewater treatment process (WWTP) is a complex process containing multiple biochemical reactions with nonlinear and dynamic characteristics. Therefore, it is a challenge to achieve accurate control of the wastewater treatment process. To solve this problem, a multi-variable control of wastewater treatment process based on the self-organized recurrent wavelet neural network (SRWNN) is proposed. Firstly, to deal with the dynamicity of wastewater treatment process, according to the firing strength of the wavelet base, the self-organizing mechanism is designed to dynamically adjust the structure of the recurrent wavelet neural network controller to improve the control performance. Then, an online learning algorithm combined with adaptive learning rate is used to learn the parameters of controller. In addition, the stability of the controller is proved by the Lyapunov stability theorem. Finally, the benchmark simulation platform is used to conduct simulation. The experimental results show that this control method can effectively improve the integral of absolute error (IAE) and integral of squared error (ISE) of the wastewater treatment process. -
表 1 不同控制方法在恒定設定值時(shí)的性能比較
Table 1 Performance comparison of different control methods at constant set-point
工況 控制器 No. DO NO IAE ISE DEV_MAX IAE ISE DEV_MAX 晴天 SRWNN 3 5.66×10?4 1.63×10?6 0.0087 0.0036 7.61×10?5 0.0114 RWNN 5 0.0017 3.26×10?5 0.0526 0.0020 3.06×10?5 0.0540 NNOMC 10 0.0390* 5.31×10?4* 0.0725* 0.0490* 7.18×10?4* 0.1630* RARFNNC 4 0.0073* 1.61×10?4* 0.0104* 0.0126* 2.83×10?4* 0.1050* DRFNNC 6 0.0079* 1.82×10?4* 0.0154* 0.0085* 3.25×10?4* 0.0176* 陰雨 SRWNN 4 0.0041 1.75×10?4 0.1042 0.0101 9.80×10?4 0.1291 RWNN 5 0.0051 2.21×10?4 0.1434 0.0117 1.40×10?3 0.2244 PID — 0.0016 1.90×10?3 0.2038 0.0317 8.23×10?3 0.3233 注: “$*$”表示原文中的結果, “—”表示無(wú)相應數據. 下載: 導出CSV表 2 不同控制方法在變化設定值時(shí)的性能比較
Table 2 Performance comparison of different control methods at changed set-point
工況 控制器 No. DO NO IAE ISE DEV_MAX IAE ISE DEV_MAX 晴天 SRWNN 3 0.0067 3.68×10?6 0.0156 0.0061 1.64×10?4 0.0067 RWNN 5 0.0087 2.62×10?4 0.1156 0.0126 2.30×10?3 0.1116 PID — 0.0127 2.38×10?3 0.1038 0.0271 4.90×10?3 0.2184 陰雨 SRWNN 3 0.0047 1.10×10?4 0.0538 0.0065 3.18×10?4 0.1527 RWNN 5 0.0069 1.92×10?4 0.0644 0.0088 4.58×10?4 0.1781 RFNNC — 0.0240* 2.40×10?3* 0.0863 0.0260* 1.00×10?3* 0.1881* 注: “$*$”表示原文中的結果, “—”表示無(wú)相應數據. 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Tang W Z, Pei Y S, Zheng H, Zhao Y, Shu L M, Zhang H. Twenty years of China's water pollution control: Experiences and challenges. Chemosphere, 2022, 295: Article No. 133875 doi: 10.1016/j.chemosphere.2022.133875 [2] 楊翠麗, 武戰紅, 韓紅桂, 喬俊飛. 城市污水處理過(guò)程優(yōu)化設定方法研究進(jìn)展. 自動(dòng)化學(xué)報, 2020, 46(10): 2092?2108Yang Cui-Li, Wu Zhan-Hong, Han Hong-Gui, Qiao Jun-Fei. Perspectives on optimal setting methods for municipal wastewater treatment processes. Acta Automatica Sinica, 2020, 46(10): 2092?2108 [3] Lizarralde I, Fernández-Arévalo T, Brouckaert C, Vanrolleghem P, Ikumi D S, Ekama G A, et al. A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models. Water Research, 2015, 74: 239?256 doi: 10.1016/j.watres.2015.01.031 [4] 潘南全. 基于前饋控制模型的生化反應池曝氣控制優(yōu)化. 工控制計算機, 2015, 28(1): 58?60Pang Nan-Quan. Optimization aeration control of reaction tank based on feed forward control model. Industrial Control Computer, 2015, 28(1): 58?60 [5] Du S L, Yan Q S, Qiao J F. Event-triggered PID control for wastewater treatment plants. Journal of Water Process Engineering, 2022, 47: Article No. 102765 doi: 10.1016/j.jwpe.2020.101659 [6] 曾春霞, 董宗哲, 何濤. 模糊代數PID控制在污水處理溶解氧控制系統的應用. 化工自動(dòng)化及儀表, 2021, 48(6): 528?534 doi: 10.3969/j.issn.1000-3932.2021.06.003Zeng Chun-Xia, Dong Zong-Zhe, He Tao. Application of fuzzy algebra PID control in dissolved oxygen control system of wastewater treatment. Control and Instruments in Chemical Industry, 2021, 48(6): 528?534 doi: 10.3969/j.issn.1000-3932.2021.06.003 [7] 劉鎖清, 劉少虹, 李軍紅, 彭偉娟. 基于模糊自整定PID串級控制的廢水處理PH值控制. 自動(dòng)化技術(shù)與應用, 2019, 38(2): 22?27 doi: 10.3969/j.issn.1003-7241.2019.02.006Liu Suo-Qing, Liu Shao-Hong, Li Jun-Hong, Peng Wei-Juan. Wastewater treatment PH value control based on fuzzy self-tuning PID cascade control. Techniques of Automation and Applications, 2019, 38(2): 22?27 doi: 10.3969/j.issn.1003-7241.2019.02.006 [8] Hoang B L, Tien D N, Luo F, Nguyen P H. Dissolved oxygen control of the activated sludge wastewater treatment process using Hedge Algebraic control. In: Proceedings of the 7th International Conference on Biomedical Engineering and Informatics. Dalian, China: IEEE, 2014. 827?832 [9] 許進(jìn)超, 楊翠麗, 喬俊飛, 馬士杰. 基于自組織模糊神經(jīng)網(wǎng)絡(luò )溶解氧控制方法研究. 智能系統學(xué)報, 2018, 13(6): 905?912 doi: 10.11992/tis.201801019Xu Jin-Chao, Yang Cui-Li, Qiao Jun-Fei, Ma Shi-Jie. Dissolved oxygen concentration control method based on self-organizing fuzzy neural network. CAAI Transactions on Intelligent Systems, 2018, 13(6): 905?912 doi: 10.11992/tis.201801019 [10] Wang D, Ha M M, Qiao J F. Data-driven iterative adaptive critic control toward an urban wastewater treatment plant. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7362?7369 doi: 10.1109/TIE.2020.3001840 [11] Nawaz A, Arora A S, Yun C M, Lee J J, Lee M. Development of smart AnAmmOx system and its agile operation and decision support for pilot-scale WWTP. Soft Computing Techniques in Solid Waste and Wastewater Management. Amsterdam: Elsevier, 2021. 7423?7454 [12] 韓紅桂, 張璐, 盧薇, 喬俊飛. 城市污水處理過(guò)程動(dòng)態(tài)多目標智能優(yōu)化控制研究. 自動(dòng)化學(xué)報, 2021, 47(3): 620?629Han Hong-Gui, Zhang Lu, Lu Wei, Qiao Jun-Fei. Research on dynamic multiobjective intelligent optimal control for municipal wastewater treatment process. Acta Automatica Sinica, 2021, 47(3): 620?629 [13] 喬俊飛, 韓改堂, 周紅標. 基于知識的污水生化處理過(guò)程智能優(yōu)化方法. 自動(dòng)化學(xué)報, 2017, 43(6): 1038?1046Qiao Jun-Fei, Han Gai-Tang, Zhou Hong-Biao. Knowledge-based intelligent optimal control for wastewater biochemical treatment process. Acta Automatica Sinica, 2017, 43(6): 1038?1046 [14] Vega P, Revollar S, Francisco M, Martín J M. Integration of set point optimization techniques into nonlinear MPC for improving the operation of WWTPs. Computers and Chemical Engineering, 2014, 68: 78?95 doi: 10.1016/j.compchemeng.2014.03.027 [15] Han H G, Liu H X, Li J M, Qiao J F. Cooperative fuzzy-neural control for wastewater treatment process. IEEE Transactions on Industrial Informatics, 2021, 17(9): 5971?5981 doi: 10.1109/TII.2020.3034335 [16] El-Sousy F F M, Abuhasel K A. Adaptive nonlinear disturbance observer using a double-loop self-organizing recurrent wavelet neural network for a two-axis motion control system. IEEE Transactions on Industry Applications, 2018, 54(1): 764?786 doi: 10.1109/TIA.2017.2763584 [17] 王桐, 邱劍彬, 高會(huì )軍. 隨機非線(xiàn)性系統基于事件觸發(fā)機制的自適應神經(jīng)網(wǎng)絡(luò )控制. 自動(dòng)化學(xué)報, 2019, 45(1): 226?233Wang Tong, Qiu Jian-Bin, Gao Hui-Jun. Event-triggered adaptive neural network control for a class of stochastic nonlinear systems. Acta Automatica Sinica, 2019, 45(1): 226?233 [18] Liu Y J, Li J, Tong S C, Chen C L P. Neural network control-based adaptive learning design for nonlinear systems with full-state constraints. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(7): 1562?1571 doi: 10.1109/TNNLS.2015.2508926 [19] Lee C H, Chang H H. Output recurrent wavelet neural network-based adaptive backstepping controller for a class of MIMO nonlinear non-affine uncertain systems. Neural Computing and Applications, 2014, 24(5): 1035?1045 doi: 10.1007/s00521-012-1326-2 [20] Lin C H. A novel hybrid recurrent wavelet neural network control of permanent magnet synchronous motor drive for electric scooter. Turkish Journal of Electrical Engineering and Computer Sciences, 2014, 22(4): 1056?1075 [21] 張偉, 喬俊飛, 李凡軍. 溶解氧濃度的直接自適應動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò )控制方法. 控制理論與應用, 2015, 32(1): 115?121 doi: 10.7641/CTA.2014.40311Zhang Wei, Qiao Jun-Fei, Li Fan-Jun. Direct adaptive dynamic neural network control for dissolved oxygen concentration. Control Theory & Applications, 2015, 32(1): 115?121 doi: 10.7641/CTA.2014.40311 [22] El-Sousy F F M, Abuhasel K A, Self-organizing recurrent fuzzy wavelet neural network-based mixed $ {H_2/H_\infty } $ adaptive tracking control for uncertain two-axis motion control system. In: Proceedings of the IEEE Industry Applications Society Annual Meeting. Addison, USA: IEEE, 2015. 1?14 [23] Han H G, Zhang L, Hou Y, Qiao J F. Nonlinear model predictive control based on a self-organizing recurrent neural network. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(2): 402?415 doi: 10.1109/TNNLS.2015.2465174 [24] Ku C C, Lee K Y. Diagonal recurrent neural networks for dynamic systems control. IEEE Transactions on Neural Networks, 1995, 6(1): 144?156 doi: 10.1109/72.363441 [25] 韓廣, 喬俊飛, 薄迎春. 溶解氧濃度的前饋神經(jīng)網(wǎng)絡(luò )建??刂品椒? 控制理論與應用, 2013, 30(5): 585?591 doi: 10.7641/CTA.2013.20773Han Guang, Qiao Jun-Fei, Bo Ying-Chun. Feedforward neural network modeling and control for dissolved oxygen concentration. Control Theory & Applications, 2013, 30(5): 585?591 doi: 10.7641/CTA.2013.20773 [26] Qiao J F, Han G T, Han H G, Chai W. Wastewater treatment control method based on a rule adaptive recurrent fuzzy neural network. International Journal of Intelligent Computing and Cybernetics, 2017, 10(2): 94?110 doi: 10.1108/IJICC-12-2016-0069 [27] Qiao J F, Han G T, Han H G, Yang C L, Chai W. Decoupling control for wastewater treatment process based on recurrent fuzzy neural network. Asian Journal of Control, 2019, 21(3): 1270?1280 doi: 10.1002/asjc.1844 [28] 韓改堂, 喬俊飛, 韓紅桂. 基于自適應遞歸模糊神經(jīng)網(wǎng)絡(luò )的污水處理控制. 控制理論與應用, 2016, 33(9): 1252?1258 doi: 10.7641/CTA.2016.50965Han Gai-Tang, Qiao Jun-Fei, Han Hong-Gui. Wastewater treatment control method based on adaptive recurrent fuzzy neural network. Control Theory and Applications, 2016, 33(9): 1252?1258 doi: 10.7641/CTA.2016.50965