基于代價(jià)參考粒子濾波器組的多目標檢測前跟蹤算法
doi: 10.16383/j.aas.c220635
-
1.
陜西科技大學(xué)電子信息與人工智能學(xué)院 西安 710021 中國
-
2.
施耐德(西安)創(chuàng )新技術(shù)有限公司 西安 710121 中國
-
3.
格里菲斯大學(xué)集成與智能系統研究所 布里斯班 4111 澳大利亞
-
4.
聯(lián)邦科學(xué)與工業(yè)研究組織Data61中心 悉尼 1710 澳大利亞
A Multi-target Track-before-detect Algorithm Based on Cost-reference Particle Filter Bank
-
1.
School of Electrical Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an 710021, China
-
2.
Schneider (Xi'an) Innovation & Technology Company Limited, Xi'an 710121, China
-
3.
Institute of Integrated and Intelligent Systems, Griffith University, Brisbane 4111, Australia
-
4.
Data61, Commonwealth Scientific and Industrial Research Organization, Sydney 1710, Australia
-
摘要: 針對圖像序列中多目標檢測和跟蹤算法結構復雜、計算量大、性能降低等問(wèn)題, 提出一種基于代價(jià)參考粒子濾波器組的多目標檢測前跟蹤(Cost-reference particle filter bank based multi-target track-before-detect, CRPFB-MTBD)算法, 將多目標跟蹤問(wèn)題轉換為序貫地檢測和跟蹤多個(gè)單目標的問(wèn)題. 首先, 采用代價(jià)參考粒子濾波器組序貫地估計所有可能單目標狀態(tài)序列; 其次, 基于所有可能單目標狀態(tài)序列的歐氏距離和累積代價(jià)確定目標數量; 最后, 根據累積代價(jià)判斷每個(gè)目標出現和消失的具體時(shí)刻. 仿真實(shí)驗驗證了CRPFB-MTBD的優(yōu)良性能, 與基于傳統粒子濾波的多目標檢測前跟蹤算法(Particle filter based multi-target track-before-detect, PF-MTBD)、基于概率假設密度的檢測前跟蹤算法(Probability hypothesis density based track-before-detect, PHD-TBD)和基于伯努利濾波的檢測前跟蹤算法(Bernoulli based track-before-detect, Bernoulli-TBD) 相比, CRPFB-MTBD的目標狀態(tài)序列和數量估計結果最佳, 且平均單次運行時(shí)間極短.
-
關(guān)鍵詞:
- 多目標跟蹤 /
- 檢測前跟蹤 /
- 粒子濾波 /
- 代價(jià)參考粒子濾波器組 /
- 濾波器組
Abstract: Aiming at the problems of complex structure, increasing computation and decreasing performance of multiple targets detection and tracking algorithms in image sequences, a cost-reference particle filter bank based multi-target track-before-detect (CRPFB-MTBD) algorithm is proposed. In this work, the target tracking problem is converted into a problem of sequentially detecting and tracking multiple single targets. First, a cost reference particle filter bank is used to sequentially estimate all possible single targets’ state sequences; secondly, the number of targets is determined based on the Euclidean distances and cumulative costs of all possible single targets’ state sequences; finally, the specific moment when each target appears and disappears is determined based on the cumulative cost. The simulation experiment verified the excellent performance of CRPFB-MTBD. Compared with the traditional particle filter based multitarget track-before-detect (PF-MTBD) algorithm, probability hypothesis density based track-before-detect (PHD-TBD), and Bernoulli filter based track-before-detect (Bernoulli-TBD), CRPFB-MTBD has the best target state sequence and quantity estimation results, and the average single running time is extremely short. -
圖 8 當SNR = 6 dB, 3個(gè)目標時(shí), 4種方法的OSPA
Fig. 8 Comparison of OSPAs resulted from 4 algorithms when SNR = 6 dB and 3 targets
圖 9 當SNR = 8 dB, 3個(gè)目標時(shí), 4種方法的OSPA
Fig. 9 Comparison of OSPAs resulted from 4 algorithms when SNR = 8 dB and 3 targets
圖 10 當SNR = 8 dB, 3個(gè)目標時(shí), CRPFB-MTBD的目標狀態(tài)估計結果
Fig. 10 State estimation of CRPFB-MTBD when SNR = 8 dB and 3 targets
圖 11 當SNR = 8 dB, 3個(gè)目標時(shí), CRPFB-MTBD的目標數量估計結果
Fig. 11 Estimation of target number provided by CRPFB-MTBD when SNR = 8 dB and 3 targets
圖 12 當SNR = 6 dB時(shí), 目標數量對CRPFB-MTBD性能的影響
Fig. 12 Impact of target number on the performance of CRPFB-MTBD when SNR = 6 dB
圖 13 當SNR = 6 dB, 3個(gè)目標時(shí), CRPF數量對CRPFB-MTBD性能的影響
Fig. 13 Impact of the number of CRPFs on the performance of CRPFB-MTBD when SNR = 6 dB and 3 targets
圖 14 當SNR = 6 dB, 5個(gè)目標時(shí), CRPF數量對CRPFB-MTBD性能的影響
Fig. 14 Impact of the number of CRPFs on the performance of CRPFB-MTBD when SNR = 6 dB and 5 targets
圖 15 當SNR = 6 dB, 3個(gè)目標時(shí), 門(mén)限$ V_{2}$對CRPFB-MTBD性能的影響
Fig. 15 Impact of threshold $ V_{2}$ on the performance of CRPFB-MTBD when SNR = 6 dB and 3 targets
圖 16 當SNR = 6 dB, 5個(gè)目標時(shí), 門(mén)限$ V_{2}$對CRPFB-MTBD性能的影響
Fig. 16 Impact of threshold $ V_{2}$ on the performance of CRPFB-MTBD when SNR = 6 dB and 5 targets
表 1 第$l$個(gè)目標的先驗信息
Table 1 Apriori information for the $l\text{-} {\rm th}$ target
先驗信息 $x $方向 $y $方向 初始位置 $x_{l,1}=x_{m_{s}}$ $y_{l,1}=y_{m_{s}}$ 速度范圍 $-\dfrac{x_{m_{s} } }{K\triangle T}\leq \dot{x}_{l}\leq \dfrac{N\triangle_{x}-x_{m_{s} } }{K\triangle T}$ $-\dfrac{y_{m_{s} } }{K\triangle T}\leq \dot{y}_{l}\leq \dfrac{M\triangle_{y}-y_{m_{s} } }{K\triangle{T} }$ $k$時(shí)刻位置范圍 $x_{m_{s}}-(k-1)\dfrac{-x_{m_{s}}}{K\triangle T} \leq x_{m_{s}}+(k-1)\dfrac{N\triangle_{x}-x_{m_{s}}}{K\triangle T}$ $y_{m_{s}}-(k-1)\dfrac{-y_{m_{s}}}{K\triangle T} \leq y_{m_{s}}+(k-1)\dfrac{M\triangle_{y}-y_{m_{s}}}{K\triangle T}$ 下載: 導出CSV表 2 4種算法的平均單次運行時(shí)間 (s)
Table 2 Average single running time of 4 algorithms (s)
算法名稱(chēng) 運行時(shí)間 PHD-TBD 506.8180 PF-MTBD 131.0574 Bernoulli-TBD 6.6079 CRPFB-MTBD 0.0116 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Zhao M J, Li W, Li L, Hu J. Single-frame infrared small-target detection: A survey. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(2): 87?119 doi: 10.1109/MGRS.2022.3145502 [2] Zhang W C, Sun C, Gao Y. Image intensity variation information for interest point detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4694?4712 [3] Bao Z H, Lu J B, Tian Y H, Tian S S. A novel radar TBD detection approach for weak marine targets in dense clutter based on modified Hough transform. Acta Electronica Sinica, 2022, 50(7): 1735?1743 [4] Tonissen S M, Bar-Shalom Y. Maximum likelihood track-before-detect with fluctuating target amplitude. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 796?809 doi: 10.1109/7.705887 [5] Zhou Y, Su H, Tian S, Liu X M, Suo J D. Multiple-kernelized-correlation-filter-based track-before-detect algorithm for tracking weak and extended target in marine radar systems. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3411?3426 doi: 10.1109/TAES.2022.3150262 [6] Salmond D J, Birch H. A particle filter for track-before-detect. In: Proceedings of the American Control Conference. Arlington, USA: IEEE, 2001. 3755?3760 [7] Ristic B, Guan R, Kim D Y, Rosenberg L. Bernoulli track-before-detect smoothing for maritime radar. IET Radar, Sonar & Navigation, 2022, 16(6): 953?960 [8] Zhu Y R, Li Y, Zhang N. Candidate-plots-based dynamic programming algorithm for track-before-detect. Digital Signal Processing, 2022, 123(4): Article No. 103458 doi: 10.1016/j.dsp.2022.103458 [9] Boers Y, Driessen J N. Multi-target particle filter track before detect application. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(6): 351?357 doi: 10.1049/ip-rsn:20040841 [10] Ebenezer S P, Papandreou-Suppappola A. Generalized recursive track-before-detect with proposal partitioning for tracking varying number of multiple targets in low SNR. IEEE Transactions on Signal Processing, 2016, 64(11): 2819?2834 doi: 10.1109/TSP.2016.2523455 [11] Ito N, Godsill S J. A multi-target track-before-detect particle filter using super-positional data in non-Gaussian noise. IEEE Signal Processing Letters, 2020, 27: 1075?1079 doi: 10.1109/LSP.2020.3002704 [12] Punithakumar K, Kirubarajan T, Sinha A. A sequential Monte Carlo probability hypothesis density algorithm for multi-target track-before-detect. In: Proceedings of the International Society for Optical Engineering. San Diego, USA: 2005. 587?594 [13] Li T C, Hlawatsch F, Djuri P M. Cardinality-consensus-based PHD filtering for distributed multi-target tracking. IEEE Signal Processing Letters, 2018, 26(1): 49?53 [14] Vo B N, Vo B T, Pham N T, Suter D. Joint detection and estimation of multiple objects from image observations. IEEE Transactions on Signal Processing, 2010, 58(10): 5129?5141 doi: 10.1109/TSP.2010.2050482 [15] 盧錦, 王鑫. 基于代價(jià)參考粒子濾波器組的檢測前跟蹤算法. 電子與信息學(xué)報, 2021, 48(10): 2815?2823 doi: 10.11999/JEIT210234Lu Jin, Wang Xin. Cost-reference particle filter bank based track-before-detecting algorithm. Journal of Electronics Information Technology, 2021, 48(10): 2815?2823 doi: 10.11999/JEIT210234 [16] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56(8): 3447?3457 doi: 10.1109/TSP.2008.920469 [17] Beard M, Vo B T, Vo B N. OSPA (2): Using the OSPA metric to evaluate multi-target tracking performance. In: Proceedings of the International Conference on Control, Automation and Information Sciences. Chiang Mai, Thailand: IEEE, 2017. 86?91