1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              面向全量測點(diǎn)耦合結構分析與估計的工業(yè)過(guò)程監測方法

              趙健程 趙春暉

              趙健程, 趙春暉. 面向全量測點(diǎn)耦合結構分析與估計的工業(yè)過(guò)程監測方法. 自動(dòng)化學(xué)報, 2024, 50(8): 1517?1538 doi: 10.16383/j.aas.c220090
              引用本文: 趙健程, 趙春暉. 面向全量測點(diǎn)耦合結構分析與估計的工業(yè)過(guò)程監測方法. 自動(dòng)化學(xué)報, 2024, 50(8): 1517?1538 doi: 10.16383/j.aas.c220090
              Zhao Jian-Cheng, Zhao Chun-Hui. An industrial process monitoring method based on total measurement point coupling structure analysis and estimation. Acta Automatica Sinica, 2024, 50(8): 1517?1538 doi: 10.16383/j.aas.c220090
              Citation: Zhao Jian-Cheng, Zhao Chun-Hui. An industrial process monitoring method based on total measurement point coupling structure analysis and estimation. Acta Automatica Sinica, 2024, 50(8): 1517?1538 doi: 10.16383/j.aas.c220090

              面向全量測點(diǎn)耦合結構分析與估計的工業(yè)過(guò)程監測方法

              doi: 10.16383/j.aas.c220090
              基金項目: 國家自然科學(xué)基金杰出青年基金 (62125306), 國家自然科學(xué)基金重點(diǎn)項目 (62133003)資助
              詳細信息
                作者簡(jiǎn)介:

                趙健程:浙江大學(xué)控制科學(xué)與工程學(xué)院博士研究生. 2021年獲得浙江大學(xué)學(xué)士學(xué)位. 主要研究方向為大數據分析, 深度學(xué)習和零樣本學(xué)習. E-mail: zhaojiancheng@zju.edu.cn

                趙春暉:浙江大學(xué)控制科學(xué)與工程學(xué)院教授. 2003年, 2006年, 2009年分別獲得東北大學(xué)學(xué)士、碩士和博士學(xué)位. 主要研究方向為機器學(xué)習, 工業(yè)大數據解析與應用, 包括化工, 能源以及醫療領(lǐng)域. 本文通信作者. E-mail: chhzhao@zju.edu.cn

              An Industrial Process Monitoring Method Based on Total Measurement Point Coupling Structure Analysis and Estimation

              Funds: Supported by National Natural Science Foundation of China for Distinguished Young Scholars (62125306) and National Nat-ural Science Foundation of China (62133003)
              More Information
                Author Bio:

                ZHAO Jian-Cheng Ph.D. candidate at the College of Control Science and Engineering, Zhejiang University. He received his bachelor degree from Zhejiang University in 2021. His research interest covers big data analysis, deep learning, and zero-shot learning

                ZHAO Chun-Hui Professor at the College of Control Science and Engineering, Zhejiang University. She received her bachelor, master, and Ph.D. degrees from Northeastern University, in 2003, 2006, and 2009, respectively. Her research interest covers machine learning, analytics of industrial big data, and their applications in chemical, energy, and medical fields. Corresponding author of this paper

              • 摘要: 實(shí)際工業(yè)場(chǎng)景中, 需要在生產(chǎn)過(guò)程中收集大量測點(diǎn)的數據, 從而掌握生產(chǎn)過(guò)程運行狀態(tài). 傳統的過(guò)程監測方法通常僅評估運行狀態(tài)整體的異常與否, 或對運行狀態(tài)進(jìn)行分級評估, 這種方式并不會(huì )直接定位故障部位, 不利于故障的高效檢修. 為此, 提出一種基于全量測點(diǎn)估計的監測模型, 根據全量測點(diǎn)估計值與實(shí)際值的偏差定義監測指標, 從而實(shí)現全量測點(diǎn)的分別精準監測. 為克服原有的基于工況估計的監測方法監測不全面且對測點(diǎn)間耦合關(guān)系建模不充分的問(wèn)題, 提出多核圖卷積網(wǎng)絡(luò )(Multi-kernel graph convolutional network, MKGCN), 通過(guò)將全量傳感器測點(diǎn)視為一張全量測點(diǎn)圖, 顯式地對測點(diǎn)間耦合關(guān)系進(jìn)行建模, 從而實(shí)現全量傳感器測點(diǎn)的同步工況估計. 此外, 面向在線(xiàn)監測場(chǎng)景, 設計基于特征逼近的自迭代方法, 從而克服在異常情況下由于測點(diǎn)間強耦合導致的部分測點(diǎn)估計值異常的問(wèn)題. 所提出的方法在電廠(chǎng)百萬(wàn)千瓦超超臨界機組中引風(fēng)機的實(shí)際數據上進(jìn)行驗證, 結果顯示, 與其他典型方法相比, 所提出的監測方法能夠更精準地檢測出發(fā)生故障的測點(diǎn).
              • 圖  1  LSTM內部結構

                Fig.  1  Internal structure of LSTM

                圖  2  面向全量測點(diǎn)估計的多核圖卷積模型結構

                Fig.  2  Structure of multi-kernel graph convolution model for total measurement points estimation

                圖  3  MKGCN層的計算過(guò)程

                Fig.  3  Calculation process of MKGCN layer

                圖  4  MKGCN層的堆疊使用

                Fig.  4  The stacking use of MKGCN layers

                圖  5  自迭代方法

                Fig.  5  Self-iterative method

                圖  6  訓練數據中測點(diǎn)間相關(guān)性

                Fig.  6  Correlation between measuring points on training data

                圖  7  基于MKGCN的模型監測效果圖$( \text{var} \in F)$

                Fig.  7  Monitoring diagram of model based on MKGCN $( \text{var} \in F)$

                圖  8  MEST方法漏報的部分異常變量

                Fig.  8  Some abnormal variables partially missed by MEST method

                圖  9  AE模型誤報的部分正常變量

                Fig.  9  Some normal variables with serious false alarm by AE model

                圖  10  不同通道的鄰接核可視化結果

                Fig.  10  Visualization results of adjacency kernels in different channels

                圖  11  測點(diǎn)12和測點(diǎn)25的工況估計值對比

                Fig.  11  Comparison of working condition estimated values of measuring point 12 and measuring point 25

                表  1  引風(fēng)機測點(diǎn)對應表

                Table  1  Measuring points of induced draft fan

                測點(diǎn)編號物理量 測點(diǎn)編號物理量 測點(diǎn)編號物理量
                0功率信號三選值 11引風(fēng)機水平振動(dòng)22引風(fēng)機油箱溫度
                1進(jìn)氣溫度12引風(fēng)機后軸承溫度 123引風(fēng)機中軸承溫度 1
                2引風(fēng)機電機定子線(xiàn)圈溫度 113引風(fēng)機后軸承溫度 224引風(fēng)機中軸承溫度 2
                3引風(fēng)機電機定子線(xiàn)圈溫度 214引風(fēng)機后軸承溫度 325引風(fēng)機中軸承溫度 3
                4引風(fēng)機電機定子線(xiàn)圈溫度 315引風(fēng)機鍵相26爐膛壓力
                5引風(fēng)機電機水平振動(dòng) 116引風(fēng)機靜葉位置反饋27引風(fēng)機出口風(fēng)溫
                6引風(fēng)機電機水平振動(dòng) 217引風(fēng)機前軸承溫度 128引風(fēng)機入口壓力
                7引風(fēng)機電機軸承溫度 118引風(fēng)機前軸承溫度 229引風(fēng)機出口風(fēng)壓
                8引風(fēng)機電機軸承溫度 219引風(fēng)機前軸承溫度 330引風(fēng)機靜葉開(kāi)度指令
                9引風(fēng)機電流20引風(fēng)機潤滑油溫度31總燃料量
                10引風(fēng)機風(fēng)垂直振動(dòng) 21引風(fēng)機潤滑油壓力 32爐膛壓力
                下載: 導出CSV

                表  2  基于MKGCN層的工況估計模型結構

                Table  2  Structure of working condition estimation model based on MKGCN layer

                序號網(wǎng)絡(luò )層數目參數激活函數
                1BiLSTM$n$ $[{ {\rm{input}}\_{\rm{size}}} = len, {{\rm{hidden}}\_{\rm{size}}} = ld]$None
                FC$n$ $[{ {\rm{input}}\_{\rm{size}}} = len, {{\rm{output}}\_{\rm{size}}} = 2 \times ld]$
                2MKGCN$1$$[ {{c_{{\rm{in}}}} = 1,n{o_{{\rm{in}}}} = n,f{e_{{\rm{in}}}} = 2 \times ld} $,
                $ {{c_{{\rm{out}}}} = oc,n{o_{{\rm{out}}}} = n,f{e_{{\rm{out}}}} = 4 \times ld}] $
                Tanh
                3FC 0$n$$[{ {\rm{input}}\_{\rm{size}}} = 4 \times ld, {{\rm{output}}\_{\rm{size}}} = 2 \times ld]$Tanh
                4FC 1$n$$[{ {\rm{input}}\_{\rm{size}}} = 2 \times ld, {{\rm{output}}\_{\rm{size}}} = 1]$Tanh
                5FC 2$n$$[{ {\rm{input}}\_{\rm{size}}} = \;oc, {{\rm{output}}\_{\rm{size}}} = 1]$None
                6特征逼近層 (FC)$n$$[{ {\rm{input}}\_{\rm{size}}} = oc, {{\rm{output}}\_{\rm{size}}} = 1]$None
                下載: 導出CSV

                表  3  基于GCN的工況估計模型結構

                Table  3  Structure of working condition estimation model based on GCN

                序號網(wǎng)絡(luò )層數目參數激活函數
                1BiLSTM$n$$[{ {\rm{input}}\_{\rm{size}}} = len, {{\rm{hidden}}\_{\rm{size}}} = ld]$None
                2GCN1$[{\rm{in}}\_{\rm{feature}} = 2 \times ld, {\rm{out}}\_{\rm{feature}} = 4 \times ld]$Tanh
                3FC 0$n$$[{ {\rm{input}}\_{\rm{size}}} = 4 \times ld, {{\rm{output}}\_{\rm{size}}} = 2 \times ld]$Tanh
                4FC 1$n$$[{ {\rm{input}}\_{\rm{size}}} = 2 \times ld, {{\rm{output}}\_{\rm{size}}} = ld]$Tanh
                5FC 2$n$$[{ {\rm{input}}\_{\rm{size}}} = ld, {{\rm{output}}\_{\rm{size}}} = 1]$None
                下載: 導出CSV

                表  4  模型實(shí)現和參數網(wǎng)格搜索范圍

                Table  4  Model implementation and parameter grid search range

                方法Python包超參數超參數調整范圍
                PLSRscikit-learn$nc$$nc = \left\{ {5,10,15,20,25} \right\}$
                ELMD.C. Lambert$E,\alpha $$ E = \left\{ {50,100,150,200,250} \right\}, $
                $ \alpha = \left\{ {0.1,0.3,0.5,0.7,0.9} \right\} $
                FCPaddlePaddle$ld$$ld = \left\{ {8,16,32,64,128} \right\}$
                BiLSTMPaddlePaddle$ld$$ld = \left\{ {8,16,32,64,128} \right\}$
                Conv1DPaddlePaddle$ld$$ld = \left\{ {8,16,32,64,128} \right\}$
                GCNPaddlePaddle$ld$$ld = \left\{ {8,16,32,64,128} \right\}$
                MKGCNPaddlePaddle$ld,oc$$ ld = \left\{ {8,16,32,64,128} \right\},$
                $ oc = \left\{ {2,4,8,16,32} \right\} $
                下載: 導出CSV

                表  5  網(wǎng)格搜索結果與深度神經(jīng)網(wǎng)絡(luò )方法在最優(yōu)超參數下總參數量

                Table  5  Grid search results and total parameters of depth neural network method with optimal hyperparameters

                方法最優(yōu)超參數模型數總參數量
                PLSR$nc = 15$$n$/
                ELM$E = 200,\alpha = 0.9$$n$/
                MEST///
                FC$ld = 128$$n$ 5 × 105
                BiLSTM$ld = 128$$n$6.9 × 106
                Conv1D$ld = 128$ $n$ 9 × 105
                GCN$ld = 64$$1$9.8 × 106
                MKGCN$ld = 8,oc = 32$$1$1.8 × 105
                下載: 導出CSV

                表  6  測試數據上不同模型的工況估計結果(RMSE)

                Table  6  Results of different working condition estimation models on test data (RMSE)

                變量PLSRELMFCBiLSTMConv1DGCNMESTMKGCN
                $\text{var} \in N$0.0420.0640.0590.0520.0600.0420.0050.044
                $\text{var} \in F$0.0460.0760.0590.0490.0820.0490.0060.046
                下載: 導出CSV

                表  7  測試數據上不同模型的工況估計結果(MAE)

                Table  7  Results of different working condition estimation models on test data (MAE)

                變量PLSRELMFCBiLSTMConv1DGCNMESTMKGCN
                $\text{var} \in N$0.0340.0520.0490.0430.0510.0340.0040.036
                $\text{var} \in F$0.0390.0660.0500.0410.0700.0430.0050.039
                下載: 導出CSV

                表  8  監測數據上各監測指標$( \text{var} \in N)$

                Table  8  Monitoring indicators on monitoring data $( \text{var} \in N)$

                指標PLSRELMFCBiLSTMConv1DGCNMESTMKGCN
                ${False}_\text{p}$13.26729.57334.26727.39242.58123.5682.8534.500
                ${False}_\text{n}$00000000
                F192.89582.64879.32484.13172.95186.64298.55397.698
                下載: 導出CSV

                表  9  監測數據上各監測指標$( \text{var} \in F)$

                Table  9  Monitoring indicators on monitoring data $( \text{var} \in F)$

                指標PLSRELMFCBiLSTMConv1DGCNMESTMKGCN
                ${False}_\text{p}$15.95830.58331.37532.39037.16210.769010.769
                ${False}_\text{n}$24.2505.0425.9171.1401.7746.96833.2081.056
                F179.68180.20379.36280.30276.64491.09280.09093.836
                下載: 導出CSV

                表  10  基于A(yíng)E的工況估計模型的結構

                Table  10  Structure of working condition estimation model based on AE

                序號網(wǎng)絡(luò )層數目參數激活函數
                1BiLSTM1$[{ {\rm{input}}\_{\rm{size}}} = \;len,{{\rm{hidden}}\_{\rm{size}}} = 2 \times ld]$None
                2FC 01$[{ {\rm{input}}\_{\rm{size}}} = 4 \times ld,{{\rm{output}}\_{\rm{size}}} = 2 \times ld]$Tanh
                3FC 11$[{ {\rm{input}}\_{\rm{size}}} = 2 \times ld,{{\rm{output}}\_{\rm{size}}} = ld]$Tanh
                4FC 21$[{ {\rm{input}}\_{\rm{size}}} = ld,{{\rm{output}}\_{\rm{size}}} = 2 \times ld]$Tanh
                5FC 31$[{ {\rm{input}}\_{\rm{size}}} = 2 \times ld,{{\rm{output}}\_{\rm{size}}} = n]$None
                下載: 導出CSV

                表  11  AE與MKGCN實(shí)驗結果對比(MKGCN實(shí)驗結果同表6 ~ 9)

                Table  11  Comparison of experimental results between AE and MKGCN (The experimental results of MKGCN are the same as Tables 6 ~ 9)

                指標AEMKGCN
                RMSE, $\text{var} \in N$0.0200.044
                RMSE, $\text{var} \in F$0.0220.046
                MAE, $\text{var} \in N$0.0160.036
                MAE, $\text{var} \in F$0.0190.039
                ${False}_\text{p}$, $\text{var} \in N$38.8114.500
                ${False}_\text{n}$, $\text{var} \in N$00
                F1, $\text{var} \in N$75.92297.698
                ${False}_\text{p}$, $\text{var} \in F$35.00910.769
                ${False}_\text{n}$, $\text{var} \in F$0.8871.056
                F1, $\text{var} \in F$78.50593.836
                下載: 導出CSV

                表  12  單輸出通道與多輸出通道性能對比

                Table  12  Performance comparison between single output channel and multiple output channels

                指標$oc = 1$$oc = 32$
                RMSE, $\text{var} \in N$0.0430.044
                RMSE, $\text{var} \in F$0.0550.046
                MAE, $\text{var} \in N$0.0350.036
                MAE, $\text{var} \in F$0.0490.039
                ${False}_\text{p}$, $\text{var} \in N$38.4864.500
                ${False}_\text{n}$, $\text{var} \in N$00
                F1, $\text{var} \in N$76.17297.698
                ${False}_\text{p}$, $\text{var} \in F$36.02210.769
                ${False}_\text{n}$, $\text{var} \in F$5.2371.056
                F1, $\text{var} \in F$76.38593.836
                下載: 導出CSV

                表  13  單輸入通道與多輸入通道性能對比

                Table  13  Performance comparison between single input channel and multiple input channels

                指標$c_{\rm{in}}^1$$c_{\rm{in}}^2$$c_{\rm{in}}^{1,2}$
                RMSE, $\text{var} \in N$0.0840.0460.044
                RMSE, $\text{var} \in F$0.0440.0440.046
                MAE, $\text{var} \in N$0.0720.0380.036
                MAE, $\text{var} \in F$0.0370.0380.039
                ${False}_\text{p}$, $\text{var} \in N$22.7035.5274.500
                ${False}_\text{n}$, $\text{var} \in N$000
                F1, $\text{var} \in N$87.19597.15897.698
                ${False}_\text{p}$, $\text{var} \in F$33.40515.37210.769
                ${False}_\text{n}$, $\text{var} \in F$16.76510.0931.056
                F1, $\text{var} \in F$73.99187.18793.836
                下載: 導出CSV

                表  14  自迭代效果對比

                Table  14  Comparison of self-iteration effect

                指標$it = 0$$it = 5$$it = 50$
                ${False}_\text{p}$, $\text{var} \in N$11.6627.5274.500
                ${False}_\text{n}$, $\text{var} \in N$000
                F1, $\text{var} \in N$93.80896.08997.698
                ${False}_\text{p}$, $\text{var} \in F$11.74012.28910.769
                ${False}_\text{n}$, $\text{var} \in F$1.7320.6761.055
                F1, $\text{var} \in F$93.00093.15793.837
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] 柴天佑. 工業(yè)人工智能發(fā)展方向. 自動(dòng)化學(xué)報, 2020, 46(10): 2003?2012

                        Chai Tian-You. Development directions of industrial artificial intelligence. Acta Automatica Sinica, 2020, 46(10): 2003?2012
                        [2] 馬亮, 彭開(kāi)香, 董潔. 工業(yè)過(guò)程故障根源診斷與傳播路徑識別技術(shù)綜述. 自動(dòng)化學(xué)報, 2022, 48(7): 1650?1663 doi: 10.16383/j.aas.c200257

                        Ma Liang, Peng Kai-Xiang, Dong Jie. Review of root cause diagnosis and propagation path identification techniques for faults in industrial processes. Acta Automatica Sinica, 2022, 48(7): 1650?1663 doi: 10.16383/j.aas.c200257
                        [3] Zhao C H. Perspectives on nonstationary process monitoring in the era of industrial artificial intelligence. Journal of Process Control, 2022, 116: 255?272 doi: 10.1016/j.jprocont.2022.06.011
                        [4] He Y L, Geng Z Q, Zhu Q X. Soft sensor development for the key variables of complex chemical processes using a novel robust bagging nonlinear model integrating improved extreme learning machine with partial least square. Chemometrics and Intelligent Laboratory Systems, 2016, 151: 78?88 doi: 10.1016/j.chemolab.2015.12.010
                        [5] 趙春暉, 胡赟昀, 鄭嘉樂(lè ), 陳軍豪. 數據驅動(dòng)的燃煤發(fā)電裝備運行工況監控——現狀與展望. 自動(dòng)化學(xué)報, 2022, 48(11): 2611?2633

                        Zhao Chun-Hui, Hu Yun-Yun, Zheng Jia-Le, Chen Jun-Hao. Data-driven operating monitoring for coal-fired power generation equipment: The state of the art and challenge. Acta Automatica Sinica, 2022, 48(11): 2611?2633
                        [6] Sun X, Marquez H J, Chen T W, Riaz M. An improved PCA method with application to boiler leak detection. ISA Transactions, 2005, 44(3): 379?397 doi: 10.1016/S0019-0578(07)60211-0
                        [7] You L X, Chen J. A variable relevant multi-local PCA modeling scheme to monitor a nonlinear chemical process. Chemical Engineering Science, 2021, 246: Article No. 116851 doi: 10.1016/j.ces.2021.116851
                        [8] Zhao C H, Sun H. Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4749?4758 doi: 10.1109/TIE.2018.2864703
                        [9] Song P Y, Zhao C H. Slow down to go better: A survey on slow feature analysis. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3416?3436
                        [10] Zhao C H, Chen J H, Jing H. Condition-driven data analytics and monitoring for wide-range nonstationary and transient continuous processes. IEEE Transactions on Automation Science and Engineering, 2021, 18(4): 1563?1574 doi: 10.1109/TASE.2020.3010536
                        [11] 樊繼聰, 王友清, 秦泗釗. 聯(lián)合指標獨立成分分析在多變量過(guò)程故障診斷中的應用. 自動(dòng)化學(xué)報, 2013, 39(5): 494?501

                        Fan Ji-Cong, Wang You-Qing, Qin S. Joe. Combined indices for ICA and their applications to multivariate process fault diagnosis. Acta Automatica Sinica, 2013, 39(5): 494?501
                        [12] Ma L Y, Ma Y G, Lee K Y. An intelligent power plant fault diagnostics for varying degree of severity and loading conditions. IEEE Transactions on Energy Conversion, 2010, 25(2): 546?554 doi: 10.1109/TEC.2009.2037435
                        [13] Zhao R, Yan R Q, Wang J J, Mao K Z. Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors, 2017, 17(2): Article No. 273 doi: 10.3390/s17020273
                        [14] Shen Y, Abubakar M, Liu H, Hussain F. Power quality disturbance monitoring and classification based on improved PCA and convolution neural network for wind-grid distribution systems. Energies, 2019, 12(7): Article No. 1280 doi: 10.3390/en12071280
                        [15] Yu J, Rashid M M. A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis. AIChE Journal, 2013, 59(7): 2348?2365 doi: 10.1002/aic.14013
                        [16] Dimokranitou A. Adversarial Autoencoders for Anomalous Event Detection in Images [Master thesis], Purdue University, USA, 2017.
                        [17] De Castro-Cros M, Rosso S, Bahilo E, Velasco M, Angulo C. Condition assessment of industrial gas turbine compressor using a drift soft sensor based in autoencoder. Sensors, 2021, 21(8): Article No. 2708 doi: 10.3390/s21082708
                        [18] Lutz M A, Vogt S, Berkhout V, Faulstich S, Dienst S, Steinmetz U, et al. Evaluation of anomaly detection of an autoencoder based on maintenace information and scada-data. Energies, 2020, 13(5): Article No. 1063 doi: 10.3390/en13051063
                        [19] Guo Y F, Liao W X, Wang Q L, Yu L X, Ji T X, Li P. Multidimensional time series anomaly detection: A GRU-based Gaussian mixture variational autoencoder approach. In: Proceedings of the 10th Asian Conference on Machine Learning. Cambridge MA, USA: JMLR, 2018. 97?112
                        [20] Yu W K, Zhao C H. Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net. IEEE Transactions on Control Systems Technology, 2020, 28(3): 1083?1091 doi: 10.1109/TCST.2019.2897946
                        [21] Hu Y Y, Wang Y, Zhao C H. A sparse fault degradation oriented fisher discriminant analysis (FDFDA) algorithm for faulty variable isolation and its industrial application. Control Engineering Practice, 2019, 90: 311?320 doi: 10.1016/j.conengprac.2019.07.007
                        [22] 趙春暉, 余萬(wàn)科, 高福榮. 非平穩間歇過(guò)程數據解析與狀態(tài)監控——回顧與展望. 自動(dòng)化學(xué)報, 2020, 46(10): 2072?2091 doi: 10.16383/j.aas.c190586

                        Zhao Chun-Hui, Yu Wan-Ke, Gao Fu-Rong. Data analytics and condition monitoring methods for nonstationary batch processes——Current status and future. Acta Automatica Sinica, 2020, 46(10): 2072?2091 doi: 10.16383/j.aas.c190586
                        [23] Gross K C, Singer R M, Wegerich S W, Herzog J P, VanAlstine R, Bockhorst F. Application of a model-based fault detection system to nuclear plant signals. In: Proceedings of the 9th International Conference on Intelligent Systems Applications to Power Systems. Seoul, Korea: Argonne National Lab., 1997.
                        [24] Zavaljevski N, Gross K C. Sensor fault detection in nuclear power plants using multivariate state estimation technique and support vector machines. In: Proceedings of the 3rd International Conference of the Yugoslav Nuclear Society. Belgrade, Yugoslavia: Argonne National Lab., 2020.
                        [25] Cheng S F, Pecht M. Multivariate state estimation technique for remaining useful life prediction of electronic products. In: Proceedings of the 2007 AAAI Fall Symposium on Artificial Intelligence for Prognostics. Arlington, USA: AAAI, 2007.
                        [26] Wang Z Q, Liu C L. Wind turbine condition monitoring based on a novel multivariate state estimation technique. Measurement, 2021, 168: Article No. 108388 doi: 10.1016/j.measurement.2020.108388
                        [27] Bockhorst F K, Gross K C, Herzog J P, Wegerich S W. MSET modeling of crystal river-3 venturi flow meters. In: Proceedings of the 6th International Conference on Nuclear Engineering. San Diego, USA: Argonne National Lab., 1998.
                        [28] Fan Y J, Tao B, Zheng Y, Jang S S. A data-driven soft sensor based on multilayer perceptron neural network with a double LASSO approach. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 3972?3979 doi: 10.1109/TIM.2019.2947126
                        [29] Zhang M, Liu X G, Zhang Z Y. A soft sensor for industrial melt index prediction based on evolutionary extreme learning machine. Chinese Journal of Chemical Engineering, 2016, 24(8): 1013?1019 doi: 10.1016/j.cjche.2016.05.030
                        [30] Ke W S, Huang D X, Yang F, Jiang Y H. Soft sensor development and applications based on LSTM in deep neural networks. In: Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Honolulu, USA: IEEE, 2017. 1?6
                        [31] Yuan X F, Qi S B, Wang Y L, Xia H B. A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data. Control Engineering Practice, 2020, 104: Article No. 104614 doi: 10.1016/j.conengprac.2020.104614
                        [32] Zhu W B, Ma Y, Zhou Y Z, Benton M, Romagnoli J. Deep learning based soft sensor and its application on a pyrolysis reactor for compositions predictions of gas phase components. Computer Aided Chemical Engineering, 2018, 44: 2245?2250
                        [33] 常樹(shù)超, 趙春暉. 一種時(shí)空協(xié)同的圖卷積長(cháng)短期記憶網(wǎng)絡(luò )及其工業(yè)軟測量應用. 控制與決策, 2022, 37(1): 77?86 doi: 10.13195/j.kzyjc.2020.0901

                        Chang Shu-Chao, Zhao Chun-Hui. A spatio-temporal synergistic graph convolution long short-term memory network and its application for industrial soft sensors. Control and Decision, 2022, 37(1): 77?86 doi: 10.13195/j.kzyjc.2020.0901
                        [34] Kipf T N, Welling M. Semi-supervised classification with graphconvolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. Toulon, France: arXiv.org, 2017.
                        [35] Feng L J, Zhao C H, Li Y L, Zhou M, Qiao H L, Fu C. Multichannel diffusion graph convolutional network for the prediction of endpoint composition in the converter steelmaking process. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1?13
                        [36] Wu Z H, Pan S R, Long G D, Jiang J, Chang X J, Zhang C Q. Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: Association for Computing Machinery, 2020. 753?763
                        [37] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735?1780 doi: 10.1162/neco.1997.9.8.1735
                        [38] Gers F A, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural Computation, 2000, 12(10): 2451?2471 doi: 10.1162/089976600300015015
                        [39] Feng L J, Zhao C H, Sun Y X. Dual attention-based encoder-decoder: A customized sequence-to-sequence learning for soft sensor development. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3306?3317 doi: 10.1109/TNNLS.2020.3015929
                        [40] Feng L J, Zhao C H, Huang B. Adversarial smoothing tri-regression for robust semi-supervised industrial soft sensor. Journal of Process Control, 2021, 108: 86?97 doi: 10.1016/j.jprocont.2021.11.001
                        [41] Schuster M, Paliwal K K. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 1997, 45(11): 2673?2681 doi: 10.1109/78.650093
                        [42] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84?90 doi: 10.1145/3065386
                        [43] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: ACM, 2017. 6000?6010
                        [44] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia, Italy: PMLR, 2010. 249?256
                        [45] Li Q M, Han Z C, Wu X M. Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. New Orleans, USA: AAAI, 2018. 3538?3545
                        [46] Chiang W L, Liu X Q, Si S, Li Y, Bengio S, Hsieh C J. Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage, USA: Association for Computing Machinery, 2019. 257?266
                        [47] Terrell G R, Scott D W. Variable kernel density estimation. The Annals of Statistics, 1992, 20(3): 1236?1265
                        [48] Gilbertson D D, Kent M, Pyatt F B. Data analysis and interpretation III: Correlation and regression using spearman's rank correlation coefficient and semi-averages regression. Practical Ecology for Geography and Biology. New York, USA: Springer, 1985. 218?236
                        [49] Geladi P, Kowalski B R. Partial least-squares regression: A tutorial. Analytica Chimica Acta, 1986, 185: 1?17 doi: 10.1016/0003-2670(86)80028-9
                        [50] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1?3): 489?501 doi: 10.1016/j.neucom.2005.12.126
                        [51] Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman D J. 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 2021, 151: Article No. 107398 doi: 10.1016/j.ymssp.2020.107398
                      2. 加載中
                      3. 圖(11) / 表(14)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  974
                        • HTML全文瀏覽量:  339
                        • PDF下載量:  203
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2022-02-07
                        • 錄用日期:  2022-09-06
                        • 網(wǎng)絡(luò )出版日期:  2022-10-08
                        • 刊出日期:  2024-08-22

                        目錄

                          /

                          返回文章
                          返回