面向全量測點(diǎn)耦合結構分析與估計的工業(yè)過(guò)程監測方法
doi: 10.16383/j.aas.c220090
-
1.
浙江大學(xué)控制科學(xué)與工程學(xué)院 杭州 310027
An Industrial Process Monitoring Method Based on Total Measurement Point Coupling Structure Analysis and Estimation
-
1.
College of Control Science and Engineering, Zhejiang University, Hangzhou 310027
-
摘要: 實(shí)際工業(yè)場(chǎng)景中, 需要在生產(chǎn)過(guò)程中收集大量測點(diǎn)的數據, 從而掌握生產(chǎn)過(guò)程運行狀態(tài). 傳統的過(guò)程監測方法通常僅評估運行狀態(tài)整體的異常與否, 或對運行狀態(tài)進(jìn)行分級評估, 這種方式并不會(huì )直接定位故障部位, 不利于故障的高效檢修. 為此, 提出一種基于全量測點(diǎn)估計的監測模型, 根據全量測點(diǎn)估計值與實(shí)際值的偏差定義監測指標, 從而實(shí)現全量測點(diǎn)的分別精準監測. 為克服原有的基于工況估計的監測方法監測不全面且對測點(diǎn)間耦合關(guān)系建模不充分的問(wèn)題, 提出多核圖卷積網(wǎng)絡(luò )(Multi-kernel graph convolutional network, MKGCN), 通過(guò)將全量傳感器測點(diǎn)視為一張全量測點(diǎn)圖, 顯式地對測點(diǎn)間耦合關(guān)系進(jìn)行建模, 從而實(shí)現全量傳感器測點(diǎn)的同步工況估計. 此外, 面向在線(xiàn)監測場(chǎng)景, 設計基于特征逼近的自迭代方法, 從而克服在異常情況下由于測點(diǎn)間強耦合導致的部分測點(diǎn)估計值異常的問(wèn)題. 所提出的方法在電廠(chǎng)百萬(wàn)千瓦超超臨界機組中引風(fēng)機的實(shí)際數據上進(jìn)行驗證, 結果顯示, 與其他典型方法相比, 所提出的監測方法能夠更精準地檢測出發(fā)生故障的測點(diǎn).
-
關(guān)鍵詞:
- 自迭代特征替換 /
- 多核圖卷積網(wǎng)絡(luò ) /
- 全量測點(diǎn)估計 /
- 故障檢測
Abstract: In the actual industrial scenario, it is necessary to collect a large number of data from measuring points in the production process, so as to master the operational state of the production process. Traditional process monitoring methods usually only evaluate whether the overall operation state is abnormal or not, or carry out hierarchical evaluation of the state. These methods do not directly locate the fault location, which is not conducive to the efficient maintenance of the fault. Therefore, in this paper, a monitoring model based on total measurement point estimation is proposed, and the monitoring indicators are defined according to the deviation between the estimated value and the actual value of total measurement points, so as to realize the separate and accurate monitoring of total measurement points. In order to overcome the problems of incomplete monitoring and insufficient modeling of coupling relationship between measuring points in the original monitoring method based on condition estimation, a multi-kernel graph convolution network (MKGCN) is proposed. By treating the measuring points as a graph of the total measurement points, the coupling relationship between measuring points is explicitly modeled, thus realizing the synchronous estimation of total measuring points. In addition, for the on-line monitoring scenario, a self-iteration method based on feature approximation is designed to overcome the issue of abnormal estimation of some measurement points due to the strong coupling between measurement points under abnormal system state. The method proposed in this paper is verified on the actual data of induced draft fan in1000 MW ultra-supercritical thermal power unit of power plant. The results show that the monitoring method proposed in this paper can detect the fault measuring points more accurately than other typical methods. -
圖 2 面向全量測點(diǎn)估計的多核圖卷積模型結構
Fig. 2 Structure of multi-kernel graph convolution model for total measurement points estimation
圖 7 基于MKGCN的模型監測效果圖$( \text{var} \in F)$
Fig. 7 Monitoring diagram of model based on MKGCN $( \text{var} \in F)$
圖 11 測點(diǎn)12和測點(diǎn)25的工況估計值對比
Fig. 11 Comparison of working condition estimated values of measuring point 12 and measuring point 25
表 1 引風(fēng)機測點(diǎn)對應表
Table 1 Measuring points of induced draft fan
測點(diǎn)編號 物理量 測點(diǎn)編號 物理量 測點(diǎn)編號 物理量 0 功率信號三選值 11 引風(fēng)機水平振動(dòng) 22 引風(fēng)機油箱溫度 1 進(jìn)氣溫度 12 引風(fēng)機后軸承溫度 1 23 引風(fēng)機中軸承溫度 1 2 引風(fēng)機電機定子線(xiàn)圈溫度 1 13 引風(fēng)機后軸承溫度 2 24 引風(fēng)機中軸承溫度 2 3 引風(fēng)機電機定子線(xiàn)圈溫度 2 14 引風(fēng)機后軸承溫度 3 25 引風(fēng)機中軸承溫度 3 4 引風(fēng)機電機定子線(xiàn)圈溫度 3 15 引風(fēng)機鍵相 26 爐膛壓力 5 引風(fēng)機電機水平振動(dòng) 1 16 引風(fēng)機靜葉位置反饋 27 引風(fēng)機出口風(fēng)溫 6 引風(fēng)機電機水平振動(dòng) 2 17 引風(fēng)機前軸承溫度 1 28 引風(fēng)機入口壓力 7 引風(fēng)機電機軸承溫度 1 18 引風(fēng)機前軸承溫度 2 29 引風(fēng)機出口風(fēng)壓 8 引風(fēng)機電機軸承溫度 2 19 引風(fēng)機前軸承溫度 3 30 引風(fēng)機靜葉開(kāi)度指令 9 引風(fēng)機電流 20 引風(fēng)機潤滑油溫度 31 總燃料量 10 引風(fēng)機風(fēng)垂直振動(dòng) 21 引風(fēng)機潤滑油壓力 32 爐膛壓力 下載: 導出CSV表 2 基于MKGCN層的工況估計模型結構
Table 2 Structure of working condition estimation model based on MKGCN layer
序號 網(wǎng)絡(luò )層 數目 參數 激活函數 1 BiLSTM $n$ $[{ {\rm{input}}\_{\rm{size}}} = len, {{\rm{hidden}}\_{\rm{size}}} = ld]$ None FC $n$ $[{ {\rm{input}}\_{\rm{size}}} = len, {{\rm{output}}\_{\rm{size}}} = 2 \times ld]$ 2 MKGCN $1$ $[ {{c_{{\rm{in}}}} = 1,n{o_{{\rm{in}}}} = n,f{e_{{\rm{in}}}} = 2 \times ld} $,
$ {{c_{{\rm{out}}}} = oc,n{o_{{\rm{out}}}} = n,f{e_{{\rm{out}}}} = 4 \times ld}] $Tanh 3 FC 0 $n$ $[{ {\rm{input}}\_{\rm{size}}} = 4 \times ld, {{\rm{output}}\_{\rm{size}}} = 2 \times ld]$ Tanh 4 FC 1 $n$ $[{ {\rm{input}}\_{\rm{size}}} = 2 \times ld, {{\rm{output}}\_{\rm{size}}} = 1]$ Tanh 5 FC 2 $n$ $[{ {\rm{input}}\_{\rm{size}}} = \;oc, {{\rm{output}}\_{\rm{size}}} = 1]$ None 6 特征逼近層 (FC) $n$ $[{ {\rm{input}}\_{\rm{size}}} = oc, {{\rm{output}}\_{\rm{size}}} = 1]$ None 下載: 導出CSV表 3 基于GCN的工況估計模型結構
Table 3 Structure of working condition estimation model based on GCN
序號 網(wǎng)絡(luò )層 數目 參數 激活函數 1 BiLSTM $n$ $[{ {\rm{input}}\_{\rm{size}}} = len, {{\rm{hidden}}\_{\rm{size}}} = ld]$ None 2 GCN 1 $[{\rm{in}}\_{\rm{feature}} = 2 \times ld, {\rm{out}}\_{\rm{feature}} = 4 \times ld]$ Tanh 3 FC 0 $n$ $[{ {\rm{input}}\_{\rm{size}}} = 4 \times ld, {{\rm{output}}\_{\rm{size}}} = 2 \times ld]$ Tanh 4 FC 1 $n$ $[{ {\rm{input}}\_{\rm{size}}} = 2 \times ld, {{\rm{output}}\_{\rm{size}}} = ld]$ Tanh 5 FC 2 $n$ $[{ {\rm{input}}\_{\rm{size}}} = ld, {{\rm{output}}\_{\rm{size}}} = 1]$ None 下載: 導出CSV表 4 模型實(shí)現和參數網(wǎng)格搜索范圍
Table 4 Model implementation and parameter grid search range
方法 Python包 超參數 超參數調整范圍 PLSR scikit-learn $nc$ $nc = \left\{ {5,10,15,20,25} \right\}$ ELM D.C. Lambert $E,\alpha $ $ E = \left\{ {50,100,150,200,250} \right\}, $
$ \alpha = \left\{ {0.1,0.3,0.5,0.7,0.9} \right\} $FC PaddlePaddle $ld$ $ld = \left\{ {8,16,32,64,128} \right\}$ BiLSTM PaddlePaddle $ld$ $ld = \left\{ {8,16,32,64,128} \right\}$ Conv1D PaddlePaddle $ld$ $ld = \left\{ {8,16,32,64,128} \right\}$ GCN PaddlePaddle $ld$ $ld = \left\{ {8,16,32,64,128} \right\}$ MKGCN PaddlePaddle $ld,oc$ $ ld = \left\{ {8,16,32,64,128} \right\},$
$ oc = \left\{ {2,4,8,16,32} \right\} $下載: 導出CSV表 5 網(wǎng)格搜索結果與深度神經(jīng)網(wǎng)絡(luò )方法在最優(yōu)超參數下總參數量
Table 5 Grid search results and total parameters of depth neural network method with optimal hyperparameters
方法 最優(yōu)超參數 模型數 總參數量 PLSR $nc = 15$ $n$ / ELM $E = 200,\alpha = 0.9$ $n$ / MEST / / / FC $ld = 128$ $n$ 5 × 105 BiLSTM $ld = 128$ $n$ 6.9 × 106 Conv1D $ld = 128$ $n$ 9 × 105 GCN $ld = 64$ $1$ 9.8 × 106 MKGCN $ld = 8,oc = 32$ $1$ 1.8 × 105 下載: 導出CSV表 6 測試數據上不同模型的工況估計結果(RMSE)
Table 6 Results of different working condition estimation models on test data (RMSE)
變量 PLSR ELM FC BiLSTM Conv1D GCN MEST MKGCN $\text{var} \in N$ 0.042 0.064 0.059 0.052 0.060 0.042 0.005 0.044 $\text{var} \in F$ 0.046 0.076 0.059 0.049 0.082 0.049 0.006 0.046 下載: 導出CSV表 7 測試數據上不同模型的工況估計結果(MAE)
Table 7 Results of different working condition estimation models on test data (MAE)
變量 PLSR ELM FC BiLSTM Conv1D GCN MEST MKGCN $\text{var} \in N$ 0.034 0.052 0.049 0.043 0.051 0.034 0.004 0.036 $\text{var} \in F$ 0.039 0.066 0.050 0.041 0.070 0.043 0.005 0.039 下載: 導出CSV表 8 監測數據上各監測指標$( \text{var} \in N)$
Table 8 Monitoring indicators on monitoring data $( \text{var} \in N)$
指標 PLSR ELM FC BiLSTM Conv1D GCN MEST MKGCN ${False}_\text{p}$ 13.267 29.573 34.267 27.392 42.581 23.568 2.853 4.500 ${False}_\text{n}$ 0 0 0 0 0 0 0 0 F1 92.895 82.648 79.324 84.131 72.951 86.642 98.553 97.698 下載: 導出CSV表 9 監測數據上各監測指標$( \text{var} \in F)$
Table 9 Monitoring indicators on monitoring data $( \text{var} \in F)$
指標 PLSR ELM FC BiLSTM Conv1D GCN MEST MKGCN ${False}_\text{p}$ 15.958 30.583 31.375 32.390 37.162 10.769 0 10.769 ${False}_\text{n}$ 24.250 5.042 5.917 1.140 1.774 6.968 33.208 1.056 F1 79.681 80.203 79.362 80.302 76.644 91.092 80.090 93.836 下載: 導出CSV表 10 基于A(yíng)E的工況估計模型的結構
Table 10 Structure of working condition estimation model based on AE
序號 網(wǎng)絡(luò )層 數目 參數 激活函數 1 BiLSTM 1 $[{ {\rm{input}}\_{\rm{size}}} = \;len,{{\rm{hidden}}\_{\rm{size}}} = 2 \times ld]$ None 2 FC 0 1 $[{ {\rm{input}}\_{\rm{size}}} = 4 \times ld,{{\rm{output}}\_{\rm{size}}} = 2 \times ld]$ Tanh 3 FC 1 1 $[{ {\rm{input}}\_{\rm{size}}} = 2 \times ld,{{\rm{output}}\_{\rm{size}}} = ld]$ Tanh 4 FC 2 1 $[{ {\rm{input}}\_{\rm{size}}} = ld,{{\rm{output}}\_{\rm{size}}} = 2 \times ld]$ Tanh 5 FC 3 1 $[{ {\rm{input}}\_{\rm{size}}} = 2 \times ld,{{\rm{output}}\_{\rm{size}}} = n]$ None 下載: 導出CSV表 11 AE與MKGCN實(shí)驗結果對比(MKGCN實(shí)驗結果同表6 ~ 9)
Table 11 Comparison of experimental results between AE and MKGCN (The experimental results of MKGCN are the same as Tables 6 ~ 9)
指標 AE MKGCN RMSE, $\text{var} \in N$ 0.020 0.044 RMSE, $\text{var} \in F$ 0.022 0.046 MAE, $\text{var} \in N$ 0.016 0.036 MAE, $\text{var} \in F$ 0.019 0.039 ${False}_\text{p}$, $\text{var} \in N$ 38.811 4.500 ${False}_\text{n}$, $\text{var} \in N$ 0 0 F1, $\text{var} \in N$ 75.922 97.698 ${False}_\text{p}$, $\text{var} \in F$ 35.009 10.769 ${False}_\text{n}$, $\text{var} \in F$ 0.887 1.056 F1, $\text{var} \in F$ 78.505 93.836 下載: 導出CSV表 12 單輸出通道與多輸出通道性能對比
Table 12 Performance comparison between single output channel and multiple output channels
指標 $oc = 1$ $oc = 32$ RMSE, $\text{var} \in N$ 0.043 0.044 RMSE, $\text{var} \in F$ 0.055 0.046 MAE, $\text{var} \in N$ 0.035 0.036 MAE, $\text{var} \in F$ 0.049 0.039 ${False}_\text{p}$, $\text{var} \in N$ 38.486 4.500 ${False}_\text{n}$, $\text{var} \in N$ 0 0 F1, $\text{var} \in N$ 76.172 97.698 ${False}_\text{p}$, $\text{var} \in F$ 36.022 10.769 ${False}_\text{n}$, $\text{var} \in F$ 5.237 1.056 F1, $\text{var} \in F$ 76.385 93.836 下載: 導出CSV表 13 單輸入通道與多輸入通道性能對比
Table 13 Performance comparison between single input channel and multiple input channels
指標 $c_{\rm{in}}^1$ $c_{\rm{in}}^2$ $c_{\rm{in}}^{1,2}$ RMSE, $\text{var} \in N$ 0.084 0.046 0.044 RMSE, $\text{var} \in F$ 0.044 0.044 0.046 MAE, $\text{var} \in N$ 0.072 0.038 0.036 MAE, $\text{var} \in F$ 0.037 0.038 0.039 ${False}_\text{p}$, $\text{var} \in N$ 22.703 5.527 4.500 ${False}_\text{n}$, $\text{var} \in N$ 0 0 0 F1, $\text{var} \in N$ 87.195 97.158 97.698 ${False}_\text{p}$, $\text{var} \in F$ 33.405 15.372 10.769 ${False}_\text{n}$, $\text{var} \in F$ 16.765 10.093 1.056 F1, $\text{var} \in F$ 73.991 87.187 93.836 下載: 導出CSV表 14 自迭代效果對比
Table 14 Comparison of self-iteration effect
指標 $it = 0$ $it = 5$ $it = 50$ ${False}_\text{p}$, $\text{var} \in N$ 11.662 7.527 4.500 ${False}_\text{n}$, $\text{var} \in N$ 0 0 0 F1, $\text{var} \in N$ 93.808 96.089 97.698 ${False}_\text{p}$, $\text{var} \in F$ 11.740 12.289 10.769 ${False}_\text{n}$, $\text{var} \in F$ 1.732 0.676 1.055 F1, $\text{var} \in F$ 93.000 93.157 93.837 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 柴天佑. 工業(yè)人工智能發(fā)展方向. 自動(dòng)化學(xué)報, 2020, 46(10): 2003?2012Chai Tian-You. Development directions of industrial artificial intelligence. Acta Automatica Sinica, 2020, 46(10): 2003?2012 [2] 馬亮, 彭開(kāi)香, 董潔. 工業(yè)過(guò)程故障根源診斷與傳播路徑識別技術(shù)綜述. 自動(dòng)化學(xué)報, 2022, 48(7): 1650?1663 doi: 10.16383/j.aas.c200257Ma Liang, Peng Kai-Xiang, Dong Jie. Review of root cause diagnosis and propagation path identification techniques for faults in industrial processes. Acta Automatica Sinica, 2022, 48(7): 1650?1663 doi: 10.16383/j.aas.c200257 [3] Zhao C H. Perspectives on nonstationary process monitoring in the era of industrial artificial intelligence. Journal of Process Control, 2022, 116: 255?272 doi: 10.1016/j.jprocont.2022.06.011 [4] He Y L, Geng Z Q, Zhu Q X. Soft sensor development for the key variables of complex chemical processes using a novel robust bagging nonlinear model integrating improved extreme learning machine with partial least square. Chemometrics and Intelligent Laboratory Systems, 2016, 151: 78?88 doi: 10.1016/j.chemolab.2015.12.010 [5] 趙春暉, 胡赟昀, 鄭嘉樂(lè ), 陳軍豪. 數據驅動(dòng)的燃煤發(fā)電裝備運行工況監控——現狀與展望. 自動(dòng)化學(xué)報, 2022, 48(11): 2611?2633Zhao Chun-Hui, Hu Yun-Yun, Zheng Jia-Le, Chen Jun-Hao. Data-driven operating monitoring for coal-fired power generation equipment: The state of the art and challenge. Acta Automatica Sinica, 2022, 48(11): 2611?2633 [6] Sun X, Marquez H J, Chen T W, Riaz M. An improved PCA method with application to boiler leak detection. ISA Transactions, 2005, 44(3): 379?397 doi: 10.1016/S0019-0578(07)60211-0 [7] You L X, Chen J. A variable relevant multi-local PCA modeling scheme to monitor a nonlinear chemical process. Chemical Engineering Science, 2021, 246: Article No. 116851 doi: 10.1016/j.ces.2021.116851 [8] Zhao C H, Sun H. Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4749?4758 doi: 10.1109/TIE.2018.2864703 [9] Song P Y, Zhao C H. Slow down to go better: A survey on slow feature analysis. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3416?3436 [10] Zhao C H, Chen J H, Jing H. Condition-driven data analytics and monitoring for wide-range nonstationary and transient continuous processes. IEEE Transactions on Automation Science and Engineering, 2021, 18(4): 1563?1574 doi: 10.1109/TASE.2020.3010536 [11] 樊繼聰, 王友清, 秦泗釗. 聯(lián)合指標獨立成分分析在多變量過(guò)程故障診斷中的應用. 自動(dòng)化學(xué)報, 2013, 39(5): 494?501Fan Ji-Cong, Wang You-Qing, Qin S. Joe. Combined indices for ICA and their applications to multivariate process fault diagnosis. Acta Automatica Sinica, 2013, 39(5): 494?501 [12] Ma L Y, Ma Y G, Lee K Y. An intelligent power plant fault diagnostics for varying degree of severity and loading conditions. IEEE Transactions on Energy Conversion, 2010, 25(2): 546?554 doi: 10.1109/TEC.2009.2037435 [13] Zhao R, Yan R Q, Wang J J, Mao K Z. Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors, 2017, 17(2): Article No. 273 doi: 10.3390/s17020273 [14] Shen Y, Abubakar M, Liu H, Hussain F. Power quality disturbance monitoring and classification based on improved PCA and convolution neural network for wind-grid distribution systems. Energies, 2019, 12(7): Article No. 1280 doi: 10.3390/en12071280 [15] Yu J, Rashid M M. A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis. AIChE Journal, 2013, 59(7): 2348?2365 doi: 10.1002/aic.14013 [16] Dimokranitou A. Adversarial Autoencoders for Anomalous Event Detection in Images [Master thesis], Purdue University, USA, 2017. [17] De Castro-Cros M, Rosso S, Bahilo E, Velasco M, Angulo C. Condition assessment of industrial gas turbine compressor using a drift soft sensor based in autoencoder. Sensors, 2021, 21(8): Article No. 2708 doi: 10.3390/s21082708 [18] Lutz M A, Vogt S, Berkhout V, Faulstich S, Dienst S, Steinmetz U, et al. Evaluation of anomaly detection of an autoencoder based on maintenace information and scada-data. Energies, 2020, 13(5): Article No. 1063 doi: 10.3390/en13051063 [19] Guo Y F, Liao W X, Wang Q L, Yu L X, Ji T X, Li P. Multidimensional time series anomaly detection: A GRU-based Gaussian mixture variational autoencoder approach. In: Proceedings of the 10th Asian Conference on Machine Learning. Cambridge MA, USA: JMLR, 2018. 97?112 [20] Yu W K, Zhao C H. Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net. IEEE Transactions on Control Systems Technology, 2020, 28(3): 1083?1091 doi: 10.1109/TCST.2019.2897946 [21] Hu Y Y, Wang Y, Zhao C H. A sparse fault degradation oriented fisher discriminant analysis (FDFDA) algorithm for faulty variable isolation and its industrial application. Control Engineering Practice, 2019, 90: 311?320 doi: 10.1016/j.conengprac.2019.07.007 [22] 趙春暉, 余萬(wàn)科, 高福榮. 非平穩間歇過(guò)程數據解析與狀態(tài)監控——回顧與展望. 自動(dòng)化學(xué)報, 2020, 46(10): 2072?2091 doi: 10.16383/j.aas.c190586Zhao Chun-Hui, Yu Wan-Ke, Gao Fu-Rong. Data analytics and condition monitoring methods for nonstationary batch processes——Current status and future. Acta Automatica Sinica, 2020, 46(10): 2072?2091 doi: 10.16383/j.aas.c190586 [23] Gross K C, Singer R M, Wegerich S W, Herzog J P, VanAlstine R, Bockhorst F. Application of a model-based fault detection system to nuclear plant signals. In: Proceedings of the 9th International Conference on Intelligent Systems Applications to Power Systems. Seoul, Korea: Argonne National Lab., 1997. [24] Zavaljevski N, Gross K C. Sensor fault detection in nuclear power plants using multivariate state estimation technique and support vector machines. In: Proceedings of the 3rd International Conference of the Yugoslav Nuclear Society. Belgrade, Yugoslavia: Argonne National Lab., 2020. [25] Cheng S F, Pecht M. Multivariate state estimation technique for remaining useful life prediction of electronic products. In: Proceedings of the 2007 AAAI Fall Symposium on Artificial Intelligence for Prognostics. Arlington, USA: AAAI, 2007. [26] Wang Z Q, Liu C L. Wind turbine condition monitoring based on a novel multivariate state estimation technique. Measurement, 2021, 168: Article No. 108388 doi: 10.1016/j.measurement.2020.108388 [27] Bockhorst F K, Gross K C, Herzog J P, Wegerich S W. MSET modeling of crystal river-3 venturi flow meters. In: Proceedings of the 6th International Conference on Nuclear Engineering. San Diego, USA: Argonne National Lab., 1998. [28] Fan Y J, Tao B, Zheng Y, Jang S S. A data-driven soft sensor based on multilayer perceptron neural network with a double LASSO approach. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 3972?3979 doi: 10.1109/TIM.2019.2947126 [29] Zhang M, Liu X G, Zhang Z Y. A soft sensor for industrial melt index prediction based on evolutionary extreme learning machine. Chinese Journal of Chemical Engineering, 2016, 24(8): 1013?1019 doi: 10.1016/j.cjche.2016.05.030 [30] Ke W S, Huang D X, Yang F, Jiang Y H. Soft sensor development and applications based on LSTM in deep neural networks. In: Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Honolulu, USA: IEEE, 2017. 1?6 [31] Yuan X F, Qi S B, Wang Y L, Xia H B. A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data. Control Engineering Practice, 2020, 104: Article No. 104614 doi: 10.1016/j.conengprac.2020.104614 [32] Zhu W B, Ma Y, Zhou Y Z, Benton M, Romagnoli J. Deep learning based soft sensor and its application on a pyrolysis reactor for compositions predictions of gas phase components. Computer Aided Chemical Engineering, 2018, 44: 2245?2250 [33] 常樹(shù)超, 趙春暉. 一種時(shí)空協(xié)同的圖卷積長(cháng)短期記憶網(wǎng)絡(luò )及其工業(yè)軟測量應用. 控制與決策, 2022, 37(1): 77?86 doi: 10.13195/j.kzyjc.2020.0901Chang Shu-Chao, Zhao Chun-Hui. A spatio-temporal synergistic graph convolution long short-term memory network and its application for industrial soft sensors. Control and Decision, 2022, 37(1): 77?86 doi: 10.13195/j.kzyjc.2020.0901 [34] Kipf T N, Welling M. Semi-supervised classification with graphconvolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. Toulon, France: arXiv.org, 2017. [35] Feng L J, Zhao C H, Li Y L, Zhou M, Qiao H L, Fu C. Multichannel diffusion graph convolutional network for the prediction of endpoint composition in the converter steelmaking process. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1?13 [36] Wu Z H, Pan S R, Long G D, Jiang J, Chang X J, Zhang C Q. Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: Association for Computing Machinery, 2020. 753?763 [37] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735?1780 doi: 10.1162/neco.1997.9.8.1735 [38] Gers F A, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural Computation, 2000, 12(10): 2451?2471 doi: 10.1162/089976600300015015 [39] Feng L J, Zhao C H, Sun Y X. Dual attention-based encoder-decoder: A customized sequence-to-sequence learning for soft sensor development. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3306?3317 doi: 10.1109/TNNLS.2020.3015929 [40] Feng L J, Zhao C H, Huang B. Adversarial smoothing tri-regression for robust semi-supervised industrial soft sensor. Journal of Process Control, 2021, 108: 86?97 doi: 10.1016/j.jprocont.2021.11.001 [41] Schuster M, Paliwal K K. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 1997, 45(11): 2673?2681 doi: 10.1109/78.650093 [42] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84?90 doi: 10.1145/3065386 [43] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: ACM, 2017. 6000?6010 [44] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia, Italy: PMLR, 2010. 249?256 [45] Li Q M, Han Z C, Wu X M. Deeper insights into graph convolutional networks for semi-supervised learning. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. New Orleans, USA: AAAI, 2018. 3538?3545 [46] Chiang W L, Liu X Q, Si S, Li Y, Bengio S, Hsieh C J. Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage, USA: Association for Computing Machinery, 2019. 257?266 [47] Terrell G R, Scott D W. Variable kernel density estimation. The Annals of Statistics, 1992, 20(3): 1236?1265 [48] Gilbertson D D, Kent M, Pyatt F B. Data analysis and interpretation III: Correlation and regression using spearman's rank correlation coefficient and semi-averages regression. Practical Ecology for Geography and Biology. New York, USA: Springer, 1985. 218?236 [49] Geladi P, Kowalski B R. Partial least-squares regression: A tutorial. Analytica Chimica Acta, 1986, 185: 1?17 doi: 10.1016/0003-2670(86)80028-9 [50] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1?3): 489?501 doi: 10.1016/j.neucom.2005.12.126 [51] Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman D J. 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 2021, 151: Article No. 107398 doi: 10.1016/j.ymssp.2020.107398