基于電網(wǎng)線(xiàn)路傳輸安全的電力市場(chǎng)分布式交易模型研究
doi: 10.16383/j.aas.c211244
-
1.
華中科技大學(xué)人工智能與自動(dòng)化學(xué)院 武漢 430074
-
2.
湖北電力交易中心有限公司 武漢 430077
Research on Distributed Power Market Trading Model Based on Grid Line Transmission Security
-
1.
School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074
-
2.
Hubei Electric Power Exchange Center Limited Company, Wuhan 430077
-
摘要: 電力市場(chǎng)分布式交易模型可有效緩解傳統集中模型下市場(chǎng)主體的隱私安全等問(wèn)題, 但難以在保障市場(chǎng)主體收益和電力系統安全穩定運行的同時(shí), 實(shí)現社會(huì )福利最大化. 因此, 基于電網(wǎng)線(xiàn)路傳輸安全, 首先以社會(huì )福利最大化為目標, 構建集中式交易模型, 并采用拉格朗日乘子法和對偶定理, 將其等價(jià)分解為各市場(chǎng)主體自身利益最大化的分布式交易模型. 在此基礎上, 設計2種適用于不同情形的分布式交易方法及其求解算法, 并構造電網(wǎng)安全成本影響市場(chǎng)主體的決策, 從而保證電網(wǎng)線(xiàn)路傳輸安全. 最后, 基于算例分析, 驗證了2種交易方法的有效性.
-
關(guān)鍵詞:
- 區域配電網(wǎng) /
- 分布式電能交易 /
- 線(xiàn)路傳輸安全 /
- 市場(chǎng)交易模型
Abstract: The distributed power market trading model can effectively alleviate the problems among market entities such as privacy problem in the traditional centralized trading model. However, there is still a lack of distributed trading models that can maximize social welfare while ensuring the benefits of market entities and the safe and stable operation of the power system. Therefore, a centralized trading model with the objective of maximizing social welfare is constructed, which considers the power grid line transmission security. Then, it is equivalently decomposed into a distributed trading model that maximizes the interests of each market agent using the Lagrange multiplier method and dual duality theorem. On this basis, two distributed trading methods and the corresponding solution algorithms suitable for different scenarios are designed, and the grid security cost is used to influence the decision-making of market entities, thereby ensuring grid line transmission security. Finally, the effectiveness of the two trading methods are verified based on simulation analysis. -
圖 7 情形1下, 2種算法求得的各發(fā)電商的出力
Fig. 7 Power generation of each generator obtained by the 2 algorithms in scenario 1
圖 8 情形2下, 2種算法求得各發(fā)電商的出力
Fig. 8 Power generation of each generator obtained by the 2 algorithms in scenario 2
圖 10 在IEEE 33節點(diǎn)電力系統中, 2種交易方法求解結果的殘差
Fig. 10 Residuals of the solution results of the 2 trading models in IEEE 33 bus power system
圖 11 情形1下, 2種算法求得的各發(fā)電商的出力
Fig. 11 Power generation of each generator obtained by the 2 algorithms in scenario 1
圖 12 情形2下, 2種算法求得的各發(fā)電商的出力
Fig. 12 Power generation of each generator obtained by the 2 algorithms in scenario 2
表 1 2種分布式交易情形下, IEEE 9節點(diǎn)電力系統的發(fā)電商出力上限和下限(MW)
Table 1 Upper and lower limits on generator output for IEEE 9 bus power system in 2 distributed trading scenarios (MW)
發(fā)電商 $G_1$ $G_2$ $G_3$ 情形1 $p_{G,i}^{\max }$ 350 290 400 $p_{G,i}^{\min }$ 10 20 15 情形2 $p_{G,i}^{\max }$ 120 100 140 $p_{G,i}^{\min }$ 10 20 15 下載: 導出CSV表 2 2種分布式交易情形下, IEEE 9節點(diǎn)電力系統的柔性負荷商需求上限和下限(MW)
Table 2 Upper and lower limits on flexible loaders'demand for IEEE 9 bus power system in 2 distributed trading scenarios (MW)
柔性負荷商 ${{D}_{4}}$ ${{D}_{5}}$ ${{D}_{6}}$ ${{D}_{7}}$ ${{D}_{8}}$ ${{D}_{9}}$ 情形1 $p_{D,j}^{\max }$ 150 100 145 140 150 170 $p_{D,j}^{\min }$ 60 50 90 60 50 70 情形2 $p_{D,j}^{\max }$ 150 90 100 140 150 150 $p_{D,j}^{\min }$ 20 15 30 30 15 20 下載: 導出CSV表 3 IEEE 9節點(diǎn)電力系統線(xiàn)路潮流上限(MW)
Table 3 Upper limit of grid line power flow for IEEE 9 bus power system (MW)
線(xiàn)路 1-4 4-6 6-9 3-9 9-8 8-7 7-2 7-5 5-4 $P_{l}^{PF\max}$ 160 100 100 150 100 100 120 100 100 下載: 導出CSV表 4 2種交易方法下, 各市場(chǎng)主體交易量對比 (MW)
Table 4 Comparison of the trading volume of market entities obtained by the 2 trading methods (MW)
交易量 集中式 分布式 ${{G}_{1}}$ 155.374 155.376 ${{G}_{2}}$ 97.747 97.747 ${{G}_{3}}$ 126.912 126.918 ${{D}_{4}}$ 59.998 60.002 ${{D}_{5}}$ 50.010 50.007 ${{D}_{6}}$ 90.007 90.007 ${{D}_{7}}$ 60.006 60.006 ${{D}_{8}}$ 50.009 50.006 ${{D}_{9}}$ 70.012 70.006 下載: 導出CSV表 5 IEEE 9節點(diǎn)電力系統下, 2種算法的迭代次數和 計算時(shí)間對比
Table 5 Comparison of iterations and computation time of the 2 algorithms in IEEE 9 bus system
情形 算法1 算法2 迭代次數 計算時(shí)間(s) 迭代次數 計算時(shí)間(s) 情形1 248 71.5 265 79.8 情形2 216 60.2 52 15.7 下載: 導出CSV表 6 IEEE 33節點(diǎn)電力系統中, 2個(gè)案例的 潮流對比(MW)
Table 6 Comparison of the power flow in the 2 cases of the IEEE 33 bus power system (MW)
線(xiàn)路 $P_{l}^{PF,\;{\rm{case} }\;1}$ $P_{l}^{PF,\;{\rm{case} }\;2}$ $P_{l}^{PF\max}$ 1-2 189.22 190.36 250 2-3 145.40 78.52 250 3-4 136.56 98.60 150 4-5 58.56 56.30 250 5-6 258.55 168.56 200 6-7 59.87 43.69 250 7-8 25.21 8.96 250 8-9 62.17 56.18 250 9-10 32.74 32.80 250 10-11 62.15 57.71 150 11-12 16.12 15.23 150 12-13 30.06 34.89 200 13-14 51.10 40.55 250 14-15 218.53 188.37 200 15-16 39.89 22.97 150 16-17 101.01 59.95 150 17-18 165.36 137.69 150 2-19 74.80 60.84 150 19-20 95.37 87.90 250 20-21 212.80 183.99 200 21-22 61.00 68.73 150 3-23 58.97 60.04 150 23-24 45.51 37.73 200 24-25 75.72 43.37 250 6-26 145.70 155.01 250 26-27 169.74 125.79 150 27-28 243.25 188.26 200 28-29 135.98 97.89 150 29-30 14.31 32.59 150 30-31 34.64 44.72 250 31-32 43.94 44.88 150 32-33 140.00 122.20 150 21-8 122.87 99.63 150 9-15 87.32 65.97 150 12-22 120.66 156.98 200 18-33 35.62 40.33 200 25-29 158.77 142.65 200 下載: 導出CSV表 7 IEEE 33節點(diǎn)系統下, 2種算法迭代次數和 計算時(shí)間對比
Table 7 Comparison of iterations and computation time of the 2 algorithms in IEEE 33 bus system
情形 算法1 算法2 迭代次數 計算時(shí)間(s) 迭代次數 計算時(shí)間(s) 情形1 402 158.3 433 165.9 情形2 374 143.3 86 32.6 下載: 導出CSV表 8 情形1下, 3種算法的迭代次數和計算時(shí)間對比
Table 8 Comparison of iterations and computation time of the 3 algorithms in scenario 1
算法名稱(chēng) 迭代次數 計算時(shí)間(s) 原始對偶法 458 162.2 F-ADMM 262 96.5 算法1 402 158.3 下載: 導出CSV表 9 情形2下, 3種算法的迭代次數和計算時(shí)間對比
Table 9 Comparison of iterations and computation time of the 3 algorithms in scenario 2
算法名稱(chēng) 迭代次數 計算時(shí)間(s) 原始對偶法 395 149.8 F-ADMM 218 80.4 算法2 86 32.6 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 孫秋野, 滕菲, 張化光. 能源互聯(lián)網(wǎng)及其關(guān)鍵控制問(wèn)題. 自動(dòng)化學(xué)報, 2017, 43(2): 176?194 doi: 10.16383/j.aas.2017.c160390Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy internet and its key control issues. Acta Automatica Sinica, 2017, 43(2): 176?194 doi: 10.16383/j.aas.2017.c160390 [2] 平作為, 何維, 李俊林, 楊濤. 基于稀疏學(xué)習的微電網(wǎng)負載建模. 自動(dòng)化學(xué)報, 2020, 46(9): 1798?1808 doi: 10.16383/j.aas.c200154Ping Zuo-Wei, He Wei, Li Jun-Lin, Yang Tao. Sparse learning for load modeling in microgrids. Acta Automatica Sinica, 2020, 46(9): 1798?1808 doi: 10.16383/j.aas.c200154 [3] 李玉帥, 李天義, 高煒, 高文忠. 基于異步動(dòng)態(tài)事件觸發(fā)通信策略的綜合能源系統分布式協(xié)同優(yōu)化運行方法. 自動(dòng)化學(xué)報, 2020, 46(9): 1831?1843Li Yu-Shuai, Li Tian-Yi, Gao Wei, Gao Wen-Zhong. Distributed collaborative optimization operation approach for integrated energy system based on asynchronous and dynamic event-triggering communication strategy. Acta Automatica Sinica, 2020, 46(9): 1831?1843 [4] Valero S, Ortiz M, Senabre C, Alvarez C, Franco F, Gabaldón A. Methods for customer and demand response policies selection in new electricity markets. IET Generation, Transmission & Distribution, 2007, 1(1): 104?110 [5] 張曉萱, 薛松, 楊素, 屠俊明, 魏哲, 馬莉. 售電側市場(chǎng)放開(kāi)國際經(jīng)驗及其啟示. 電力系統自動(dòng)化, 2016, 40(9): 1?8 doi: 10.7500/AEPS20151128001Zhang Xiao-Xuan, Xue Song, Yang Su, Tu Jun-Ming, Wei Zhe, Ma Li. International experience and lessons in power sales side market liberalization. Automation of Electric Power Systems, 2016, 40(9): 1?8 doi: 10.7500/AEPS20151128001 [6] 單俊嘉, 胡俊杰, 吳界辰. 面向虛擬電廠(chǎng)能量管理的點(diǎn)對點(diǎn)市場(chǎng)交易機制與模型. 電網(wǎng)技術(shù), 2020, 44(9): 3401?3408Shan Jun-Jia, Hu Jun-Jie, Wu Jie-Chen. Peer-to-peer market trading mechanism and model for virtual power plant energy management. Power System Technology, 2020, 44(9): 3401?3408 [7] Iweh C D, Gyamfi S, Tanyi E, Effah-Donyina E. Distributed generation and renewable energy integration into the grid: Prerequisites, push factors, practical options, issues and merits. Energies, 2021, 14(17): 1?34 [8] Bahrami S, Amini M. A decentralized trading algorithm for an electricity market with generation uncertainty. Applied Energy, 2018, 218: 520?532 doi: 10.1016/j.apenergy.2018.02.157 [9] 田碩. 電動(dòng)汽車(chē)聚合商參與日前市場(chǎng)的運營(yíng)優(yōu)化與競標策略研究 [碩士論文], 華北電力大學(xué), 中國, 2018.Tian Shuo. Operation Optimization and Bidding Strategy of the Electric Vehicle Aggregator Participating in Day-ahead Electricity Markets [Master thesis], North China Electric Power Univ-ersity, China, 2018. [10] 袁曉冬, 費駿韜, 胡波, 張友旺, 葛樂(lè ). 資源聚合商模型下的分布式電源、儲能與柔性負荷聯(lián)合調度模型. 電力系統保護與控制, 2019, 47(22): 17?26Yuan Xiao-Dong, Fei Jun-Tao, Hu Bo, Zhang You-Wang, Ge Le. Joint scheduling model of distributed generation, energy storage and flexible load under resource aggregator mode. Power System Protection and Control, 2019, 47(22): 17?26 [11] 林俐, 許冰倩, 王皓懷. 典型分布式發(fā)電市場(chǎng)化交易機制分析與建議. 電力系統自動(dòng)化, 2019, 43(4): 1?8 doi: 10.7500/AEPS20180829001Lin Li, Xu Bing-Qian, Wang Hao-Huai. Analysis and recommendations of typical market-based distributed generation trading mechanisms. Automation of Electric Power Systems, 2019, 43(4): 1?8 doi: 10.7500/AEPS20180829001 [12] 蔣嗣凡. 分布式光伏P2P交易機制和交易策略研究 [碩士論文], 浙江大學(xué), 中國, 2020.Jiang Si-Fan. Research on P2P Trading Mechanism and Strategy of Distributed PV Generation [Master thesis], Zhejiang University, China, 2020. [13] Paudel A, Chaudhari K, Chao L, Gooi H. Peer-to-peer energy trading in a prosumer based community microgrid: A game-theoretic model. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6087?6097 doi: 10.1109/TIE.2018.2874578 [14] Zhang K, Troitzsch S, Hanif S, Hamacher T. Coordinated market design for peer-to-peer energy trade and ancillary services in distribution grids. IEEE Transactions on Smart Grid, 2020, 11(4): 2929?2941 doi: 10.1109/TSG.2020.2966216 [15] Paudel A, Sampath L, Yang J, Gooi H. Peer-to-peer energy trading in smart grid considering power losses and network fees. IEEE Transactions on Smart Grid, 2020, 11(6): 4727?4737 doi: 10.1109/TSG.2020.2997956 [16] Tushar W, Saha T K, Yuen C, Smith D, Poor H V. Peer-to-peer trading in electricity networks: An overview. IEEE Transactions on Smart Grid, 2020, 11(4): 3185?3200 doi: 10.1109/TSG.2020.2969657 [17] 馬騰, 劉洋, 劉俊, 蔣拯, 許立雄. 智能合約技術(shù)下微電網(wǎng)群電能分布式交易模型. 電力建設, 2021, 42(1): 41?48 doi: 10.12204/j.issn.1000-7229.2021.01.005Ma Teng, Liu Yang, Liu Jun, Jiang Zheng, Xu Li-Xiong. Distributed transaction model of electricity in multi-microgrid applying smart contract technology. Electric Power Construction, 2021, 42(1): 41?48 doi: 10.12204/j.issn.1000-7229.2021.01.005 [18] Guerrero J, Chapman A, Verbi G. Decentralized P2P energy trading under network constraints in a low-voltage network. IEEE Transactions on Smart Grid, 2019, 10(5): 5163?5173 doi: 10.1109/TSG.2018.2878445 [19] Khorasany M, Mishra Y, Ledwich G. A decentralized bilateral energy trading system for peer-to-peer electricity markets. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4646?4657 doi: 10.1109/TIE.2019.2931229 [20] Morstyn T, Teytelboym A, Hepburn C, McCulloch M D. Integrating P2P energy trading with probabilistic distribution locational marginal pricing. IEEE Transactions on Smart Grid, 2020, 11(4): 3095?3106 doi: 10.1109/TSG.2019.2963238 [21] Coffrin C, Knueven B, Holzer J, Vuffary M. The impacts of convex piecewise linear cost formulations on AC optimal power flow. Electric Power Systems Research, 2021, 199(1): 1?11 [22] 王怡, 楊知方, 余娟, 趙唯嘉. 節點(diǎn)電價(jià)與對偶乘子的內在關(guān)聯(lián)分析與擴展. 電力系統自動(dòng)化, 2021, 45(6): 82?91Wang Yi, Yang Zhi-Fang, Yu Juan, Zhao Wei-Jia. Analysis and extension of internet relationship between locational marginal price and dual multiplier. Automation of Electric Power Syste-ms, 2021, 45(6): 82?91 [23] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine learning, 2011, 3(1): 1?12 [24] Bertsekas D. Nonlinear Programming. Belmont: Athena Scientific, 1999. 234?244, 334 [25] Ullah M H, Park J D. Peer-to-peer energy trading in transactive markets considering physical network constraints. IEEE Transactions on Smart Grid, 2021, 12(4): 3390?3403 doi: 10.1109/TSG.2021.3063960