1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              基于最大最小策略的縱向聯邦學習隱私保護方法

              李榮昌 劉濤 鄭海斌 陳晉音 劉振廣 紀守領

              李榮昌, 劉濤, 鄭海斌, 陳晉音, 劉振廣, 紀守領. 基于最大最小策略的縱向聯邦學習隱私保護方法. 自動化學報, 2022, 45(x): 1?16 doi: 10.16383/j.aas.c211233
              引用本文: 李榮昌, 劉濤, 鄭海斌, 陳晉音, 劉振廣, 紀守領. 基于最大最小策略的縱向聯邦學習隱私保護方法. 自動化學報, 2022, 45(x): 1?16 doi: 10.16383/j.aas.c211233
              Li Rong-Chang, Liu Tao, Zheng Hai-Bin, Chen Jin-Yin, Liu Zhen-Guang, Ji Shou-Ling. Privacy preserving method for vertical federated learning based on max-min strategy. Acta Automatica Sinica, 2022, 45(x): 1?16 doi: 10.16383/j.aas.c211233
              Citation: Li Rong-Chang, Liu Tao, Zheng Hai-Bin, Chen Jin-Yin, Liu Zhen-Guang, Ji Shou-Ling. Privacy preserving method for vertical federated learning based on max-min strategy. Acta Automatica Sinica, 2022, 45(x): 1?16 doi: 10.16383/j.aas.c211233

              基于最大最小策略的縱向聯邦學習隱私保護方法

              doi: 10.16383/j.aas.c211233
              基金項目: 國家自然科學基金(62072406), 信息系統安全技術重點實驗室基金(61421110502), 基于大數據架構的公安信息化應用公安部重點實驗室開放課題(2020DSJSYS003), 浙江省自然科學基金(LGF21F020006)和浙江省自然科學基金(LGF20F020016) 資助
              詳細信息
                作者簡介:

                李榮昌:浙江工業大學信息與工程學院碩士研究生.主要研究方向為聯邦學習, 圖神經網絡和人工智能安全技術. E-mail: lrcgnn@163.com

                劉濤:浙江工業大學信息與工程學院碩士研究生.主要研究方向為聯邦學習和人工智能安全. E-mail: leonliu022@163.com

                鄭海斌:浙江工業大學網絡空間安全研究院講師. 分別于2017年和2022年獲得浙江工業大學學士和博士學位. 主要研究方向為深度學習, 人工智能安全和公平性算法. 本文通信作者. E-mail: haibinzheng320@gmail.com

                陳晉音:浙江工業大學信息工程學院教授. 分別于2004年和2009年獲得浙江工業大學學士和博士學位. 主要研究方向為人工智能安全, 圖數據挖掘和進化計算. E-mail: chenjinyin@zjut.edu.cn

                劉振廣:浙江大學網絡空間學院研究員. 主要研究方向為數據挖掘和區塊鏈安全. E-mail: liuzhenguang2008@gmail.com

                紀守領:浙江大學研究員. 2013年獲得佐治亞州立大學計算機科學博士學位, 2015年獲得佐治亞理工學院電子與計算機工程博士學位. 主要研究方向為數據驅動的安全性和隱私性, 人工智能安全性和大數據分析. E-mail: sji@zju.edu.cn

              Privacy Preserving Method for Vertical Federated Learning based on Max-min Strategy

              Funds: Supported by National Natural Science Foundation of China (62072406), Key Laboratory of Science and Technology on Information System Security (61421110502), Key Laboratory of Ministry of Public Security (2020DSJSYS003), Natural Science Foundation of Zhejiang Province (LGF21F020006), and Natural Science Foundation of Zhejiang Province (LGF20F020016)
              More Information
                Author Bio:

                LI Rong-Chang Master student at the School of Information Engineering, Zhejiang University of Technology. His research interest covers federated learning, graph neural network, and artificial intelligence security

                LIU Tao Master student at the School of Information Engineering, Zhejiang University of Technology. His research interest covers federated learning and artificial intelligence security

                ZHENG Hai-Bin Lecturer at the Institute of Cyberspace Security, Zhejiang University of Technology. He received his bachelor and Ph.D. degrees from Zhejiang University of Technology in 2017 and 2022, respectively. His research interest covers deep learning, artificial intelligence security, and fairness algorithm. Corresponding author of this paper

                CHEN Jin-Yin Professor at the School of Information Engineering, Zhejiang University of Technology. She received her bachelor and Ph.D. degrees from Zhejiang University of Technology in 2004 and 2009, respectively. Her research interests covers artificial intelligence security, graph data mining, and evolutionary computing

                LIU Zhen-Guang Professor at the School of Cyberspace, Zhejiang University. His research interest covers data mining and blockchain security

                JI Shou-Ling Professor at Zhejiang University. He received his Ph.D. degree in electrical and computer engineering from Georgia Institute of Technology in 2013, and in computer science from Georgia State University in 2015, respectively. His research interest covers data-driven security and privacy, artificial intelligence security, and big data analysis

              • 摘要: 縱向聯邦學習是一種新興的分布式機器學習技術, 在保障隱私性的前提下利用分散在各個機構的數據實現機器學習模型的聯合訓練. 縱向聯邦學習被廣泛應用于工業互聯網金融借貸和醫療診斷等眾多領域中, 因此保證其隱私安全性具有重要意義. 本文首先針對縱向聯邦學習協議中由于參與方交換的嵌入表示造成的隱私泄露風險, 研究由協作者發起的通用的屬性推斷攻擊. 攻擊者利用輔助數據和嵌入表示訓練一個攻擊模型, 然后利用訓練完成的攻擊模型竊取參與方的隱私屬性. 實驗結果表明: 縱向聯邦學習在訓練、推理階段產生的嵌入表示容易泄露數據隱私. 為了應對上述隱私泄露風險, 進一步提出一種基于最大最小策略的縱向聯邦學習隱私保護方法, 其引入梯度正則組件保證訓練過程主任務的預測性能, 同時引入重構組件掩藏參與方嵌入表示中包含的隱私屬性信息. 最后, 在鋼板缺陷診斷工業場景的實驗結果表明: 相比于沒有任何防御方法的VFL, 隱私保護方法將攻擊推斷準確度從95%降到55%以下, 接近于隨機猜測的水平, 同時主任務預測準確率僅下降2%.
              • 圖  1  VFL隱私泄露示例

                Fig.  1  Examples of VFL privacy leaks

                圖  2  VFL框架

                Fig.  2  VFL framework

                圖  3  VFL場景中攻擊示意圖

                Fig.  3  Illustration of attack in VFL

                圖  4  VFL中協作方的攻擊流程

                Fig.  4  Attack pipeline of collaborator in VFL

                圖  5  PPVFL流程示意圖

                Fig.  5  Illustration of PPVFL's pipeline

                圖  6  防御方法的示意圖

                Fig.  6  Illustration of defense method

                圖  7  不同比例背景知識下屬性推斷攻擊的性能

                Fig.  7  Performance of property inference attack with different proportions of background knowledge

                圖  8  VFL不同時期下屬性推斷攻擊的性能

                Fig.  8  Performance of property inference attack with different round in VFL

                圖  9  PPVFL對訓練數據的隱私保護性能

                Fig.  9  Performance of PPVFL's privacy preservation for training data

                圖  10  PPVFL對測試數據隱私保護性能

                Fig.  10  Performance of PPVFL's privacy preservation for testing data

                圖  11  多方場景下防御的性能

                Fig.  11  PPVFL's privacy preservation in multiple parties

                圖  12  PPVFL隱私解碼器對性能的影響

                Fig.  12  Performance of PPVFL's different privacy decoder

                圖  13  PPVFL防御不同攻擊模型的性能

                Fig.  13  Performance of PPVFL's privacy preservation against different attack model

                圖  14  Adults數據集防御前后t-SNE示意圖

                Fig.  14  t-SNE before and after defense of Adults

                圖  15  Rochester數據集防御前后t-SNE示意圖

                Fig.  15  t-SNE before and after defense of Rochester

                表  1  VFL隱私保護技術優缺點對比

                Table  1  Comparison of advantages and disadvantages of VFL privacy protection technology

                策略 方法 優點 缺點
                基于加密 同態加密[14] 可擴展性強 受限非線性函數
                MPC 準確率高 時間成本較高
                基于擾動 差分隱私 有理論保證 性能存在損耗
                梯度壓縮[23] 通信成本低 保護效果較弱
                基于系統 可信執行環境[24?25] 同時抵御基于硬件攻擊 經濟成本較高
                下載: 導出CSV

                表  2  VFL數據集的基本統計信息

                Table  2  The Basic Statistics of VFL Datasets

                數據集 樣本數量 連邊數量 標簽類別 特征數量 隱私屬性
                Adults 48 842 2 12 婚姻
                Rochester 4 563 167 653 6 236 教育
                Yale 8 578 405 450 2 188 種族
                下載: 導出CSV

                表  3  模型結構

                Table  3  Model architectures

                數據集 本地模型 頂部模型
                Adults FCNN-1 FCNN-2
                Rochester GCN-2 FCNN-2
                Yale SGC-2 FCNN-2
                下載: 導出CSV

                表  4  實際工業互聯網數據集上的隱私保護效果

                Table  4  Privacy protection effect on actual industrial Internet dataset

                隱私屬性 訓練 權衡值 測試 權衡值 主任務 訓練 權衡值 測試 權衡值 主任務
                No_defense 0.95 0.82 0.96 0.81 0.78 0.74 1.00 0.72 1.03 0.74
                Noisy ($\sigma=1$) 0.66 1.00 0.84 0.79 0.66 0.63 0.95 0.62 0.97 0.60
                Noisy ($\sigma=5$) 0.60 0.93 0.55 1.02 0.56 0.60 0.83 0.59 0.85 0.50
                Dropout ($\eta=0.5$) 0.91 0.88 0.91 0.88 0.80 0.70 1.03 0.64 1.13 0.72
                Dropout ($\eta=0.8$) 0.86 0.86 0.86 0.86 0.74 0.70 0.96 0.64 1.05 0.67
                DP ($\sigma=0.1$) 0.56 1.21 0.56 1.21 0.68 0.67 1.06 0.65 1.09 0.71
                DP ($\sigma=0.2$) 0.90 0.79 0.89 0.80 0.71 0.68 1.06 0.67 1.07 0.72
                DR ($d=8$) 0.87 0.85 0.86 0.86 0.74 0.69 0.80 0.67 0.82 0.55
                DR ($d=4$) 0.66 0.97 0.65 0.98 0.64 0.68 0.79 0.64 0.84 0.54
                PPVFL ($\lambda=0.1$) 0.55 1.38 0.57 1.33 0.76 0.60 1.20 0.62 1.16 0.72
                PPVFL ($\lambda=0.5$) 0.55 1.36 0.54 1.39 0.75 0.59 1.20 0.61 1.16 0.71
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Luckow A, Cook M, Ashcraft N, Weill E, Djerekarov E, Vorster B. Deep learning in the Automotive Industry: Applications and Tools. In: Proceedings of the IEEE International Conference on Big Data. Washington, USA: IEEE, 2016. 3759?3768
                        [2] Schneider S, Taylor G W, Kremer S C. Deep learning object detection methods for ecological camera trap data. In: Proceedings of the 15th Conference on Computer and Robot Vision. Toronto, Canada: IEEE, 2018. 321?328
                        [3] Sangineto E, Nabi M, Culibrk D, Sebe N. Self paced deep learning for weakly supervised object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 41(3): 712—725
                        [4] Scoon C, Ko R K. The data privacy matrix project: towards a global alignment of data privacy laws. In: Proceedings of the IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Tianjin, China: IEEE, 2016. 1998?2005
                        [5] Goddard M. The EU general data protection regulation: European regulation that has a global impact. International Journal of Market Research, 2017, 59(6): 703—705 doi: 10.2501/IJMR-2017-050
                        [6] Yang Q, Liu Y, Chen T J, Tong Y X. Federated machine learning: concept and applications. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1—19
                        [7] 張澤輝, 富瑤, 高鐵杠. 支持數據隱私保護的聯邦深度神經網絡模型研究. 自動化學報, 2022, 48(5): 1—12

                        Zhang Ze-Hui, Fu Yao, Gao Tie-Gang. Research on federated deep neural network model for data privacy protection. Acta Automatica Sinica, 2022, 48(5): 1—12
                        [8] 張澤輝, 李慶丹, 富瑤, 何寧昕, 高鐵杠. 面向非獨立同分布數據的自適應聯邦深度學習算法. 自動化學報, 2021, doi: 10.16383/j.aas.c201018, 預出版

                        Zhang Ze-Hui, Li Qing-Dan, Fu Yao, He Ning-Xin, Gao Tie-Gang. Adaptive federated deep learning with non-iid data. Acta Automatica Sinica, 2021, doi: 10.16383/j.aas.c201018, to be published
                        [9] Nasr M, Shokri R, Houmansadr A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In: Proceedings of the IEEE Symposium on Security and Privacy. San Francisco, USA: IEEE, 2019. 739?753
                        [10] Luca M, Song C, Cristofaro E D, Shmatikov V. Exploiting unintended feature leakage in collaborative learning. In: Proceedings of the IEEE Symposium on Security and Privacy. San Francisco, USA: IEEE, 2019. 691?706
                        [11] Zhu L, Liu Z, Han S. Deep leakage from gradients. In: Proceedings of the Advances in Neural Information Processing Systems. Vancouver, Canada: 2019. 1?11
                        [12] 周純毅, 陳大衛, 王尚, 付安民, 高艷松. 分布式深度學習隱私與安全攻擊研究進展與挑戰. 計算機研究與發展, 2021, 58(5): 927—943 doi: 10.7544/issn1000-1239.2021.20200966

                        Zhou Chun-Yi, Chen Da-Wei, Wang Shang, Fu An-Min, Gao Yan-Song. Research and challenge of distributed deep learning privacy and security attack. Journal of Computer Research and Development, 2021, 58(5): 927—943 doi: 10.7544/issn1000-1239.2021.20200966
                        [13] Fu C, Zhang X, Ji S, Chen J Y, Wu J Z, Guo S Q, et al. Label inference attacks against vertical federated learning. In: Proceedings of the USENIX Security. Boston, USA: 2022. 1?18
                        [14] Ou W, Zeng J H, Guo Z J, Yan W Q, Liu D W, Fuentes S. A homomorphic-encryption-based vertical federated learning scheme for rick management. Computer Science and Information Systems, 2020, 17(3): 819—834 doi: 10.2298/CSIS190923022O
                        [15] Liu W, Cheng J H, Wang X L, Lu X J, Yin J W. Hybrid differential privacy based federated learning for Internet of Things. Journal of Systems Architecture, 2022, 124: 1—15
                        [16] Mehdi M, Al-Fuqaha A. Enabling cognitive smart cities using big data and machine learning: Approaches and challenges. IEEE Communications Magazine, 2018, 56(2): 94—101 doi: 10.1109/MCOM.2018.1700298
                        [17] Lu Y, Huang X H, Zhang K, Maharjan S, Zhang Y. Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298—4311 doi: 10.1109/TVT.2020.2973651
                        [18] Dinh C, Pubudu N, Ming D, Aruna S. Blockchain for 5G and beyond networks: a state of the art survey. Journal of Network and Computer Applications, 2020: 166: 1—45
                        [19] 韓璇, 袁勇, 王飛躍. 區塊鏈安全問題: 研究現狀與展望. 自動化學報, 2019, 45(1): 206—225

                        Han Xuan, Yuan Yong, Wang Fei-Yue. Security problems on blockchain: the state of the art and future trends. Acta Automatica Sinica, 2019, 45(1): 206—225
                        [20] Sun H, Wang Z Y, Huang Y J, Ye J D. Privacy-preserving vertical federated logistic regression without trusted third-party coordinator. In: Proceedings of the 6th International Conference on Machine Learning and Soft Computing. Haikou, China: 2022. 132?138
                        [21] Cheng K, Fan T, Jin Y, Liu Y, Chen T J, Papadopoulos D, et al. Secureboost: A lossless federated learning framework. IEEE Intelligent Systems, 2021, 36(6): 1—9 doi: 10.1109/MIS.2021.3132250
                        [22] Luo X, Wu Y, Xiao X, Ooi B C. Feature inference attack on model predictions in vertical federated learning. In: Proceedings of the IEEE 37th International Conference on Data Engineering. Chania, Greece: 2021. 181?192
                        [23] Yang K, Song Z, Zhang Y, Zhou Y F, Sun X H, Wang J X. Model optimization method based on vertical federated learning. In: Proceedings of the IEEE International Symposium on Circuits and Systems. Daegu, South Korea: IEEE, 2021. 1?5
                        [24] Paramod S, Rohit S, Iiia L, Srinivas D, Sanjit A S. A formal foundation for secure remote execution of enclaves. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. Dallas, USA: 2017. 2435?2450
                        [25] Florian T, Dan H. Slalom: fast, verifiable and private execution of neural networks in trusted hardware. In: Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA: 2019. 1?19
                        [26] Yaroslav G, Lempitsky V. Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: 2015. 1180?1189
                        [27] Li K, Luo G C, Ye Y, Li W, Ji S H, Cai Z P. Adversarial privacy-preserving graph embedding against inference attack. IEEE Internet of Things Journal, 2020, 8(8): 6904—6915
                        [28] Vasisht D, Boutet A, Shejwalkar V. Quantifying privacy leakage in graph embedding. In: Proceedings of the 17th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. Darmstadt, Germany: 2020. 76?85
                        [29] Zhang Z, Chen M, Backes M, Shen Y, Zhang Y. Inference attacks against graph neural networks. In: Proceedings of the USENIX Security 22. Boston, USA: 2022. 1?18
                        [30] Liao P, Zhao H, Xu K, Jaakkola T, Gordon G J, Jegelka S, et al. Information obfuscation of graph neural networks. In: Proceedings of the 38th International Conference on Machine Learning. Virtual Event: 2021. 6600?6610
                        [31] Thomas N, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. Toulon, USA: 2017. 1?14
                        [32] Wu F, Zhang T Y, Souza A H, Fifty C, Yu T, Weinberger K Q. Simplifying graph convolutional networks. In: Proceedings of the 36th International Conference on Machine Learning. California, USA: 2019. 6861?6871
                        [33] 王婕婷, 錢宇華, 李飛江, 劉郭慶. 消除隨機一致性的支持向量機分類方法. 計算機研究與發展, 2020, 57(8): 1581—1593 doi: 10.7544/issn1000-1239.2020.20200127

                        Wang Jie-Ting, Qian Yu-Hua, Li Fei-Jiang, Liu Guo-Qing. Support vector machine with eliminating the random consistency. Journal of Computer Research and Development. 2020, 57(8): 1581—1593 doi: 10.7544/issn1000-1239.2020.20200127
                        [34] 竇諾, 趙瑞珍, 岑翼剛, 胡紹海, 張勇東. 基于稀疏表示的含噪圖像超分辨重建方法. 計算機研究與發展, 2015, 52(4): 943—951 doi: 10.7544/issn1000-1239.2015.20140047

                        Dou Nuo, Zhao Rui-Zhen, Cen Yi-Gang, Hu Shao-Hai, Zhang Yong-Dong. Noisy image super-resolution reconstruction based on sparse representation. Journal of Computer Research and Development, 2015, 52(4): 943—951 doi: 10.7544/issn1000-1239.2015.20140047
                      2. 加載中
                      3. 計量
                        • 文章訪問數:  597
                        • HTML全文瀏覽量:  127
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2021-12-26
                        • 錄用日期:  2022-06-12
                        • 網絡出版日期:  2022-10-21

                        目錄

                          /

                          返回文章
                          返回