基于事件觸發(fā)機制的多自主水下航行器協(xié)同路徑跟蹤控制
doi: 10.16383/j.aas.c211163
-
1.
大連海事大學(xué)輪機工程學(xué)院 大連 116026
-
2.
大連海事大學(xué)船舶電氣工程學(xué)院 大連 116026
Event-triggered Cooperative Path Following of Multiple Autonomous Underwater Vehicles
-
1.
College of Marine Engineering, Dalian Maritime University, Dalian 116026
-
2.
College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026
-
摘要: 針對考慮外部海洋環(huán)境擾動(dòng)和內部模型不確定性的多自主水下航行器(Autonomous underwater vehicle, AUV), 研究其在通信資源受限和機載能量受限下的協(xié)同路徑跟蹤控制問(wèn)題. 首先, 針對水聲通信信道窄造成的通信資源受限問(wèn)題, 設計一種基于事件觸發(fā)機制(Event-triggered mechanism, ETM)的協(xié)同通信策略; 然后, 針對模型不確定性和海洋環(huán)境擾動(dòng)問(wèn)題, 設計一種基于事件觸發(fā)機制的線(xiàn)性擴張狀態(tài)觀(guān)測器(Extended state observer, ESO)來(lái)逼近水下航行器的未知動(dòng)力學(xué), 并降低了系統采樣次數; 最后, 針對機載能量受限問(wèn)題, 設計一種基于事件觸發(fā)機制的動(dòng)力學(xué)控制律, 在保證控制精度的前提下, 降低了執行機構的動(dòng)作頻次, 從而節省了能量消耗. 應用級聯(lián)系統穩定性分析方法, 分別驗證了閉環(huán)系統是輸入狀態(tài)穩定的且系統不存在Zeno行為. 仿真結果驗證了所提基于事件觸發(fā)機制的多自主水下航行器協(xié)同路徑跟蹤控制方法的有效性.
-
關(guān)鍵詞:
- 自主水下航行器 /
- 事件觸發(fā)機制 /
- 協(xié)同路徑跟蹤 /
- 擴張狀態(tài)觀(guān)測器
Abstract: A cooperative path following problem under limited communication resources and limited energy of multiple under-actuated autonomous underwater vehicles (AUV) subject to external marine environment disturbances and internal model uncertainty is considered. Firstly, a cooperative communication strategy based on an event-triggered mechanism (ETM) is proposed to solve the problem of limited communication resources caused by the narrow acoustic communication channel. Secondly, a linear extended state observer (ESO) based on an event-triggered mechanism is designed to deal with the model uncertainty and marine environment disturbance, and the observer is used to approximate the unknown dynamics of the underwater vehicles, such that the sampling times of the system could be reduced. Finally, a kinetic control law based on an event-triggered mechanism is designed to deal with the problem of limited energy, and this control law reduces the action times of the actuators while ensuring control accuracy, such that the energy consumption could be saved. It is proved that the closed loop system is input-to-state stable by using a cascade stability analysis, and Zeno behavior is excluded. The simulation results are given to demonstrate the effectiveness of the proposed event-triggered cooperative path following of multiple autonomous underwater vehicles. -
圖 2 基于事件觸發(fā)的協(xié)同路徑跟蹤控制器結構圖
Fig. 2 Architecture of event-triggered cooperative path following controller
表 1 觸發(fā)次數
Table 1 Triggering times
觸發(fā)內容 事件觸發(fā) 時(shí)間觸發(fā) 采樣
周期
(s)百分比
最大值
(%)AUV1 AUV2 AUV3 AUV$i$
($i$=1, 2, 3)協(xié)同次數($\chi_{i}$) 91 102 124 10 000 0.04 1.24 采樣次數($u_{i}$) 324 352 420 10 000 0.04 4.20 采樣次數($q_{i}$) 286 363 297 10 000 0.04 3.63 執行次數($\tau_{iu}$) 585 592 451 10 000 0.04 5.92 執行次數($\tau_{iq}$) 487 523 553 10 000 0.04 5.53 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] 劉妹琴, 韓學(xué)艷, 張森林, 鄭榮濠, 蘭劍. 基于水下傳感器網(wǎng)絡(luò )的目標跟蹤技術(shù)研究現狀與展望. 自動(dòng)化學(xué)報, 2021, 47(2): 235?251 doi: 10.16383/j.aas.c190886Liu Mei-Qin, Han Xue-Yan, Zhang Sen-Lin, Zheng Rong-Hao, Lan Jian. Research status and prospect of target tracking technologies via underwater sensor networks. Acta Automatica Sinica, 2021, 47(2): 235?251 doi: 10.16383/j.aas.c190886 [2] Gafurov S A, Klochkov E V. Autonomous unmanned underwater vehicles development tendencies. Procedia Engineering, 2015, 106(1): 141?148 [3] 馬廣富, 梅杰. 多星系統相對軌道的自適應協(xié)同控制. 控制理論與應用, 2011, 28(6): 781?787Ma Guang-Fu, Mei Jie. Adaptive cooperative control for relative orbits of multi-satellite systems. Control Theory & Applications, 2011, 28(6): 781?787 [4] 王銀濤, 嚴衛生. 多自主水下航行器系統一致性編隊跟蹤控制. 控制理論與應用, 2013, 30(3): 379?384 doi: 10.7641/CTA.2013.20422Wang Yin-Tao, Yan Wei-Sheng. Consensus formation tracking control of multiple autonomous underwater vehicle systems. Control Theory & Applications, 2013, 30(3): 379?384 doi: 10.7641/CTA.2013.20422 [5] Gu N, Wang D, Peng Z H, Liu L. Adaptive bounded neural network control for coordinated path-following of networked under-actuated autonomous surface vehicles under time-varying state-dependent cyber-attack. ISA Transactions, 2019, 104: 212?221 [6] Ding L, Han Q L, Ge X, Zhang X. An overview of recent advances in event-triggered consensus of multi-agent system. IEEE Transactions on Cybernetics, 2018, 48(4): 1110?1123 doi: 10.1109/TCYB.2017.2771560 [7] Liu L, Wang D, Peng Z H, Li T S. Modular adaptive control for LOS-based cooperative path maneuvering of multiple under-actuated autonomous surface vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47: 1613?1624 doi: 10.1109/TSMC.2017.2650219 [8] Wang H L, Wang D, Wang T L, Zhang Y B, Gu N. Adaptive cooperative diving of saucer-type underwater gliders subject to model uncertainties and input constraints. IEEE Access, 2019, 7: 60042?60054 doi: 10.1109/ACCESS.2019.2915160 [9] Peng Z H, Liu L, Wang J. Output-feedback flocking control of multiple autonomous surface vehicles based on data-driven adaptive extended state observers. IEEE Transactions on Cybern-etics, 2020, 99: 4611?4622 [10] 徐博, 白金磊, 郝燕玲, 高偉, 劉亞龍. 多AUV協(xié)同導航問(wèn)題的研究現狀與進(jìn)展. 自動(dòng)化學(xué)報, 2015, 41(3): 445?461 doi: 10.16383/j.aas.2015.c140047Xu Bo, Bai Jin-Lei, Hao Yan-Ling, Gao Wei, Liu Ya-Long. The research status and progress of cooperative navigation for multiple autonomous underwater vehicle. Acta Automatica Sinica, 2015, 41(3): 445?461 doi: 10.16383/j.aas.2015.c140047 [11] Lal C, Petroccia R, Pelekanakis K, Conti M, Alves J. Toward the development of secure underwater acoustic networks. IEEE Journal of Oceanic Engineering, 2017, 42(4): 1075?1087 doi: 10.1109/JOE.2017.2716599 [12] Wang Y T, Yao Y. Consensus path-following control of multi-ple under-actuated unmanned underwater vehicles. Complexity, 2018: 1?8 [13] Peng Z H, Wang D, Wang J. Cooperative dynamic positioning of multiple marine offshore vessels: A modular design. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 1210?1221 [14] Wang H L, Lu L, Dan W, Wang T L. Output-feedback control for cooperative diving of saucer-type underwater gliders based on a fuzzy observer and event-triggered communication. IEEE Access, 2019, 7: 50453?50465 doi: 10.1109/ACCESS.2019.2911194 [15] Morales R, Sira-Ramírez H, Somolinos J A. Linear active disturbance rejection control of the hovercraft vessel model. Ocean Engineering, 2015, 96: 100?108 doi: 10.1016/j.oceaneng.2014.12.031 [16] 吳文濤, 彭周華, 王丹, 劉陸, 姜繼洲, 任帥. 基于擴張狀態(tài)觀(guān)測器的雙槳推進(jìn)無(wú)人艇抗干擾目標跟蹤控制. 中國艦船研究, 2021, 16(1): 128?135 doi: 10.19693/j.issn.1673-3185.01665Wu Wen-Tao, Peng Zhou-Hua, Wang Dan, Liu Lu, Jiang Ji-Zhou, Ren Shuai. ESO based anti-disturbance target tracking control for twin-screw unmanned surface vehicle. Chinese Journal of Ship Research, 2021, 16(1): 128?135 doi: 10.19693/j.issn.1673-3185.01665 [17] Gao Z Q. Active disturbance rejection control: A paradigm shift in feedback control system design. In: Proceedings of the American Control Conference. Minneapolis, USA: IEEE, 2006. 2399? 2405 [18] Xue W C, Chen S, Zhao C, Huang Y, Su J B. On integrating uncertainty estimator into PI control for a class of nonlinear uncertain systems. IEEE Transactions on Automatic Control, 2021, 66(7): 3409?3416 doi: 10.1109/TAC.2020.3024475 [19] Lu Y, Zhang G Q, Sun Z J, Zhang W D. Robust adaptive formation control of under-actuated autonomous surface vessels based on MLP and DOB. Nonlinear Dynamics, 2018, 94: 503? 519 doi: 10.1007/s11071-018-4374-z [20] Silvestre C, Cunha R, Paulino N, Pascoal A. A bottom-following preview controller for autonomous underwater vehicles. IEEE Transactions on Control Systems Technology, 2009, 17(2): 257?266 doi: 10.1109/TCST.2008.922560 [21] Adhami-Mirhosseini A, Yazdanpanah M J, Aguiar A P. Automatic bottom-following for underwater robotic vehicles. Automatica, 2014, 50(8): 2155?2162 doi: 10.1016/j.automatica.2014.06.003 [22] Pettersen K Y, Egeland O. Time-varying exponential stabilization of the position and attitude of an under-actuated autonomous underwater vehicle. IEEE Transactions on Automatic Control, 1999, 44(1): 112?115 doi: 10.1109/9.739086 [23] Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design. New York: John Wiley & Sons Incorporated, 1995. 501?507