數字孿生驅動(dòng)的長(cháng)距離帶式輸送機運行優(yōu)化方法
doi: 10.16383/j.aas.c210979 cstr: 32138.14.j.aas.c210979
-
1.
中國礦業(yè)大學(xué)信息與控制工程學(xué)院 徐州 221116
An Operation Optimization Method for Long Distance Belt Conveyors Driven by Digital Twin
-
1.
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116
-
摘要: 長(cháng)距離帶式輸送機是礦山、港口等領(lǐng)域運輸散裝物料的主要工具. 針對長(cháng)距離帶式輸送機的安全節能運行問(wèn)題, 研究數字孿生驅動(dòng)的運行優(yōu)化方法. 首先, 構建由數字孿生模型、模型同步算法、控制策略和現實(shí)帶式輸送機組成的數字孿生驅動(dòng)運行優(yōu)化框架; 然后, 建立數字孿生模型, 包括基于變質(zhì)量牛頓第二定律和有限元分析法的輸送帶動(dòng)力學(xué)模型、物料流動(dòng)態(tài)模型和動(dòng)態(tài)能耗模型; 最后, 提出數字孿生驅動(dòng)的計算決策?仿真評估?優(yōu)化校正(Decision-simulation-correction, DSC)優(yōu)化決策方法, 優(yōu)化帶式輸送機的穩態(tài)和暫態(tài)運行帶速, 形成可行帶速設定曲線(xiàn). 實(shí)驗結果表明, 數字孿生驅動(dòng)的帶式輸送機運行優(yōu)化方法可以實(shí)現帶式輸送機安全節能運行. 與傳統控制方法相比, 能夠根據運行工況實(shí)時(shí)調速, 提高輸送帶填充率, 節能13.87%.
-
關(guān)鍵詞:
- 長(cháng)距離帶式輸送機 /
- 數字孿生 /
- 運行優(yōu)化 /
- 動(dòng)態(tài)模型
Abstract: Long distance belt conveyors are used as a main tool for transporting bulk materials in the fields of mines, ports and so on. For the safe and energy saving operation of long distance belt conveyors, the operation optimization method driven by digital twin is studied. Firstly, the framework of the operation optimization driven by digital twin is constructed, which includes digital twin models, model synchronization algorithms, control strategy, and realistic belt conveyors. Then, digital twin models are established, including the dynamic model of conveyor belt based on the variable quality Newton's second law and finite element analysis method, material flow dynamic model and dynamic energy model. Finally, the decision-simulation-correction (DSC) optimization method driven by digital twin is proposed, which can optimize the steady and transient belt speed of the belt conveyor to build a feasible speed setting curve. Experiments show that the operation optimization method driven by digital twin can result in a belt conveyor that is both safe and energy efficient. Compared with the traditional method, the proposed method can adjust the belt speed setpoint in real-time based on operating conditions, increasing the conveyor belt fill rate, which results in energy savings of 13.87%.-
Key words:
- Long distance belt conveyor /
- digital twin /
- operation optimization /
- dynamic model
-
圖 1 傳統控制與數字孿生驅動(dòng)的優(yōu)化控制模式
Fig. 1 The modes of traditional control and optimization control driven by digital twin
圖 2 帶式輸送機數字孿生驅動(dòng)運行優(yōu)化框架
Fig. 2 Framework for operation optimization of belt conveyor driven by digital twin
圖 13 驅動(dòng)滾筒處張力瞬時(shí)變化(本文方法校正前)
Fig. 13 Instantaneous variation of tension at driving drum (by the proposed method without correction part)
圖 15 運載物料最大平均質(zhì)量(本文方法)
Fig. 15 The maximum average quality of carrying material (by the proposed method)
圖 16 驅動(dòng)滾筒處張力瞬時(shí)變化(本文方法校正后)
Fig. 16 Instantaneous variation of tension at the drive pulley (by the proposed method with correction part)
圖 17 運載物料最大平均質(zhì)量(定速方法)
Fig. 17 The maximum average quality of carrying material (by the method for constant speed)
圖 20 驅動(dòng)滾筒處張力瞬時(shí)變化(定速方法)
Fig. 20 Instantaneous variation of tension at the drive pulley (by the method for constant speed)
表 1 輸送帶動(dòng)力學(xué)模型符號意義
Table 1 The significance of the symbols of the conveyor belt dynamic model
符號 含義(單位) 符號 含義(單位) ci 第 i 個(gè)微元段的等效黏性系數(N·s/m) q(i, m) m時(shí)刻輸送帶上 i 位置平均物質(zhì)量(kg/m) ct 張緊裝置微元段的等效黏性系數(N·s/m) qB 每米輸送帶的質(zhì)量(kg/m) Fd 驅動(dòng)電機作用在驅動(dòng)滾筒上的驅動(dòng)力(N) qRO 每米承載側托輥平均質(zhì)量(kg/m) Fi 第 i 個(gè)微元段承受的外力和(N) qRU 每米返回側托輥平均質(zhì)量(kg/m) fi 第 i 個(gè)微元段所受摩擦力(N) si 第 i 個(gè)微元段的位置(m) ft 張緊裝置微元段所受摩擦力(N) $ {{\dot s}_i}$ 第 i 個(gè)微元段的速度(m/s) g 重力加速度(m/s2) $ {{\ddot s}_i}$ 第 i 個(gè)微元段的加速度(m/s2) ki 第 i 個(gè)微元段的等效彈性系數(N/m) $\Delta L_{{\rm{RO}}} $ 承載側微元段的長(cháng)度(m) kt 張緊裝置微元段的等效彈性系數(N/m) $\Delta L_{{\rm{RU}}} $ 返回側微元段的長(cháng)度(m) mi 第 i 個(gè)微元段的等效質(zhì)量(kg) μ 運載物料與輸送帶之間的摩擦系數 mt 張緊裝置微元段的等效質(zhì)量(kg) 下載: 導出CSV表 2 帶式輸送機參數值
Table 2 The parameters value of belt conveyor
符號 數值 符號 數值 C 1.336 qRU 7.76 kg/m f 0.024 Qmax 176.37 kg/m g 9.8 m/s2 SA, min 5.4 L 313.25 m SB, min 8 mt 4000 kg$\alpha $ 180° qB 18.73 kg/m μ1 0.35 qRO 15.75 kg/m 下載: 導出CSV表 3 迭代優(yōu)化過(guò)程
Table 3 The process of iterative optimization
迭代次數 變速次數 Dt (s) amax (m·s?2) ${F_{ { { {\rm{T} }1} } } }\;({\rm{kN} })$ ${F_{ { { {\rm{Tr} } } } } }\;({\rm{kN} })$ $\Delta {F_{ { { {\rm{Tr} } } } } }\;({\rm{kN} })$ ${\bar q}\; ({\rm{kg} } \cdot{\rm{m}}^{-1})$ 0 1 17 0.291 41.97 17.47 4.69 0 2 6 ?0.275 60.86 36.36 11.39 176.19 3 4 0.223 45.10 20.60 15.04 176.10 4 4 ?0.279 65.96 41.46 17.88 176.12 1 1 17 0.291 41.97 17.47 4.69 0 2 8 ?0.212 55.27 30.77 6.47 176.19 3 7 0.140 42.84 18.34 4.07 176.10 4 7 ?0.176 52.42 27.92 6.05 176.12 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Yang C, Bu L, Chen B. Energy modeling and online parameter identification for permanent magnet synchronous motor driven belt conveyors. Measurement, 2021, 178: Article No. 109342 doi: 10.1016/j.measurement.2021.109342 [2] Zhang S, Xia X. Optimal control of operation efficiency of belt conveyor systems. Applied Energy, 2010, 87(6): 1929?1937 doi: 10.1016/j.apenergy.2010.01.006 [3] Mu Y, Yao T, Jia H, Yu X, Zhao B, Zhang X, et al. Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage. Applied Energy, 2020, 275: Article No. 115368 doi: 10.1016/j.apenergy.2020.115368 [4] Ristic L B, Bebic M Z, Jevtic D S, Mihailovic I D, Statkic S Z, Rasic N T, et al. Fuzzy speed control of belt conveyor system to improve energy efficiency. In: Proceedings of the 15th International Power Electronics and Motion Control Conference. Novi Sad, Serbia: IEEE, 2012. 9?17 [5] Zhang S, Xia X. Modeling and energy efficiency optimization of belt conveyors. Applied Energy, 2011, 88(9): 3061?3071 doi: 10.1016/j.apenergy.2011.03.015 [6] 楊春雨, 李恒, 車(chē)志遠. 煤礦雙電機驅動(dòng)帶式輸送機的能耗建模與參數辨識. 控制理論與應用, 2018, 35(3): 335?341 doi: 10.7641/CTA.2017.70335Yang Chun-Yu, Li Heng, Che Zhi-Yuan. Energy consumption modeling and parameter identification for double-motor driven coal mine belt conveyors. Control Theory & Applications, 2018, 35(3): 335?341 doi: 10.7641/CTA.2017.70335 [7] Zeng F, Wu Q, Chu X, Yue Z. Measurement of bulk material flow based on laser scanning technology for the energy efficiency improvement of belt conveyors. Measurement, 2015, 75: 230?243 doi: 10.1016/j.measurement.2015.05.041 [8] Yang C, Liu J, Li H, Zhou L. Energy modeling and parameter identification of dual-motor-driven belt conveyors without speed sensors. Energies, 2018, 11(12): 1?17 doi: 10.3390/en11123313 [9] Zhang S, Mao W. Optimal operation of coal conveying systems assembled with crushers using model predictive control methodology. Applied Energy, 2017, 198: 65?76 doi: 10.1016/j.apenergy.2017.04.037 [10] He D, Liu X, Zhong B. Sustainable belt conveyor operation by active speed control. Measurement, 2020, 154: Article No. 107458 doi: 10.1016/j.measurement.2019.107458 [11] Continuous Conveyors-belt Conveyors for Loose Bulk Materials-basis for Calculation and Dimensioning, IEEE Criteria for Class IE Electric Systems (Standards Style), IEEE Standard 308, 1969. [12] Mathaba T, Xia X. A parametric energy model for energy management of long belt conveyors. Energies, 2015, 8(12): 13590? 13608 doi: 10.3390/en81212375 [13] Mathaba T, Xia X. Optimal and energy efficient operation of conveyor belt systems with down-hill conveyors. Energy Efficiency, 2017, 10(2): 405?417 [14] Li J, Zhang J, Wang N. The study and application of examples of starting impact limitation for the belt conveyor. In: Proceedings of the 3rd International Conference on Manufacturing Engineering and Technology for Manufacturing Growth. Vancou-ver, Canada: Information Engineering Research Institute, 2015. 77?81 [15] He D, Pang Y, Lodewijks G. Determination of acceleration for belt conveyor speed control in transient operation. International Journal of Engineering and Technology, 2016, 8(3): 206?211 doi: 10.7763/IJET.2016.V8.886 [16] He D, Pang Y, Lodewijks G. Speed control of belt conveyors during transient operation. Powder Technology, 2016, 301: 622? 631 doi: 10.1016/j.powtec.2016.07.004 [17] He D, Pang Y, Lodewijks G. Green operations of belt conveyors by means of speed control. Applied Energy, 2017, 188: 330?341 doi: 10.1016/j.apenergy.2016.12.017 [18] 孫滔, 周鋮, 段曉東, 陸璐, 陳丹陽(yáng), 楊紅偉, 等. 數字孿生網(wǎng)絡(luò )(DTN): 概念、架構及關(guān)鍵技術(shù). 自動(dòng)化學(xué)報, 2021, 47(3): 569?582Sun Tao, Zhou Cheng, Duan Xiao-Dong, Lu Lu, Chen Dan-Yang, Yang Hong-Wei, et al. Digital twin network (DTN): Concepts, architecture, and key technologies. Acta Automatica Sinica, 2021, 47(3): 569?582 [19] 侯正航, 何衛平. 基于數字孿生的飛機裝配狀態(tài)巡檢機器人的建模與控制. 計算機集成制造系統, 2021, 27(4): 981?989Hou Zheng-Hang, He Wei-Ping. Modeling and control of digital twin-based aircraft assembly state inspection robot. Computer Integrated Manufacturing Systems, 2021, 27(4): 981?989 [20] 江獻良, 陳凌宇, 鄭杰基, 譚若愚, 李寶宇, 范大鵬. 基于數字孿生模型的直驅部件高精度控制方法. 機械工程學(xué)報, 2021, 57(17): 98?109Jiang Xian-Liang, Chen Ling-Yu, Zheng Jie-Ji, Tan Ruo-Yu, Li Bao-Yu, Fan Da-Peng. High-precision control method of direct drive components based on digital twin model. Journal of Mechanical Engineering, 2021, 57(17): 98?109 [21] 楊林瑤, 陳思遠, 王曉, 張俊, 王成紅. 數字孿生與平行系統: 發(fā)展現狀、對比及展望. 自動(dòng)化學(xué)報, 2019, 45(11): 2001?2031Yang Lin-Yao, Chen Si-Yuan, Wang Xiao, Zhang Jun, Wang Cheng-Hong. Digital twins and parallel systems: State of the art, comparisons and prospect. Acta Automatica Sinica, 2019, 45(11): 2001?2031 [22] Tao F, Zhang H, Liu A, Nee A Y C. Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405?2415 doi: 10.1109/TII.2018.2873186 [23] 葛世榮, 張帆, 王世博, 王忠賓. 數字孿生智采工作面技術(shù)架構研究. 煤炭學(xué)報, 2020, 45(6): 1925?1936Ge Shi-Rong, Zhang Fan, Wang Shi-Bo, Wang Zhong-Bin. Digital twin for smart coal mining work-face: Technological frame and construction. Journal of China Coal Society, 2020, 45(6): 1925?1936 [24] 金杰, 夏超, 肖士利, 郭逸婧, 王曉菲. 基于數字孿生的火箭起飛安全系統設計. 計算機集成制造系統, 2019, 25(6): 1337?1347Jin Jie, Xia Chao, Xiao Shi-Li, Guo Yi-Jing, Wang Xiao-Fei. Rocket launch safety system design scheme based on digital twins. Computer Integrated Manufacturing Systems, 2019, 25(6): 1337?1347 [25] Tao F, Qi Q. Make more digital twins. Nature, 2019, 573(7775): 490?491 doi: 10.1038/d41586-019-02849-1 [26] Yang G. Dynamics analysis and modeling of rubber belt in large mine belt conveyors. Sensors & Transducers, 2014, 181(10): 210? 218 [27] Lodewijks G, Kruse D J. The power of field measurements: Part I. Bulk Solids Handling, 1998, 18(3): 415?427 [28] 周廣林, 韓忠惠, 張繼通. 基于分形維數的大型帶式輸送機動(dòng)態(tài)特性研究. 煤炭科學(xué)技術(shù), 2019, 47(2): 125?130Zhou Guang-Lin, Han Zhong-Hui, Zhang Ji-Tong. Research on dynamic characteristics of large belt conveyor based on fractal dimension. Coal Science and Technology, 2019, 47(2): 125?130 [29] 李軍霞, 寇子明. 下運帶式輸送機復合制動(dòng)系統仿真及試驗研究. 煤炭學(xué)報, 2015, 40(S2): 553?559Li Jun-Xia, Kou Zi-Ming. Simulation and experimental study of a composite brake system for downward belt conveyor. Journal of China Coal Society, 2015, 40(S2): 553?559 [30] 王成山, 董博, 于浩, 吳建中, 嚴晉躍, 李鵬. 智慧城市綜合能源系統數字孿生技術(shù)及應用. 中國電機工程學(xué)報, 2021, 41(5): 1597?1608Wang Cheng-Shan, Dong Bo, Yu Hao, Wu Jian-Zhong, Yan Jin-Yue, Li Peng. Digital twin technology and its application in the integrated energy system of smart city. Proceedings of the CSEE, 2021, 41(5): 1597?1608 [31] Zhang K, Qu T, Zhou D, Zhang K, Qu T, Zhou D, et al. Digital twin-based opti-state control method for a synchronized production operation system. Robotics and Computer-integrated Manufacturing, 2020, 63: Article No. 101892 doi: 10.1016/j.rcim.2019.101892 [32] Luo J, Huang W, Zhang S. Energy cost optimal operation of belt conveyors using model predictive control methodology. Journal of Cleaner Production, 2015, 105: 196?205 doi: 10.1016/j.jclepro.2014.09.074 [33] Continuous Mechanical Handling Equipment-belt Conveyors With Carrying Idlers-calculation of Operating Power and Tensile Forces, ISO5048, 1989. [34] 楊小林, 葛世榮, 祖洪斌, 鮑久圣, 常國強, 張磊, 等. 帶式輸送機永磁智能驅動(dòng)系統及其控制策略. 煤炭學(xué)報, 2020, 45(6): 2116?2126Yang Xiao-Lin, Ge Shi-Rong, Zu Hong-Bin, Bao Jiu-Sheng, Chang Guo-Qiang, Zhang Lei, et al. Permanent magnet intelligent drive system and control strategy of belt conveyor. Journal of China Coal Society, 2020, 45(6): 2116?2126 [35] 陳龍, 王曉, 楊健健, 艾云峰, 田濱, 李宇宸, 等. 平行礦山: 從數字孿生到礦山智能. 自動(dòng)化學(xué)報, 2021, 47(7): 1633?1645Chen Long, Wang Xiao, Yang Jian-Jian, Ai Yun-Feng, Tian Bin, Li Yu-Chen, et al. Parallel mining operating systems: From digital twins to mining intelligence. Acta Automatica Sinica, 2021, 47(7): 1633?1645 [36] 李鉻, 李春廣, 梁睦, 武福軍. 煤礦帶式輸送機事故分析及防護措施. 中國安全科學(xué)學(xué)報, 2006, 16(3): 140?144 doi: 10.3969/j.issn.1003-3033.2006.03.027Li Ge, Li Chun-Guang, Liang Mu, Wu Fu-Jun. Accident analysis of belt conveyor used in coal mine and its protective measures. China Safety Science Joumal, 2006, 16(3): 140?144 doi: 10.3969/j.issn.1003-3033.2006.03.027 [37] 孫汪萍. 長(cháng)距離帶式輸送機節能優(yōu)化策略的研究 [碩士論文], 合肥工業(yè)大學(xué), 中國, 2015.Sun Wang-Ping. Studies of Long Distance Belt Conveyor and Energy Saving Optimization Strategy [Master thesis], Hefei University of Technology, China, 2015. [38] Pang Y, Lodewijks G. Improving energy efficiency in material transport systems by fuzzy speed control. In: Proceedings of the 3rd IEEE International Symposium on Logistics and Industrial Informatics. Budapest, Hungary: IEEE, 2011. 159?164 [39] 李玉瑾. 帶式輸送機的動(dòng)態(tài)特性分析與軟起動(dòng)設計. 煤炭學(xué)報, 2002, (3): 294?299Li Yu-Jin. Dynamic analysis and soft starting design of belt conveyor. Journal of China Coal Society, 2002, (3): 294?299 [40] He D, Pang Y, Lodewijks G, He D, Pang Y, Lodewijks G, et al. Healthy speed control of belt conveyors on conveying bulk materials. Powder Technology, 2018, 327: 408?419 doi: 10.1016/j.powtec.2018.01.002 [41] Zhang S, Xia X. A new energy calculation model of belt conveyor. In: Proceedings of the Africon. Nairobi, Kenya: IEEE, 2009. 1?6