基于單應性擴散約束的二步網(wǎng)格優(yōu)化視差圖像對齊
doi: 10.16383/j.aas.c210966
-
1.
中山大學(xué)計算機學(xué)院 廣州 510006
-
2.
季華實(shí)驗室新型顯示技術(shù)與裝備研究中心 佛山 528000
-
3.
機器智能與先進(jìn)計算教育部重點(diǎn)實(shí)驗室 廣州 510006
-
4.
廣東省信息安全技術(shù)重點(diǎn)實(shí)驗室 廣州 510006
-
5.
復旦大學(xué)計算機科學(xué)技術(shù)學(xué)院 上海 200438
Parallax Image Alignment With Two-stage Mesh Optimization Based on Homography Diffusion Constraints
-
1.
School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006
-
2.
New Display Technology and Equipment Research Center, Jihua Laboratory, Foshan; 528000
-
3.
Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Guangzhou 510006
-
4.
Guangdong Province Key Laboratory of Information Security Technology, Guangzhou 510006
-
5.
School of Computer Science, Fudan University, Shanghai 200438
-
摘要: 目前, 在帶有視差場(chǎng)景的圖像對齊中, 主要難點(diǎn)在某些無(wú)法找到足夠匹配特征的區域, 這些區域稱(chēng)為匹配特征缺失區域. 現有算法往往忽略匹配特征缺失區域的對齊建模, 而只將有足夠匹配特征區域中的部分單應變換系數(如相似性變換系數)傳遞給匹配特征缺失區域, 或者采用將匹配特征缺失區域轉化為有足夠匹配特征區域的間接方式, 因此對齊效果仍不理想. 在客觀(guān)事實(shí)上, 位于相同平面的區域應該擁有相同的完整單應變換而非部分變換參數. 由此出發(fā), 利用單應變換系數擴散的思想設計了一個(gè)二步網(wǎng)格優(yōu)化的圖像對齊算法, 簡(jiǎn)稱(chēng)單應擴散變換(Homography diffusion warping, HDW)算法. 該方法在第一步網(wǎng)格優(yōu)化時(shí)獲得有足夠匹配特征區域的單應變換, 再基于提出的單應性擴散約束將這些單應變換系數擴散到鄰域網(wǎng)格, 進(jìn)行第二步網(wǎng)格優(yōu)化, 在保證優(yōu)化任務(wù)簡(jiǎn)潔高效的前提下實(shí)現單應變換系數的傳播與圖像對齊. 相較于現有的針對視差場(chǎng)景圖像對齊算法, 所提方法在各項指標上都獲得了更好的效果.
-
關(guān)鍵詞:
- 圖像對齊 /
- 視差場(chǎng)景 /
- 網(wǎng)格優(yōu)化 /
- 匹配特征缺失區域
Abstract: At present, the main difficulty in the image alignment with parallax scene is in the areas that cannot find sufficient matching features. We call these areas featureless regions. Cutting-edge research on parallax image alignment neglects modeling of regions without matching features. Indirect methods such as transferring partial homography of regions with matching features to featureless regions or transforming featureless regions to regions with matching features have been popularly used, which, however, do not guarantee satisfactory results. In fact, image regions belonging to the same plane should possess the same homography. In this paper, a two-stage mesh optimization algorithm, homography diffusion warping (HDW), is designed by homography diffusion. In the first stage, homography coefficients of mesh cells in the image regions with matching features are obtained. Then we propagate these homography coefficients to adjacent cells to form homography diffusion constraints, and perform the second stage optimization of the mesh by enforcing the constraints on the premise of ensuring the simplicity and efficiency of the optimization task. Compared with existing image alignment algorithms, the method proposed in this paper achieves better results on all metrics.-
Key words:
- Image alignment /
- parallax scene /
- mesh optimization /
- featureless regions
-
圖 1 本文算法與現有方法的圖像對齊效果對比
Fig. 1 Comparison of image alignment effects between existing methods and the method proposed in this paper
圖 4 各圖像對量化指標的直觀(guān)對比
Fig. 4 Intuitive comparison of the quantitative indicators on all the image pairs
圖 8 Temple與Railtrack實(shí)例上的對齊結果對比
Fig. 8 Comparison of the alignment results on the Temple and Railtrack cases
表 1 HDW相對其他算法在Err、PSNR和SSIM上的平均改進(jìn)(%)
Table 1 The average improvement of HDW compared with other algorithms on Err, PSNR, and SSIM (%)
下載: 導出CSV表 2 圖像對的對齊效果量化指標對比
Table 2 Quantitative comparison of alignment performance on image pairs
Plant Carpark Stationery SMH[17] Err 1.2338 1.2659 1.0580 PSNR 15.7496 12.3758 22.9365 SSIM 0.6516 0.5719 0.9316 PCPS[18] Err 0.9396 1.1923 0.6695 PSNR 15.3314 11.5550 23.5924 SSIM 0.6858 0.5687 0.9355 APAP[6] Err 4.1854 1.1337 1.0154 PSNR 13.2995 11.9361 23.4257 SSIM 0.6245 0.6354 0.9236 CPW[8] Err 6.3718 1.6435 0.9038 PSNR 12.7397 11.2034 23.4680 SSIM 0.4818 0.5862 0.9258 ACW[41] Err 3.4302 0.7918 0.8070 PSNR 13.2159 12.0738 23.6319 SSIM 0.6589 0.6505 0.9278 HDW Err 0.2741 0.2787 0.5134 PSNR 18.1968 13.5019 24.2972 SSIM 0.8221 0.7143 0.9400 下載: 導出CSV表 3 其他算法相對HDW在耗時(shí)上的對比
Table 3 Temporal cost of HDW compared with those of other algorithms
下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Britain: Cambridge University Press, 2003. [2] Matsushita Y, Ofek E, Ge W, Tang X, Shum H Y. Full-frame video stabilization with motion inpainting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1150?1163 doi: 10.1109/TPAMI.2006.141 [3] 韓敏, 閆闊, 秦國帥. 基于改進(jìn)KAZE的無(wú)人機航拍圖像拼接算法. 自動(dòng)化學(xué)報, 2019, 45(2): 305?314 doi: 10.16383/j.aas.2018.c170521Han Min, Yan Kuo, Qin Guo-Shuai. A mosaic algorithm for UAV aerial image with improved KAZE. Acta Automatica Sinica, 2019, 45(2): 305?314 doi: 10.16383/j.aas.2018.c170521 [4] Li X, Hui N, Shen H, Fu Y, Zhang L. A robust mosaicking procedure for high spatial resolution remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 109: 108?125 doi: 10.1016/j.isprsjprs.2015.09.009 [5] Xiang T Z, Xia G S, Bai X, Zhang L. Image stitching by line-guided local warping with global similarity constraint. Pattern Recognition, 2018, 83: 481?497 doi: 10.1016/j.patcog.2018.06.013 [6] Zaragoza J, Chin T J, Tran Q H, Brown M S, Suter D. As-projective-as-possible image stitching with moving DLT. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1285?1298 doi: 10.1109/TPAMI.2013.247 [7] Gao J, Kim S J, Brown M S. Constructing image panoramas using dual-homography warping. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011. 49?56 [8] Zhang F, Liu F. Parallax-tolerant image stitching. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. 3262?3269 [9] Lin K, Jiang N, Liu S, Cheong L F, Do M, Lu J. Direct photometric alignment by mesh deformation. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017. 2405?2413 [10] Chang C H, Sato Y, Chuang Y Y. Shape-preserving half-projective warps for image stitching. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. 3254?3261 [11] Lin C C, Pankanti S U, Ramamurthy K N, Aravkin A Y. Adaptive as-natural-as-possible image stitching. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 1155?1163 [12] Xue W, Xie W, Zhang Y, Chen S. Stable linear structures and seam measurements for parallax image stitching. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 253?261 doi: 10.1109/TCSVT.2021.3058655 [13] Capel D. Image Mosaicing and Super-resolution. Berlin: Springer, 2004. 47?79 [14] Szeliski R. Image Alignment and Stitching: A Tutorial, Technical Report MSR-TR-2004-92, Microsoft Research, Redmond, WA, USA, 2006. [15] Mann S, Picard R W. Video orbits of the projective group: A simple approach to featureless estimation of parameters. IEEE Transactions on Image Processing, 1997, 6(9): 1281?1295 doi: 10.1109/83.623191 [16] Chang C, Chen C, Chuang Y. Spatially-varying image warps for scene alignment. In: Proceedings of the International Conference on Pattern Recognition. Stockholm, Sweden: IEEE, 2014. 64?69 [17] Kim S, Uh Y J, Byun H. Generating panorama image by synthesizing multiple homography. In: Proceedings of the International Conference on Image Processing. Florida, USA: IEEE, 2012. 2981?2984 [18] Zheng J, Wang Y, Wang H, Li B, Hu H M. A novel projective-consistent plane based image stitching method. IEEE Transactions on Multimedia, 2019, 21(10): 2561?2575 doi: 10.1109/TMM.2019.2905692 [19] Lin W Y, Liu S, Matsushita Y, Ng T T, Cheong L F. Smoothly varying affine stitching. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011. 345?352 [20] Igarashi T, Moscovich T, Hughes J F. As-rigid-as-possible shape manipulation. ACM Transactions on Graphics, 2005, 24(3): 1134?1141 doi: 10.1145/1073204.1073323 [21] Guo Y, Liu F, Shi J, Zhou Z H, Gleicher M. Image retargeting using mesh parametrization. IEEE Transactions on Multimedia, 2009, 11(5): 856?867 doi: 10.1109/TMM.2009.2021781 [22] Hu W, Luo Z, Fan X. Image retargeting via adaptive scaling with geometry preservation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 4(1): 70?81 [23] Chang C H, Chuang Y Y. A line-structure-preserving approach to image resizing. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012. 1075?1082 [24] Wang Y S, Tai C L, Sorkine O, Lee T Y. Optimized scale-and-stretch for image resizing. ACM Transactions on Graphics, 2008, 27(5): Article No. 118 [25] Li S, Yuan L, Sun J, Quan L. Dual-feature warping-based motion model estimation. In: Proceedings of the International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 428?4291 [26] 何川, 周軍. 具有直線(xiàn)結構保護的網(wǎng)格化圖像拼接. 中國圖象圖形學(xué)報, 2018, 23(7): 973?983He Chuan, Zhou Jun. Mesh-based image stitching algorithm with linear structure protection. Journal of Image and Graphics, 2018, 23(7): 973?983 [27] Li J, Wang Z, Lai S. Parallax-tolerant image stitching based on robust elastic warping. IEEE Transactions on Multimedia, 2018, 20(7): 1672?1687 doi: 10.1109/TMM.2017.2777461 [28] Chen K, Tu J, Xiang B, Li L, Yao J. Multiple combined constraints for image stitching. In: Proceedings of the International Conference on Image Processing. Athens, The Hellenic Republic: IEEE, 2018. 1253?1257 [29] 李加亮, 蔣品群. 結合變形函數和冪函數權重的圖像拼接. 計算機應用, 2019, 39(10): 3060?4064Li Jia-Liang, Jiang Pin-Qun. Image stitching by combining deformation function and power function weight. Journal of Computer Applications, 2019, 39(10): 3060?4064 [30] 顏雪軍, 趙春霞, 袁夏. 2DPCA-SIFT: 一種有效的局部特征描述方法. 自動(dòng)化學(xué)報, 2014, 40(4): 675?682Yan Xue-Jun, Zhao Chun-Xia, Yuan Xia. 2DPCA-SIFT: An efficient local feature descriptor. Acta Automatica Sinica, 2014, 40(4): 675?682 [31] 閆自庚, 蔣建國, 郭丹. 基于SURF特征和Delaunay三角網(wǎng)格的圖像匹配. 自動(dòng)化學(xué)報, 2014, 40(6): 1216?1222Yan Zi-Geng, Jiang Jian-Guo, Guo Dan. Image matching based on SURF feature and Delaunay triangular meshes. Acta Automatica Sinica, 2014, 40(6): 1216?1222 [32] Liu W X, Chin T J. Correspondence insertion for as-projective-as-possible image stitching. arXiv preprint arXiv: 1608.07997, 2016. [33] Fan B, Wu F, Hu Z. Line matching leveraged by point correspondences. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 390?397 [34] Joo K, Kim N, Oh T H, Kweon I S. Line meets as-projective-as-possible image stitching with moving DLT. In: Proceedings of the International Conference on Image Processing. Quebec, Canada: IEEE, 2015. 1175?1179 [35] Xiang T, Xia G, Zhang L, Huang N. Locally warping-based image stitching by imposing line constraints. In: Proceedings of the International Conference on Pattern Recognition. Cancun, Mexico: IEEE, 2016. 4178?4183 [36] Luo X, Li Y, Yan J, Guan X. Image stitching with positional relationship constraints of feature points and lines. Pattern Recognition Letters, 2020, 135: 431?440 doi: 10.1016/j.patrec.2020.05.003 [37] Jia Q, Li Z, Fan X, Zhao H, Teng S, Ye X, Latecki L J. Leveraging line-point consistence to preserve structures for wide parallax image stitching. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2021. 12186?12195 [38] Herrmann C, Wang C, Bowen R S, Keyder E, Krainin M, Liu C, et al. Robust image stitching with multiple registrations. In: Proceedings of the European Conference on Computer Vision. Munich, Germany: 2018. 53?69 [39] Lou Z, Gevers T. Image alignment by piecewise planar region matching. IEEE Transactions on Multimedia, 2014, 16(7): 2052?2061 doi: 10.1109/TMM.2014.2346476 [40] Lee K Y, Sim J Y. Warping residual based image stitching for large parallax. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020. 8198?8206 [41] Chen Y, Zheng H, Ma Y, Yan Z. Image stitching based on angle-consistent warping. Pattern Recognition, 2021, 117: Article No. 107993 doi: 10.1016/j.patcog.2021.107993 [42] Song D Y, Um G M, Lee H K, Cho D. End-to-end image stitching network via multi-homography estimation. IEEE Signal Processing Letters, 2021, 99: 1?5 [43] Le H, Liu F, Zhang S, Agarwala A. Deep homography estimation for dynamic scenes. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020. 7652?7661 [44] Zhao Q, Ma Y, Zhu C, Yao C, Dai F. Image stitching via deep homography estimation. Neurocomputing, 2021, 450: 219?229 doi: 10.1016/j.neucom.2021.03.099 [45] Dai Q, Fang F, Li J, Zhang G, Zhou A. Edge-guided composition network for image stitching. Pattern Recognition, 2021, 118: Article No. 108019 doi: 10.1016/j.patcog.2021.108019 [46] Cao S, Hu J, Shen Z, Shen H. Iterative deep homography estimation. In: Proceedings of the 2022 Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022. [47] Zhao Y, Huang X, Zhang Z. Deep Lucas-Kanade homography for multimodal image alignment. In: Proceedings of the 2021 Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2021. 15950?15959 [48] Mo Y, Kang X, Duan P, Li S. A robust UAV hyperspectral image stitching method based on deep feature matching. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1?14 [49] Nie L, Lin C, Liao K, Liu S, Zhao Y. Unsupervised deep image stitching: Reconstructing stitched features to images. IEEE Transactions on Image Processing, 2021, 30: 6184?6197 doi: 10.1109/TIP.2021.3092828 [50] Nie L, Lin C, Liao K, Liu S, Zhao Y. Depth-aware multi-grid deep homography estimation with contextual correlation. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4460?4472 doi: 10.1109/TCSVT.2021.3125736 [51] Liu F, Gleicher M, Jin H, Agarwala A. Content-preserving warps for 3D video stabilization. ACM Transactions on Graphics, 2009, 28(3): 1?9 [52] Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communication of ACM, 1981, 24(6): 381?395 doi: 10.1145/358669.358692 [53] Zhang Z. Parameter estimation techniques: A tutorial with application to conic fitting. Image and Vision Computing, 1997, 15(1): 59?76 doi: 10.1016/S0262-8856(96)01112-2 [54] Heckbert P S. Fundamentals of Texture Mapping and Image Warping [Ph.D. dissertation], EECS Department, University of California, USA, 1989. [55] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600?612 doi: 10.1109/TIP.2003.819861 [56] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91?110 doi: 10.1023/B:VISI.0000029664.99615.94 [57] Brown M, Lowe D G. Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 2007, 74(1): 59?73 doi: 10.1007/s11263-006-0002-3 [58] Ma J, Jiang X, Fan A, Jiang J, Yan J. Image matching from handcrafted to deep features: A survey. International Journal of Computer Vision, 2021, 129: 23?79 doi: 10.1007/s11263-020-01359-2