1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              不確定性環(huán)境下維納模型的隨機變分貝葉斯學(xué)習

              劉切 李俊豪 王浩 曾建學(xué) 柴毅

              劉切, 李俊豪, 王浩, 曾建學(xué), 柴毅. 不確定性環(huán)境下維納模型的隨機變分貝葉斯學(xué)習. 自動(dòng)化學(xué)報, 2024, 50(6): 1185?1198 doi: 10.16383/j.aas.c210925
              引用本文: 劉切, 李俊豪, 王浩, 曾建學(xué), 柴毅. 不確定性環(huán)境下維納模型的隨機變分貝葉斯學(xué)習. 自動(dòng)化學(xué)報, 2024, 50(6): 1185?1198 doi: 10.16383/j.aas.c210925
              Liu Qie, Li Jun-Hao, Wang Hao, Zeng Jian-Xue, Chai Yi. Stochastic variational Bayesian learning of Wiener model in the presence of uncertainty. Acta Automatica Sinica, 2024, 50(6): 1185?1198 doi: 10.16383/j.aas.c210925
              Citation: Liu Qie, Li Jun-Hao, Wang Hao, Zeng Jian-Xue, Chai Yi. Stochastic variational Bayesian learning of Wiener model in the presence of uncertainty. Acta Automatica Sinica, 2024, 50(6): 1185?1198 doi: 10.16383/j.aas.c210925

              不確定性環(huán)境下維納模型的隨機變分貝葉斯學(xué)習

              doi: 10.16383/j.aas.c210925
              基金項目: 國家重點(diǎn)研發(fā)計劃(2021YFB1715000), 國家自然科學(xué)基金(61903051, U2034209)資助
              詳細信息
                作者簡(jiǎn)介:

                劉切:重慶大學(xué)自動(dòng)化學(xué)院副教授. 2016年獲得北京化工大學(xué)控制科學(xué)與工程專(zhuān)業(yè)博士學(xué)位. 主要研究方向為人工智能及其在復雜過(guò)程的控制和優(yōu)化中的應用. 本文通信作者. E-mail: qieliu@cqu.edu.cn

                李俊豪:重慶大學(xué)自動(dòng)化學(xué)院碩士研究生. 2020年獲得西安理工大學(xué)自動(dòng)化與信息工程學(xué)院學(xué)士學(xué)位. 主要研究方向為系統辨識與人工智能. E-mail: 202013021042@cqu.edu.cn

                王浩:重慶大學(xué)自動(dòng)化學(xué)院碩士研究生. 2021年獲得安徽師范大學(xué)物理與電子信息學(xué)院學(xué)士學(xué)位. 主要研究方向為模型預測與人工智能. E-mail: 202113021007@cqu.edu.cn

                曾建學(xué):重慶大學(xué)自動(dòng)化學(xué)院碩士研究生. 2018年獲得華北科技學(xué)院電子信息工程學(xué)院學(xué)士學(xué)位. 主要研究方向為容器技術(shù)與人工智能. E-mail: lc9zjx@126.com

                柴毅:重慶大學(xué)自動(dòng)化學(xué)院教授. 2001年獲得重慶大學(xué)博士學(xué)位. 主要研究方向為信息融合, 故障診斷, 智能控制系統. E-mail: chaiyi@cqu.edu.cn

              Stochastic Variational Bayesian Learning of Wiener Model in the Presence of Uncertainty

              Funds: Supported by National Key Research and Development Program of China (2021YFB1715000) and National Natural Science Foundation of China (61903051, U2034209)
              More Information
                Author Bio:

                LIU Qie Associate professor at the School of Automation, Chongqing University. He received his Ph.D. degree from Beijing University of Chemical Technology in 2016. His research interest covers artificial intelligence and its applications on the control and optimization of complex processes. Corresponding author of this paper

                LI Jun-Hao Master student at the School of Automation, Chongqing University. He received his bachelor degree from the School of Automation and Information Engineering, Xi'an University of Technology in 2020. His research interest covers system identification and artificial intelligence

                WANG Hao Master student at the School of Automation, Chongqing University. He received his bachelor degree from the School of Physics and Electronic Information, Anhui Normal University in 2021. His research interest covers model prediction and artificial intelligence

                ZENG Jian-Xue Master student at the School of Automation, Chongqing University. He received his bachelor degree from the School of Electronic Information Engineering, North China Institute of Science and Technology in 2018. His research interest covers container and artificial intelligence

                CHAI Yi Professor at the School of Automation, Chongqing University. He received his Ph.D. degree from Chongqing University in 2001. His research interest covers information fusion, fault diagnosis, and intelligent control system

              • 摘要: 多重不確定性環(huán)境下的非線(xiàn)性系統辨識是一個(gè)開(kāi)放問(wèn)題. 貝葉斯學(xué)習在描述、處理不確定性方面具有顯著(zhù)優(yōu)勢, 已在線(xiàn)性系統辨識方面得到廣泛應用, 但在非線(xiàn)性系統辨識的應用較少, 且面臨概率估計復雜、計算量大等難題. 針對上述問(wèn)題, 以典型維納(Wiener)非線(xiàn)性過(guò)程為對象, 提出基于隨機變分貝葉斯的非線(xiàn)性系統辨識方法. 首先對過(guò)程噪聲、測量噪聲以及參數不確定性進(jìn)行概率描述; 然后利用隨機變分貝葉斯方法對模型參數進(jìn)行后驗估計. 在估計過(guò)程中, 利用隨機優(yōu)化思想, 僅利用部分中間變量概率信息估計模型參數分布的自然梯度期望, 與利用所有中間變量概率信息估計模型參數比較, 顯著(zhù)降低了計算復雜性. 該方法是首次在系統辨識領(lǐng)域中的應用. 最后, 利用一個(gè)仿真實(shí)例和一個(gè)維納模型的Benchmark問(wèn)題, 證明了該方法在對大規模數據下非線(xiàn)性系統辨識的有效性.
              • 圖  1  維納模型結構示意圖

                Fig.  1  The structure of Wiener model

                圖  2  SVBI中目標函數的更新示意圖

                Fig.  2  The update process of the objective function in SVBI

                圖  3  辨識參數的收斂狀況

                Fig.  3  Convergence of identified parameters

                圖  4  下界函數的收斂過(guò)程

                Fig.  4  Convergence process of the lower bound function

                圖  5  預測輸出與實(shí)際輸出比較

                Fig.  5  Comparison of predicted output with actual output

                圖  6  系統預測輸出與實(shí)際輸出

                Fig.  6  Predicted output and actual output of the system

                表  1  不同子采樣數據點(diǎn)對應的參數辨識情況

                Table  1  Identification of parameters corresponding to different sub-sampling data points

                $ \langle \theta _0 \rangle $ $ \langle \theta _1 \rangle $ $ \langle \theta _2 \rangle $ $ \langle \theta _3 \rangle $ $ \langle \theta _4 \rangle $ $ \langle \lambda _0 \rangle $ $ \langle \lambda _1 \rangle $ $ \langle \lambda _2 \rangle $ 時(shí)間(s)
                真實(shí)值 1 ?0.5000 0.2500 ?0.1250 0.0625 0 1 1
                采樣1個(gè)點(diǎn) 1±0 ?0.5463±0.3604 0.2507±0.2471 ?0.2446±0.2655 0.0358±0.2882 0.5434±0.4180 0.6625±0.2907 0.3803±0.2185 0.6005
                采樣5% 1±0 ?0.5060±0.0330 0.2693±0.0497 ?0.1252±0.0323 0.0633±0.0323 0.0908±0.2707 0.9871±0.1480 0.9103±0.1246 3.1829
                采樣10% 1±0 ?0.5055±0.0248 0.2571±0.0257 ?0.1341±0.0255 0.0594±0.0256 0.0631±0.0504 0.9684±0.0498 0.9499±0.0459 7.7402
                采樣20% 1±0 ?0.5077±0.0204 0.2544±0.0202 ?0.1287±0.0289 0.0659±0.0291 0.0575±0.0540 0.9813±0.0518 0.9574±0.0451 11.4620
                采樣全部 1±0 ?0.5078±0.0278 0.2541±0.0283 ?0.1299±0.0271 0.0685±0.0246 0.0777±0.0726 0.9439±0.1183 0.9252±0.1326 9.0772
                下載: 導出CSV

                表  2  不同異常值存在時(shí)的參數辨識情況

                Table  2  Parameter identification when different outliers exist

                $ \langle \theta _0 \rangle $ $ \langle \theta _1 \rangle $ $ \langle \theta _2 \rangle $ $ \langle \theta _3 \rangle $ $ \langle \theta _4 \rangle $ $ \langle \theta _5 \rangle $ 時(shí)間 (s)
                真實(shí)值 1 ?0.5000 0.2500 ?0.1250 0.0625 ?0.03125
                無(wú)異常值 1±0 ?0.4989±0.0292 0.2495±0.0293 ?0.1254±0.0223 0.0611±0.0257 ?0.0338±0.0262 2.9369
                2% 異常值 1±0 ?0.5097±0.0389 0.2672±0.0497 ?0.1305±0.0426 0.0652±0.0452 ?0.0291±0.0494 2.9480
                5% 異常值 1±0 ?0.5060±0.0330 0.2693±0.0497 ?0.1252±0.0323 0.0633±0.0323 ?0.0314±0.0523 3.1829
                10% 異常值 1±0 ?0.5349±0.0325 0.2627±0.0323 ?0.1314±0.0330 0.0685±0.0389 ?0.0377±0.0355 2.9057
                下載: 導出CSV

                表  3  不同辨識方法的性能比較

                Table  3  Performance comparison of different recognition methods

                $ b_0 $ $ a_1 $ $ \langle \lambda _0 \rangle(\lambda_0) $ $ \langle \lambda _1 \rangle(\lambda_1) $ $ \langle \lambda _2 \rangle(\lambda_2) $ 均方誤差 時(shí)間(s)
                真實(shí)值 1 0.5 0 1 1
                無(wú)異常值 SVBI 0.0648±0.0620 0.9633±0.0509 0.9766±0.0626 0.9136 2.936 9
                VBEM 0.0503±0.0346 0.9411±0.0393 0.9655±0.0459 0.8978 9.7046
                MLE 1±0 0.5102±0.0136 0.1054±0.0405 1.0154±0.0464 0.9490±0.0411 0.9130 9.0350
                PEM 1±0 0.4948±0.0172 0.0828±0.0524 0.9905±0.0373 1.0072±0.0449 0.9132 0.6474
                5% 異常值 SVBI 0.0575±0.0540 0.9813±0.0520 0.9573±0.0450 5.4540 2.9352
                VBEM 0.0503±0.0411 0.9770±0.0532 0.9748±0.0518 3.8695 9.7709
                MLE 1±0 0.4150±0.0711 ?0.9407±0.1253 1.0019±0.1839 1.3715±0.1895 3.9574 9.6693
                PEM 1±0 0.4999±0.0549 0.1072±0.1871 0.9646±0.1926 0.9878±0.1558 3.8374 0.6580
                10% 異常值 SVBI 0.1439±0.1065 0.9163±0.0924 0.8416±0.0924 7.5364 2.9057
                VBEM 0.0556±0.0468 0.9711±0.0538 0.9568±0.0553 5.5110 9.9245
                MLE
                PEM 1±0 0.4723±0.2004 0.1458±0.5211 0.9746±0.3091 1.0030±0.3253 5.4992 0.6620
                下載: 導出CSV

                表  4  式(52)部分參數辨識結果

                Table  4  The identification results of the part parameters of the process (52)

                參數 $\theta_0$ $\theta_1$ $\theta_2$ $\theta_3$ $\theta_4$ $\theta_5$ $\theta_6$ $\theta_7$ $\theta_8$ $\theta_9$ $c_0$ $c_1$ $c_2$ $Q$ $R$
                結果值 ?0.0390 0.0648 ?0.0547 0.0856 ?0.0462 0.2613 0.0501 0.2041 0.3396 0.4154 ?0.0188 0.1035 ?0.0030 0.0034 0.0014
                下載: 導出CSV

                表  5  不同方法的性能比較

                Table  5  Performance comparison of different methods

                采樣點(diǎn)數 方法 均方誤差(V) 參數個(gè)數 時(shí)間(s)
                2 000 SVBI 0.056 95 25 256.12
                VBEM 0.062 83 25 1 211.27
                SVBI 0.034 07 40 264.27
                VBEM 0.034 25 40 1 214.55
                10 000 SVBI 0.061 79 25 1 299.99
                VBEM 0.093 34 25 6 347.28
                SVBI 0.033 85 40 1 332.31
                VBEM 0.034 04 40 6 442.98
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] 王樂(lè )一, 趙文虓. 系統辨識: 新的模式、挑戰及機遇. 自動(dòng)化學(xué)報, 2013, 39(7): 933?942 doi: 10.1016/S1874-1029(13)60062-2

                        Wang Le-Yi, Zhao Wen-Xiao. System identification: New paradigms, challenges, and opportunities. Acta Automatica Sinica, 2013, 39(7): 933?942 doi: 10.1016/S1874-1029(13)60062-2
                        [2] 劉鑫. 時(shí)滯取值概率未知下的線(xiàn)性時(shí)滯系統辨識方法. 自動(dòng)化學(xué)報, 2023, 49(10): 2136?2144

                        Liu Xin. Identification of linear time-delay systems with unknown delay distributions in its value range. Acta Automatica Sinica, 2023, 49(10): 2136?2144
                        [3] Stoica P. On the convergence of an iterative algorithm used for Hammerstein system identification. IEEE Transactions on Automatic Control, 1981, 26(4): 967?969 doi: 10.1109/TAC.1981.1102761
                        [4] 張亞軍, 柴天佑, 楊杰. 一類(lèi)非線(xiàn)性離散時(shí)間動(dòng)態(tài)系統的交替辨識算法及應用. 自動(dòng)化學(xué)報, 2017, 43(1): 101?113

                        Zhang Ya-Jun, Chai Tian-You, Yang Jie. Alternating identification algorithm and its application to a class of nonlinear discrete-time dynamical systems. Acta Automatica Sinica, 2017, 43(1): 101?113
                        [5] 黃玉龍, 張勇剛, 李寧, 趙琳. 一種帶有色量測噪聲的非線(xiàn)性系統辨識方法. 自動(dòng)化學(xué)報, 2015, 41(11): 1877?1892

                        Huang Yu-Long, Zhang Yong-Gang, Li Ning, Zhao Lin. An identification method for nonlinear systems with colored measurement noise. Acta Automatica Sinica, 2015, 41(11): 1877?1892
                        [6] Ljung L. Perspectives on system identification. Annual Reviews in Control, 2008, 34(1): 1?12
                        [7] Sch?n T B, Wills A, Ninness B. System identification of nonlinear state-space models. Automatica, 2011, 47(1): 39?49 doi: 10.1016/j.automatica.2010.10.013
                        [8] Billings S A. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. Chichester: John Wiley & Sons, 2013.
                        [9] Carini A, Orcioni S, Terenzi A, Cecchi S. Nonlinear system identification using Wiener basis functions and multiple-variance perfect sequences. Signal Processing, 2019, 160: 137?149 doi: 10.1016/j.sigpro.2019.02.017
                        [10] Schoukens M, Tiels K. Identification of block-oriented nonlinear systems starting from linear approximations: A survey. Automatica, 2017, 85: 272?292 doi: 10.1016/j.automatica.2017.06.044
                        [11] Bershad N J, Celka P, McLaughlin S. Analysis of stochastic gradient identification of Wiener-Hammerstein systems for nonlinearities with Hermite polynomial expansions. IEEE Transactions on Signal Processing, 2001, 49(5): 1060?1072 doi: 10.1109/78.917809
                        [12] Valarmathi K, Devaraj D, Radhakrishnan T K. Intelligent techniques for system identification and controller tuning in pH process. Brazilian Journal of Chemical Engineering, 2009, 26(1): 99?111 doi: 10.1590/S0104-66322009000100010
                        [13] Zhu Y. Distillation column identification for control using Wiener model. In: Proceedings of the American Control Conference. San Diego, USA: IEEE, 1999. 3462?3466
                        [14] Schoukens J, Suykens J, Ljung L. Wiener-Hammerstein benchmark. In: Proceedings of the 15th IFAC Symposium on System Identification (SYSID 2009). Malo, France: 2009.
                        [15] Hagenblad A, Ljung L, Wills A. Maximum likelihood identification of Wiener models. Automatica, 2008, 44(11): 2697?2705 doi: 10.1016/j.automatica.2008.02.016
                        [16] Xu W Y, Bai E W, Cho M. System identification in the presence of outliers and random noises: A compressed sensing approach. Automatica, 2014, 50(11): 2905?2911 doi: 10.1016/j.automatica.2014.10.017
                        [17] Bottegal G, Castro-Garcia R, Suykens J A K. A two-experiment approach to Wiener system identification. Automatica, 2018, 93: 282?289 doi: 10.1016/j.automatica.2018.03.069
                        [18] Westwick D T, Schoukens J. Initial estimates of the linear subsystems of Wiener-Hammerstein models. Automatica, 2012, 48(11): 2931?2936 doi: 10.1016/j.automatica.2012.06.091
                        [19] Giordano G, Gros S, Sj?berg J. An improved method for Wiener-Hammerstein system identification based on the fractional approach. Automatica, 2018, 94: 349?360 doi: 10.1016/j.automatica.2018.04.046
                        [20] Liu Q, Lin W Y, Jiang S L, Chai Y, Sun L. Robust estimation of Wiener models in the presence of outliers using the VB approach. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11390?11399 doi: 10.1109/TIE.2020.3028806
                        [21] Xie L, Yang H Z, Huang B. FIR model identification of multirate processes with random delays using EM algorithm. AIChE Journal, 2013, 59(11): 4124?4132 doi: 10.1002/aic.14147
                        [22] Agamennoni G, Nieto J I, Nebot E M. Approximate inference in state-space models with heavy-tailed noise. IEEE Transactions on Signal Processing, 2012, 60(10): 5024?5037 doi: 10.1109/TSP.2012.2208106
                        [23] Bishop C M. Pattern Recognition and Machine Learning. New York: Springer, 2006.
                        [24] Amari S I. Natural gradient works efficiently in learning. Neural Computation, 1998, 10(2): 251?276 doi: 10.1162/089976698300017746
                        [25] Amari S I. Differential geometry of curved exponential families-curvatures and information loss. The Annals of Statistics, 1982, 10(2): 357?385
                        [26] Bottou L. On-line learning and stochastic approximations. On-line Learning in Neural Networks. New York: Cambridge University Press, 1999.
                        [27] Robbins H, Monro S. A stochastic approximation method. The Annals of Mathematical Statistics, 1951, 22(3): 400?407 doi: 10.1214/aoms/1177729586
                        [28] Hoffman M D, Blei D M, Wang C, Paisley J. Stochastic variational inference. The Journal of Machine Learning Research, 2013, 14(1): 1303?1347
                      2. 加載中
                      3. 圖(6) / 表(5)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  765
                        • HTML全文瀏覽量:  250
                        • PDF下載量:  131
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2021-09-27
                        • 錄用日期:  2022-03-01
                        • 網(wǎng)絡(luò )出版日期:  2022-05-08
                        • 刊出日期:  2024-06-27

                        目錄

                          /

                          返回文章
                          返回