1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              基于時(shí)滯測量的復雜網(wǎng)絡(luò )分布式狀態(tài)估計研究

              滕達 徐雍 鮑鴻 王卓 魯仁全

              滕達, 徐雍, 鮑鴻, 王卓, 魯仁全. 基于時(shí)滯測量的復雜網(wǎng)絡(luò )分布式狀態(tài)估計研究. 自動(dòng)化學(xué)報, 2024, 50(4): 841?850 doi: 10.16383/j.aas.c210921
              引用本文: 滕達, 徐雍, 鮑鴻, 王卓, 魯仁全. 基于時(shí)滯測量的復雜網(wǎng)絡(luò )分布式狀態(tài)估計研究. 自動(dòng)化學(xué)報, 2024, 50(4): 841?850 doi: 10.16383/j.aas.c210921
              Teng Da, Xu Yong, Bao Hong, Wang Zhuo, Lu Ren-Quan. Distributed state estimation for complex networks with delayed measurements. Acta Automatica Sinica, 2024, 50(4): 841?850 doi: 10.16383/j.aas.c210921
              Citation: Teng Da, Xu Yong, Bao Hong, Wang Zhuo, Lu Ren-Quan. Distributed state estimation for complex networks with delayed measurements. Acta Automatica Sinica, 2024, 50(4): 841?850 doi: 10.16383/j.aas.c210921

              基于時(shí)滯測量的復雜網(wǎng)絡(luò )分布式狀態(tài)估計研究

              doi: 10.16383/j.aas.c210921
              基金項目: 廣東省重點(diǎn)領(lǐng)域研發(fā)計劃(2021B0101410005), 國家自然科學(xué)基金 (62121004, 62006043, U22A2044, 61673041), 廣東省特支計劃本土創(chuàng )新創(chuàng )業(yè)團隊(2019BT02X353), 廣東省基礎與應用基礎研究基金項目(2021B1515420008)資助
              詳細信息
                作者簡(jiǎn)介:

                滕達:廣東工業(yè)大學(xué)碩士研究生. 2015年獲得中國礦業(yè)大學(xué)徐海學(xué)院學(xué)士學(xué)位. 主要研究方向為具有測量受限的復雜網(wǎng)絡(luò )狀態(tài)估計. E-mail: 18852141796@163.com

                徐雍:廣東工業(yè)大學(xué)自動(dòng)化學(xué)院教授. 2007年獲得南昌航空大學(xué)信息工程學(xué)士學(xué)位, 2010年獲得杭州電子科技大學(xué)控制科學(xué)與工程碩士學(xué)位, 2014年獲得浙江大學(xué)控制科學(xué)和工程博士學(xué)位. 主要研究方向為網(wǎng)絡(luò )化控制系統, 狀態(tài)估計與濾波, 水空兩棲無(wú)人機和智能無(wú)人艇. 本文通信作者. E-mail: xuyong809@163.com

                鮑鴻:廣東工業(yè)大學(xué)自動(dòng)化學(xué)院教授. 1999年獲得華中科技大學(xué)控制科學(xué)與工程博士學(xué)位. 主要研究方向為復雜系統控制理論研究. E-mail: bhong@gdut.edu.cnk

                王卓:北京航空航天大學(xué)儀器科學(xué)與光電工程學(xué)院教授. 2013年獲得美國伊利諾伊大學(xué)芝加哥分校電子與計算機工程系博士學(xué)位. 主要研究方向為基于數據的系統辨識、建模、分析、優(yōu)化與控制, 自適應動(dòng)態(tài)規劃方法, 非線(xiàn)性自適應控制, 基于原子自旋效應的慣性/磁場(chǎng)測量技術(shù), 自旋原子系綜控制(操控)方法. E-mail: zhuowang@buaa.edu.cn

                魯仁全:廣東工業(yè)大學(xué)自動(dòng)化學(xué)院教授. 2004年獲得浙江大學(xué)控制科學(xué)與工程專(zhuān)業(yè)博士學(xué)位. 主要研究方向為復雜系統, 網(wǎng)絡(luò )控制系統, 非線(xiàn)性系統, 變結構無(wú)人機, 智能無(wú)人車(chē), 多旋翼大型無(wú)人機, 無(wú)人自主系統的編隊與協(xié)同控制. E-mail: rqlu@gdut.edu.cn

              Distributed State Estimation for Complex Networks With Delayed Measurements

              Funds: Supported by Key Area Research and Development Program of Guangdong Province (2021B0101410005), National Natural Science Foundation of China (62121004, 62006043, U22A2044, 61673041), the Local Innovative and Research Teams Project of Guangdong Special Support Program (2019BT02X353), and Guangdong Basic and Applied Basic Research Foundation (2021B1515420008)
              More Information
                Author Bio:

                TENG Da Master student at Guangdong University of Technology. He received his bachelor degree from Xuhai College of China University of Mining and Technology in 2015. His research interest covers complex network state estimation with measurement constraints

                XU Yong Professor at the School of Automation, Guangdong University of Technology. He received his bachelor degree in information engineering from Nanchang Hangkong University in 2007, his master degree in control science and engineering from Hangzhou Dianzi University in 2010, and his Ph.D. degree in control science and engineering from Zhejiang University in 2014. His research interest covers networked control systems, state estimation and filtering, water and air amphibious unmanned aerial vehicle, and intelligent unmanned boat. Corresponding author of this paper

                BAO Hong Professor at the School of Automation, Guangdong University of Technology. She received her Ph.D. degree in control science and engineering from Huazhong University of Science and Technology in 1999. Her main research interest is complex system control theory

                WANG Zhuo Professor at the School of Instrumentation and Optoelectronic Engineering, Beihang University. He received his Ph.D. degree from the Electrical and Computer Engineering Department, University of Illinois at Chicago, USA, in 2013. His research interest covers data-based system identification, modeling, analysis, optimization and control, adaptive dynamic programming methods, nonlinear adaptive control, atomic-spin-effect-based inertial/magnetic field measurement technology, and atomic ensemble control (manipulation) methods

                LU Ren-Quan Professor at the School of Automation, Guangdong University of Technology. He received his Ph.D. degree in control science and engineering from Zhejiang University in 2004. His research interest covers complex systems, networked control systems, nonlinear systems, variable structure unmanned aerial vehicles (UAVs), intelligent unmanned vehicles, large multi-rotor UAVS, and formation and cooperative control of unmanned autonomous systems

              • 摘要: 研究一類(lèi)存在一步隨機時(shí)滯的復雜網(wǎng)絡(luò )分布式狀態(tài)估計問(wèn)題, 采用伯努利隨機變量刻畫(huà)測量值的隨機時(shí)滯情況. 基于復雜網(wǎng)絡(luò )模型和不可靠測量值, 分別設計復雜網(wǎng)絡(luò )的狀態(tài)預測器和分布式狀態(tài)估計器, 基于楊氏不等式消除節點(diǎn)之間的耦合項, 通過(guò)優(yōu)化楊氏不等式引進(jìn)的參數, 優(yōu)化狀態(tài)預測協(xié)方差. 通過(guò)設計估計器增益, 獲得狀態(tài)估計誤差協(xié)方差, 同時(shí)結合預測誤差協(xié)方差, 獲得狀態(tài)估計誤差協(xié)方差的迭代公式, 并給出估計誤差協(xié)方差穩定的充分條件. 最后, 對由小車(chē)組成的耦合系統進(jìn)行數值仿真, 驗證所設計估計器的有效性.
              • 圖  1  小車(chē)耦合系統的拓撲

                Fig.  1  The topology of coupled systems consisted of vehicles

                圖  2  小車(chē)的實(shí)際運動(dòng)軌跡

                Fig.  2  The actual motion trajectories of vehicles

                圖  3  優(yōu)化和未優(yōu)化的$ \gamma_{1,i,k} $

                Fig.  3  $ \gamma_{1,i,k} $ with and without optimization

                圖  4  基于優(yōu)化和未優(yōu)化$ \gamma_{1,1,k} $的第1個(gè)節點(diǎn)的估計誤差協(xié)方差上界的跡和MSE

                Fig.  4  The trace of upper bound of the estimation error covariance and the MSE of the node 1 based on $ \gamma_{1,1,k} $ with and without optimization

                圖  5  基于優(yōu)化和未優(yōu)化$ \gamma_{1,2,k} $的第2個(gè)節點(diǎn)的估計誤差協(xié)方差上界的跡和MSE

                Fig.  5  The trace of upper bound of the estimation error covariance and the MSE of the node 2 based on $ \gamma_{1,2,k} $ with and without optimization

                圖  6  基于優(yōu)化和未優(yōu)化$ \gamma_{1,3,k} $的第3個(gè)節點(diǎn)的估計誤差協(xié)方差上界的跡和MSE

                Fig.  6  The trace of upper bound of the estimation error covariance and the MSE of the node 3 based on $ \gamma_{1,3,k} $ with and without optimization

                圖  7  基于優(yōu)化和未優(yōu)化$ \gamma_{1,4,k} $的第4個(gè)節點(diǎn)的估計誤差協(xié)方差上界的跡和MSE

                Fig.  7  The trace of upper bound of the estimation error covariance and the MSE of the node 4 based on $ \gamma_{1,4,k} $ with and without optimization

                表  1  基于優(yōu)化和未優(yōu)化的$\gamma_{1,i,k}$的上界$\rm{tr}(P_{i,k|k})$

                Table  1  The upper bound $\rm{tr}(P_{i,k|k})$ based on $\gamma_{1,i,k}$ with and without optimization

                節點(diǎn)$i$未優(yōu)化$\rm{tr}(P_{i,k|k})$上界優(yōu)化后$\rm{tr}(P_{i,k|k})$上界優(yōu)化幅度(%)
                10.06790.06228.50
                20.06860.06308.23
                30.08060.07339.04
                40.07680.07176.60
                下載: 導出CSV

                表  2  基于優(yōu)化和未優(yōu)化的$\gamma_{1,i,k}$的MSE$_{i,k|k}$

                Table  2  The MSE$_{i,k|k}$ based on $\gamma_{1,i,k}$ with and without optimization

                節點(diǎn)$i$未優(yōu)化MSE$_{i,k|k}$均值優(yōu)化后MSE$_{i,k|k}$均值優(yōu)化幅度(%)
                10.03570.03385.23
                20.03640.03474.82
                30.04240.04005.73
                40.04560.04383.83
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. Complex networks: Structure and dynamics. Physics Reports, 2006, 424(4–5): 175?308
                        [2] Li W L, Jia Y M, Du J P. Variance-constrained state estimation for nonlinearly coupled complex networks. IEEE Transactions on Cybernetics, 2018, 48(2): 818?824 doi: 10.1109/TCYB.2017.2653242
                        [3] Rad A, Khadivi A, Hasler M. Information processing in complex networks. IEEE Circuits and Systems Magazine, 2010, 10(3): 26?37 doi: 10.1109/MCAS.2010.937881
                        [4] 席裕庚. 大系統控制論與復雜網(wǎng)絡(luò )—探索與思考. 自動(dòng)化學(xué)報, 2013, 39(11): 1758?1768 doi: 10.3724/SP.J.1004.2013.01758

                        Xi Yu-Geng. Large-scale systems control and complex networks—Exploration and thinking. Acta Automatica Sinica, 2013, 39(11): 1758?1768 doi: 10.3724/SP.J.1004.2013.01758
                        [5] Li X, Chen G R. Synchronization and desynchronization of complex dynamical networks: An engineering viewpoint. IEEE Transactions on Circuits and Systems Part I Fundamental Theory and Applications, 2003, 50(11): 1381?1390
                        [6] Dorfler F, Bullo F. Synchronization in complex networks of phase oscillators: A survey. Automatica, 2014, 50(6): 1539?1564 doi: 10.1016/j.automatica.2014.04.012
                        [7] Yi Y H, Zhang Z Z, Patterson S. Scale-free loopy structure is resistant to noise in consensus dynamics in complex networks. IEEE Transactions on Cybernetics, 2020, 50(1): 190?200 doi: 10.1109/TCYB.2018.2868124
                        [8] Xu Y F, Choi J. Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields. Automatica, 2012, 48(8): 1735?1740 doi: 10.1016/j.automatica.2012.05.029
                        [9] Li Q, Shen B, Wang Z D, Huang T W, Luo J. Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach. IEEE Transactions on Cybernetics, 2018, 49(5): 1979?1986
                        [10] Meng C, Wang T M, Chou W S, Luan S, Zhang Y R, Tian Z M. Remote surgery case: Robot-assisted teleneurosurgery. IEEE International Conference on Robotics and Automation, 2004, 1: 819?823
                        [11] Walsh G C, Ye H, Bushnell L G. Stability analysis of networked control systems. IEEE Transactions on Control Systems Technology, 2002, 10(3): 438?446 doi: 10.1109/87.998034
                        [12] 徐雍, 饒紅霞, 王卓, 魯仁全, 李宗. 帶有隨機通信時(shí)滯的狀態(tài)估計. 中國科學(xué)信息科學(xué), 2022, 52(8): Article No. 1513

                        Xu Yong, Rao Hong-Xia, Wang Zhuo, Lu Ren-Quan, Li Zong. State estimation for networked uncertain nonlinear systems with time-delays. Scientia Sinica Informationis, 2022, 52(8): Article No. 1513
                        [13] Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems. Proceedings of the IEEE, 2007, 95(1): 138?162 doi: 10.1109/JPROC.2006.887288
                        [14] Samad T, Bay J S, Godbole D. Network-centric systems for military operations in urban terrain: The role of UAVs. Proceedings of the IEEE, 2007, 95: 92?107 doi: 10.1109/JPROC.2006.887327
                        [15] Ren W, Xiong J L. Tracking control of nonlinear networked and quantized control systems with communication delays. IEEE Transactions on Automatic Control, 2019, 65(8): 3685?3692
                        [16] Liu H, Lu J A, Lv J H, Hill D J. Structure identification of uncertain general complex dynamical networks with time delay. Automatica, 2009, 45(8): 1799?1807 doi: 10.1016/j.automatica.2009.03.022
                        [17] 楊園華, 付敏躍, 張煥水. 帶有隨機通信時(shí)滯的狀態(tài)估計. 自動(dòng)化學(xué)報, 2013, 39(3): 237?243 doi: 10.1016/S1874-1029(13)60025-7

                        Yang Yuan-Hua, Fu Min-Yue, Zhang Huan-Shui. State estimation subject to random communication delays. Acta Automatica Sinica, 2013, 39(3): 237?243 doi: 10.1016/S1874-1029(13)60025-7
                        [18] Wang Y, Xiong J L, Ho D W C. Decentralized control scheme for large-scale systems defined over a graph in presence of communication delays and random missing measurements. Automatica, 2018, 98: 190?200 doi: 10.1016/j.automatica.2018.09.023
                        [19] Xu Y, Zhou J Y, Rao H X, Lu R Q, Xie L H. Reset moving horizon estimation for quantized discrete time systems. IEEE Transactions on Automatic Control, 2021, 66(9): 4199?4205 doi: 10.1109/TAC.2020.3037140
                        [20] Xu Y, Yang L X, Wang Z, Rao H X, Lu R Q. State estimation for networked systems with Markov driven transmission and buffer constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(12): 7727?7734 doi: 10.1109/TSMC.2020.2980425
                        [21] Hu J, Wang Z D, Alsaadi F E, Hayat T. Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities. Information Fusion, 2017, 38: 74?83 doi: 10.1016/j.inffus.2017.03.003
                        [22] Hao J, Sun S. Distributed Kalman filtering for sensor networks with random sensor activation, delays, and packet dropouts. International Journal of Systems Science, 2022, 53(3): 575?592 doi: 10.1080/00207721.2021.1963502
                        [23] Paul A, Kamwa I, Jóos G. Centralized dynamic state estimation using a federation of extended Kalman filters with intermittent PMU data from generator terminals. IEEE Transactions on Power Systems, 2018, 33(6): 6109?6119 doi: 10.1109/TPWRS.2018.2834365
                        [24] Liu Y, Wang Z D, Zhou D H. Scalable distributed filtering for a class of discrete-time complex networks over time-varying topology. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(8): 2930?2941 doi: 10.1109/TNNLS.2019.2934131
                        [25] Li W L, Jia Y M, Du J P. State estimation for stochastic complex networks with switching topology. IEEE Transactions on Automatic Control, 2017, 62(12): 6377?6384 doi: 10.1109/TAC.2017.2649878
                        [26] Liu Y, Wang Z D, Zhou D H. Resilient actuator fault estimation for discrete-time complex networks: A distributed approach. IEEE Transactions on Automatic Control, 2021, 66(9): 4214?4221 doi: 10.1109/TAC.2020.3033710
                        [27] Duan P H, Duan Z S, Lv Y Z, Chen G R. Distributed finite-horizon extended Kalman filtering for uncertain nonlinear systems. IEEE Transactions on Cybernetics, 2021, 51(2): 512?520 doi: 10.1109/TCYB.2019.2919919
                        [28] Basu H, Yoon S S. Distributed state estimation by a network of observers under communication and measurement delays. Systems and Control Letters, 2019, 133: 1?10
                        [29] Anderson B D O, Moore J B. Optimal Filtering. New York: Dover publication, 2012.
                        [30] Sinopoli B, Schenato L, Franceschetti M, Poolla K, Jordan M I, Sastry S S. Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control, 2004, 1(9): 1453?1464
                        [31] Jin H, Sun S L. Distributed filtering for sensor networks with fading measurements and compensations for transmission delays and losses. Signal Processing, 2022, 190: Article No. 108306 doi: 10.1016/j.sigpro.2021.108306
                        [32] Peng H, Zeng B R, Yang L X, Xu Y, Lu R Q. Distributed extended state estimation for complex networks with nonlinear uncertainty. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 5952?5960
                        [33] Huang Z H, Marelli D, Xu Y, Fu M Y. Distributed target tracking using maximum likelihood Kalman filter with non-linear measurements. IEEE Sensors Journal, 2021, 21(24): 27818?27826 doi: 10.1109/JSEN.2021.3125153
                        [34] Lin Z Y, Wang L L, Han Z M, Fu M Y. Distributed formation control of multi-agent systems using complex laplacian. IEEE Transactions on Automatic Control, 2014, 59(7): 1765?1777 doi: 10.1109/TAC.2014.2309031
                        [35] Dong X W, Hua Y Z, Zhou Y, Ren Z, Zhong Y S. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems. IEEE Transactions on Automation Science and Engineering, 2019, 16(1): 229?240 doi: 10.1109/TASE.2018.2792327
                      2. 加載中
                      3. 圖(7) / 表(2)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  772
                        • HTML全文瀏覽量:  155
                        • PDF下載量:  180
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2021-09-25
                        • 錄用日期:  2022-10-29
                        • 網(wǎng)絡(luò )出版日期:  2022-12-15
                        • 刊出日期:  2024-04-26

                        目錄

                          /

                          返回文章
                          返回