基于時(shí)滯測量的復雜網(wǎng)絡(luò )分布式狀態(tài)估計研究
doi: 10.16383/j.aas.c210921
-
1.
廣東工業(yè)大學(xué)自動(dòng)化學(xué)院廣東省智能決策與協(xié)同控制重點(diǎn)實(shí)驗室 廣州 510006
-
2.
北京航空航天大學(xué)杭州創(chuàng )新研究院(余杭) 杭州 310023
-
3.
北京航空航天大學(xué)儀器科學(xué)與光電工程學(xué)院 北京 100191
Distributed State Estimation for Complex Networks With Delayed Measurements
-
1.
Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006
-
2.
Hangzhou Innovation Institute (Yuhang), Beihang University, Hangzhou 310023
-
3.
School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191
-
摘要: 研究一類(lèi)存在一步隨機時(shí)滯的復雜網(wǎng)絡(luò )分布式狀態(tài)估計問(wèn)題, 采用伯努利隨機變量刻畫(huà)測量值的隨機時(shí)滯情況. 基于復雜網(wǎng)絡(luò )模型和不可靠測量值, 分別設計復雜網(wǎng)絡(luò )的狀態(tài)預測器和分布式狀態(tài)估計器, 基于楊氏不等式消除節點(diǎn)之間的耦合項, 通過(guò)優(yōu)化楊氏不等式引進(jìn)的參數, 優(yōu)化狀態(tài)預測協(xié)方差. 通過(guò)設計估計器增益, 獲得狀態(tài)估計誤差協(xié)方差, 同時(shí)結合預測誤差協(xié)方差, 獲得狀態(tài)估計誤差協(xié)方差的迭代公式, 并給出估計誤差協(xié)方差穩定的充分條件. 最后, 對由小車(chē)組成的耦合系統進(jìn)行數值仿真, 驗證所設計估計器的有效性.
-
關(guān)鍵詞:
- 復雜網(wǎng)絡(luò ) /
- 分布式狀態(tài)估計 /
- 時(shí)滯測量 /
- 穩定性分析
Abstract: This work addresses the distributed state estimation for complex networks with delayed measurements. The Bernoulli process is employed to describe the measurements with randomly occurred one step delay. The state predictor is derived based on the system mode, and the distributed state estimator is designed by using delayed measurements. The coupling term between nodes is eliminated based on Young's inequality, and the covariance of state prediction is improved by optimizing the parameters introduced by Young's inequality. Furthermore, the optimal state estimation error covariance is achieved by designing the estimator gain. Thanks to the state prediction error covariance, the iterative inequality of the state estimation error covariance is derived, and its sufficient condition for stability is established. Finally, the moving vehicles based coupled system is given to illustrate the effectiveness of the designed estimator.-
Key words:
- Complex network /
- distributed state estimation /
- delayed measurement /
- stability analysis
-
圖 4 基于優(yōu)化和未優(yōu)化$ \gamma_{1,1,k} $的第1個(gè)節點(diǎn)的估計誤差協(xié)方差上界的跡和MSE
Fig. 4 The trace of upper bound of the estimation error covariance and the MSE of the node 1 based on $ \gamma_{1,1,k} $ with and without optimization
圖 5 基于優(yōu)化和未優(yōu)化$ \gamma_{1,2,k} $的第2個(gè)節點(diǎn)的估計誤差協(xié)方差上界的跡和MSE
Fig. 5 The trace of upper bound of the estimation error covariance and the MSE of the node 2 based on $ \gamma_{1,2,k} $ with and without optimization
圖 6 基于優(yōu)化和未優(yōu)化$ \gamma_{1,3,k} $的第3個(gè)節點(diǎn)的估計誤差協(xié)方差上界的跡和MSE
Fig. 6 The trace of upper bound of the estimation error covariance and the MSE of the node 3 based on $ \gamma_{1,3,k} $ with and without optimization
圖 7 基于優(yōu)化和未優(yōu)化$ \gamma_{1,4,k} $的第4個(gè)節點(diǎn)的估計誤差協(xié)方差上界的跡和MSE
Fig. 7 The trace of upper bound of the estimation error covariance and the MSE of the node 4 based on $ \gamma_{1,4,k} $ with and without optimization
表 1 基于優(yōu)化和未優(yōu)化的$\gamma_{1,i,k}$的上界$\rm{tr}(P_{i,k|k})$
Table 1 The upper bound $\rm{tr}(P_{i,k|k})$ based on $\gamma_{1,i,k}$ with and without optimization
節點(diǎn)$i$ 未優(yōu)化$\rm{tr}(P_{i,k|k})$上界 優(yōu)化后$\rm{tr}(P_{i,k|k})$上界 優(yōu)化幅度(%) 1 0.0679 0.0622 8.50 2 0.0686 0.0630 8.23 3 0.0806 0.0733 9.04 4 0.0768 0.0717 6.60 下載: 導出CSV表 2 基于優(yōu)化和未優(yōu)化的$\gamma_{1,i,k}$的MSE$_{i,k|k}$
Table 2 The MSE$_{i,k|k}$ based on $\gamma_{1,i,k}$ with and without optimization
節點(diǎn)$i$ 未優(yōu)化MSE$_{i,k|k}$均值 優(yōu)化后MSE$_{i,k|k}$均值 優(yōu)化幅度(%) 1 0.0357 0.0338 5.23 2 0.0364 0.0347 4.82 3 0.0424 0.0400 5.73 4 0.0456 0.0438 3.83 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. Complex networks: Structure and dynamics. Physics Reports, 2006, 424(4–5): 175?308 [2] Li W L, Jia Y M, Du J P. Variance-constrained state estimation for nonlinearly coupled complex networks. IEEE Transactions on Cybernetics, 2018, 48(2): 818?824 doi: 10.1109/TCYB.2017.2653242 [3] Rad A, Khadivi A, Hasler M. Information processing in complex networks. IEEE Circuits and Systems Magazine, 2010, 10(3): 26?37 doi: 10.1109/MCAS.2010.937881 [4] 席裕庚. 大系統控制論與復雜網(wǎng)絡(luò )—探索與思考. 自動(dòng)化學(xué)報, 2013, 39(11): 1758?1768 doi: 10.3724/SP.J.1004.2013.01758Xi Yu-Geng. Large-scale systems control and complex networks—Exploration and thinking. Acta Automatica Sinica, 2013, 39(11): 1758?1768 doi: 10.3724/SP.J.1004.2013.01758 [5] Li X, Chen G R. Synchronization and desynchronization of complex dynamical networks: An engineering viewpoint. IEEE Transactions on Circuits and Systems Part I Fundamental Theory and Applications, 2003, 50(11): 1381?1390 [6] Dorfler F, Bullo F. Synchronization in complex networks of phase oscillators: A survey. Automatica, 2014, 50(6): 1539?1564 doi: 10.1016/j.automatica.2014.04.012 [7] Yi Y H, Zhang Z Z, Patterson S. Scale-free loopy structure is resistant to noise in consensus dynamics in complex networks. IEEE Transactions on Cybernetics, 2020, 50(1): 190?200 doi: 10.1109/TCYB.2018.2868124 [8] Xu Y F, Choi J. Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields. Automatica, 2012, 48(8): 1735?1740 doi: 10.1016/j.automatica.2012.05.029 [9] Li Q, Shen B, Wang Z D, Huang T W, Luo J. Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach. IEEE Transactions on Cybernetics, 2018, 49(5): 1979?1986 [10] Meng C, Wang T M, Chou W S, Luan S, Zhang Y R, Tian Z M. Remote surgery case: Robot-assisted teleneurosurgery. IEEE International Conference on Robotics and Automation, 2004, 1: 819?823 [11] Walsh G C, Ye H, Bushnell L G. Stability analysis of networked control systems. IEEE Transactions on Control Systems Technology, 2002, 10(3): 438?446 doi: 10.1109/87.998034 [12] 徐雍, 饒紅霞, 王卓, 魯仁全, 李宗. 帶有隨機通信時(shí)滯的狀態(tài)估計. 中國科學(xué)信息科學(xué), 2022, 52(8): Article No. 1513Xu Yong, Rao Hong-Xia, Wang Zhuo, Lu Ren-Quan, Li Zong. State estimation for networked uncertain nonlinear systems with time-delays. Scientia Sinica Informationis, 2022, 52(8): Article No. 1513 [13] Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems. Proceedings of the IEEE, 2007, 95(1): 138?162 doi: 10.1109/JPROC.2006.887288 [14] Samad T, Bay J S, Godbole D. Network-centric systems for military operations in urban terrain: The role of UAVs. Proceedings of the IEEE, 2007, 95: 92?107 doi: 10.1109/JPROC.2006.887327 [15] Ren W, Xiong J L. Tracking control of nonlinear networked and quantized control systems with communication delays. IEEE Transactions on Automatic Control, 2019, 65(8): 3685?3692 [16] Liu H, Lu J A, Lv J H, Hill D J. Structure identification of uncertain general complex dynamical networks with time delay. Automatica, 2009, 45(8): 1799?1807 doi: 10.1016/j.automatica.2009.03.022 [17] 楊園華, 付敏躍, 張煥水. 帶有隨機通信時(shí)滯的狀態(tài)估計. 自動(dòng)化學(xué)報, 2013, 39(3): 237?243 doi: 10.1016/S1874-1029(13)60025-7Yang Yuan-Hua, Fu Min-Yue, Zhang Huan-Shui. State estimation subject to random communication delays. Acta Automatica Sinica, 2013, 39(3): 237?243 doi: 10.1016/S1874-1029(13)60025-7 [18] Wang Y, Xiong J L, Ho D W C. Decentralized control scheme for large-scale systems defined over a graph in presence of communication delays and random missing measurements. Automatica, 2018, 98: 190?200 doi: 10.1016/j.automatica.2018.09.023 [19] Xu Y, Zhou J Y, Rao H X, Lu R Q, Xie L H. Reset moving horizon estimation for quantized discrete time systems. IEEE Transactions on Automatic Control, 2021, 66(9): 4199?4205 doi: 10.1109/TAC.2020.3037140 [20] Xu Y, Yang L X, Wang Z, Rao H X, Lu R Q. State estimation for networked systems with Markov driven transmission and buffer constraint. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(12): 7727?7734 doi: 10.1109/TSMC.2020.2980425 [21] Hu J, Wang Z D, Alsaadi F E, Hayat T. Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities. Information Fusion, 2017, 38: 74?83 doi: 10.1016/j.inffus.2017.03.003 [22] Hao J, Sun S. Distributed Kalman filtering for sensor networks with random sensor activation, delays, and packet dropouts. International Journal of Systems Science, 2022, 53(3): 575?592 doi: 10.1080/00207721.2021.1963502 [23] Paul A, Kamwa I, Jóos G. Centralized dynamic state estimation using a federation of extended Kalman filters with intermittent PMU data from generator terminals. IEEE Transactions on Power Systems, 2018, 33(6): 6109?6119 doi: 10.1109/TPWRS.2018.2834365 [24] Liu Y, Wang Z D, Zhou D H. Scalable distributed filtering for a class of discrete-time complex networks over time-varying topology. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(8): 2930?2941 doi: 10.1109/TNNLS.2019.2934131 [25] Li W L, Jia Y M, Du J P. State estimation for stochastic complex networks with switching topology. IEEE Transactions on Automatic Control, 2017, 62(12): 6377?6384 doi: 10.1109/TAC.2017.2649878 [26] Liu Y, Wang Z D, Zhou D H. Resilient actuator fault estimation for discrete-time complex networks: A distributed approach. IEEE Transactions on Automatic Control, 2021, 66(9): 4214?4221 doi: 10.1109/TAC.2020.3033710 [27] Duan P H, Duan Z S, Lv Y Z, Chen G R. Distributed finite-horizon extended Kalman filtering for uncertain nonlinear systems. IEEE Transactions on Cybernetics, 2021, 51(2): 512?520 doi: 10.1109/TCYB.2019.2919919 [28] Basu H, Yoon S S. Distributed state estimation by a network of observers under communication and measurement delays. Systems and Control Letters, 2019, 133: 1?10 [29] Anderson B D O, Moore J B. Optimal Filtering. New York: Dover publication, 2012. [30] Sinopoli B, Schenato L, Franceschetti M, Poolla K, Jordan M I, Sastry S S. Kalman filtering with intermittent observations. IEEE Transactions on Automatic Control, 2004, 1(9): 1453?1464 [31] Jin H, Sun S L. Distributed filtering for sensor networks with fading measurements and compensations for transmission delays and losses. Signal Processing, 2022, 190: Article No. 108306 doi: 10.1016/j.sigpro.2021.108306 [32] Peng H, Zeng B R, Yang L X, Xu Y, Lu R Q. Distributed extended state estimation for complex networks with nonlinear uncertainty. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 5952?5960 [33] Huang Z H, Marelli D, Xu Y, Fu M Y. Distributed target tracking using maximum likelihood Kalman filter with non-linear measurements. IEEE Sensors Journal, 2021, 21(24): 27818?27826 doi: 10.1109/JSEN.2021.3125153 [34] Lin Z Y, Wang L L, Han Z M, Fu M Y. Distributed formation control of multi-agent systems using complex laplacian. IEEE Transactions on Automatic Control, 2014, 59(7): 1765?1777 doi: 10.1109/TAC.2014.2309031 [35] Dong X W, Hua Y Z, Zhou Y, Ren Z, Zhong Y S. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems. IEEE Transactions on Automation Science and Engineering, 2019, 16(1): 229?240 doi: 10.1109/TASE.2018.2792327