1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              基于特征變換和度量網(wǎng)絡(luò )的小樣本學(xué)習算法

              王多瑞 杜楊 董蘭芳 胡衛明 李兵

              王多瑞, 杜楊, 董蘭芳, 胡衛明, 李兵. 基于特征變換和度量網(wǎng)絡(luò )的小樣本學(xué)習算法. 自動(dòng)化學(xué)報, 2024, 50(7): 1305?1314 doi: 10.16383/j.aas.c210903
              引用本文: 王多瑞, 杜楊, 董蘭芳, 胡衛明, 李兵. 基于特征變換和度量網(wǎng)絡(luò )的小樣本學(xué)習算法. 自動(dòng)化學(xué)報, 2024, 50(7): 1305?1314 doi: 10.16383/j.aas.c210903
              Wang Duo-Rui, Du Yang, Dong Lan-Fang, Hu Wei-Ming, Li Bing. Feature transformation and metric networks for few-shot learning. Acta Automatica Sinica, 2024, 50(7): 1305?1314 doi: 10.16383/j.aas.c210903
              Citation: Wang Duo-Rui, Du Yang, Dong Lan-Fang, Hu Wei-Ming, Li Bing. Feature transformation and metric networks for few-shot learning. Acta Automatica Sinica, 2024, 50(7): 1305?1314 doi: 10.16383/j.aas.c210903

              基于特征變換和度量網(wǎng)絡(luò )的小樣本學(xué)習算法

              doi: 10.16383/j.aas.c210903
              基金項目: 國家重點(diǎn)研發(fā)計劃(2018AAA0102802), 國家自然科學(xué)基金(62036011, 62192782, 61721004), 中國科學(xué)院前沿科學(xué)重點(diǎn)研究計劃(QYZDJ-SSW-JSC040)資助
              詳細信息
                作者簡(jiǎn)介:

                王多瑞:2021年獲得中國科學(xué)技術(shù)大學(xué)碩士學(xué)位. 主要研究方向為小樣本學(xué)習, 目標檢測.E-mail: wangduor@mail.ustc.edu.cn

                杜楊:2019年獲得中國科學(xué)院自動(dòng)化研究所博士學(xué)位. 主要研究方向為行為識別, 醫學(xué)圖像處理.E-mail: jingzhou.dy@alibaba-inc.com

                董蘭芳:中國科學(xué)技術(shù)大學(xué)副教授. 1994年獲得中國科學(xué)技術(shù)大學(xué)碩士學(xué)位. 主要研究方向為圖像與視頻智能分析, 知識圖譜與對話(huà)系統, 數值模擬與三維重建.E-mail: lfdong@ustc.edu.cn

                胡衛明:中國科學(xué)院自動(dòng)化研究所研究員. 1998年獲得浙江大學(xué)博士學(xué)位. 主要研究方向為視覺(jué)運動(dòng)分析, 網(wǎng)絡(luò )不良信息識別和網(wǎng)絡(luò )入侵檢測. 本文通信作者.E-mail: wmhu@nlpr.ia.ac.cn

                李兵:中國科學(xué)院自動(dòng)化研究所研究員. 2009年獲得北京交通大學(xué)博士學(xué)位. 主要研究方向為網(wǎng)絡(luò )內容安全, 智能圖像信號處理.E-mail: bing.li@ia.ac.cn

              Feature Transformation and Metric Networks for Few-shot Learning

              Funds: Supported by National Key Research and Development Program of China (2018AAA0102802), National Natural Science Foundation of China (62036011, 62192782, 61721004), and Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDJ-SSW-JSC040)
              More Information
                Author Bio:

                WANG Duo-Rui He received his master degree from University of Science and Technology of China in 2021. His research interest covers few-shot learning and object detection

                DU Yang He received his Ph.D. degree from the Institute of Automation, Chinese Academy of Sciences. His research interest covers action recognition and medical image processing

                DONG Lan-Fang Associate professor at University of Science and Technology of China. She received her master degree from University of Science and Technology of China in 1994. Her research interest covers image and video intelligent analysis, knowledge mapping and dialogue systems, and numerical simulation and 3D reconstruction

                HU Wei-Ming Professor at the Institute of Automation, Chinese Academy of Sciences. He received his Ph.D. degree from Zhejiang University in 1998. His research interest covers visual motion analysis, recognition of web objectionable information, and network intrusion detection. Corresponding author of this paper

                LI Bing Professor at the Institute of Automation, Chinese Academy of Sciences. He received his Ph.D. degree from Beijing Jiaotong University in 2009. His research interest covers the web content security and intelligent image signal process

              • 摘要: 在小樣本分類(lèi)任務(wù)中, 每個(gè)類(lèi)別可供訓練的樣本數量非常有限. 因此在特征空間中同類(lèi)樣本分布稀疏, 異類(lèi)樣本間邊界模糊. 提出一種新的基于特征變換和度量網(wǎng)絡(luò )(Feature transformation and metric networks, FTMN)的小樣本學(xué)習算法用于小樣本分類(lèi)任務(wù). 算法通過(guò)嵌入函數將樣本映射到特征空間, 并計算輸入該樣本與所屬類(lèi)別中心的特征殘差. 構造一個(gè)特征變換函數對該殘差進(jìn)行學(xué)習, 使特征空間內的樣本特征經(jīng)過(guò)該函數后向同類(lèi)樣本中心靠攏. 利用變換后的樣本特征更新類(lèi)別中心, 使各類(lèi)別中心間的距離增大. 算法進(jìn)一步構造了一種新的度量函數, 對樣本特征中每個(gè)局部特征點(diǎn)的度量距離進(jìn)行聯(lián)合表達, 該函數能夠同時(shí)對樣本特征間的夾角和歐氏距離進(jìn)行優(yōu)化. 算法在小樣本分類(lèi)任務(wù)常用數據集上的優(yōu)秀表現證明了算法的有效性和泛化性.
              • 圖  1  特征變換和度量網(wǎng)絡(luò )模型

                Fig.  1  Model of feature transformation and metric networks

                圖  2  網(wǎng)絡(luò )中關(guān)鍵函數的結構

                Fig.  2  Structure of important functions of networks

                表  1  網(wǎng)絡(luò )模型的嵌入函數與重要結構

                Table  1  Embedding function and important structures of networks

                模型名稱(chēng)嵌入函數重要結構
                MN4層卷積網(wǎng)絡(luò )注意力長(cháng)短時(shí)記憶網(wǎng)絡(luò )
                ProtoNet[12]4層卷積網(wǎng)絡(luò )“原型”概念、使用歐氏距離進(jìn)行度量
                RN4層卷積網(wǎng)絡(luò )卷積神經(jīng)網(wǎng)絡(luò )作為度量函數
                EGNN4層卷積網(wǎng)絡(luò )邊標簽預測節點(diǎn)類(lèi)別
                EGNN + Transduction[22]ResNet-12邊標簽預測節點(diǎn)類(lèi)別、轉導和標簽傳遞
                DN4[24]ResNet-12局部描述子、圖像與類(lèi)別間的相似性度量
                DC[25]4層卷積網(wǎng)絡(luò )稠密分類(lèi)
                DC + IMP[25]4層卷積網(wǎng)絡(luò )稠密分類(lèi)、神經(jīng)網(wǎng)絡(luò )遷移
                FTMN4層卷積網(wǎng)絡(luò )特征變換模塊、特征度量模塊
                FTMN-R12ResNet-12特征變換模塊、特征度量模塊
                下載: 導出CSV

                表  2  在Omniglot數據集上的小樣本分類(lèi)性能(%)

                Table  2  Few-shot classification performance on Omniglot dataset (%)

                模型5-類(lèi)20-類(lèi)
                1-樣本5-樣本1-樣本5-樣本
                MN98.198.993.898.5
                ProtoNet[12]98.899.796.098.9
                SN97.398.488.297.0
                RN99.6 ± 0.299.8 ± 0.197.6 ± 0.299.1 ± 0.1
                SM[15]98.499.695.098.6
                MetaNet[16]98.9597.00
                MANN[17]82.894.9
                MAML[18]98.7 ± 0.499.9 ± 0.195.8 ± 0.398.9 ± 0.2
                MMNet[26]99.28 ± 0.0899.77 ± 0.0497.16 ± 0.1098.93 ± 0.05
                FTMN99.7 ± 0.199.9 ± 0.198.3 ± 0.199.5 ± 0.1
                下載: 導出CSV

                表  3  在miniImageNet數據集上的小樣本分類(lèi)性能 (%)

                Table  3  Few-shot classification performance on miniImageNet dataset (%)

                模型5-類(lèi)
                1-樣本5-樣本
                MN43.40 ± 0.7851.09 ± 0.71
                ML-LSTM[11]43.56 ± 0.8455.31 ± 0.73
                ProtoNet[12]49.42 ± 0.7868.20 ± 0.66
                RN50.44 ± 0.8265.32 ± 0.70
                MetaNet[16]49.21 ± 0.96
                MAML[18]48.70 ± 1.8463.11 ± 0.92
                EGNN66.85
                EGNN + Transduction[22]76.37
                DN4[24]51.24 ± 0.7471.02 ± 0.64
                DC[25]62.53 ± 0.1978.95 ± 0.13
                DC + IMP[25]79.77 ± 0.19
                MMNet[26]53.37 ± 0.0866.97 ± 0.09
                PredictNet[27]54.53 ± 0.4067.87 ± 0.20
                DynamicNet[28]56.20 ± 0.8672.81 ± 0.62
                MN-FCE[29]43.44 ± 0.7760.60 ± 0.71
                MetaOptNet[30]60.64 ± 0.6178.63 ± 0.46
                FTMN59.86 ± 0.9175.96 ± 0.82
                FTMN-R1261.33 ± 0.2179.59 ± 0.47
                下載: 導出CSV

                表  4  在CUB-200、CIFAR-FS和tieredImageNet數據集上的小樣本分類(lèi)性能(%)

                Table  4  Few-shot classification performance on CUB-200, CIFAR-FS and tieredImageNet datasets (%)

                模型CUB-200 5-類(lèi)CIFAR-FS 5-類(lèi)tieredImageNet 5-類(lèi)
                1-樣本5-樣本1-樣本5-樣本1-樣本5-樣本
                MN61.16 ± 0.8972.86 ± 0.70
                ProtoNet[12]51.31 ± 0.9170.77 ± 0.6955.5 ± 0.772.0 ± 0.653.31 ± 0.8972.69 ± 0.74
                RN62.45 ± 0.9876.11 ± 0.6955.0 ± 1.069.3 ± 0.854.48 ± 0.9371.32 ± 0.78
                MAML[18]55.92 ± 0.9572.09 ± 0.7658.9 ± 1.971.5 ± 1.051.67 ± 1.8170.30 ± 1.75
                EGNN63.52 ± 0.5280.24 ± 0.49
                DN4[24]53.15 ± 0.8481.90 ± 0.60
                MetaOptNet[30]72.0 ± 0.784.2 ± 0.565.99 ± 0.7281.56 ± 0.53
                FTMN-R1269.58 ± 0.3685.46 ± 0.7970.3 ± 0.582.6 ± 0.362.14 ± 0.6381.74 ± 0.33
                下載: 導出CSV

                表  5  消融實(shí)驗結果 (%)

                Table  5  Results of ablation study (%)

                模型5-類(lèi)
                1-樣本5-樣本
                ProtoNet-4C49.42 ± 0.7868.20 ± 0.66
                ProtoNet-8C51.18 ± 0.7370.23 ± 0.46
                ProtoNet-Trans-4C53.47 ± 0.4671.33 ± 0.23
                ProtoNet-M-4C56.54 ± 0.5773.46 ± 0.53
                ProtoNet-VLAD-4C52.46 ± 0.6770.83 ± 0.62
                Trans*-M-4C59.86 ± 0.9167.86 ± 0.56
                僅使用余弦相似度54.62 ± 0.5772.58 ± 0.38
                僅使用歐氏距離55.66 ± 0.6773.34 ± 0.74
                FTMN59.86 ± 0.9175.96 ± 0.82
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 1?9
                        [2] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. 770?778
                        [3] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, USA: NIPS, 2012. 1106?1114
                        [4] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: ICLR, 2015.
                        [5] 劉穎, 雷研博, 范九倫, 王富平, 公衍超, 田奇. 基于小樣本學(xué)習的圖像分類(lèi)技術(shù)綜述. 自動(dòng)化學(xué)報, 2021, 47(2): 297?315 doi: 10.16383/j.aas.c190720

                        Liu Ying, Lei Yan-Bo, Fan Jiu-Lun, Wang Fu-Ping, Gong Yan-Chao, Tian Qi. Survey on image classification technology based on small sample learning. Acta Automatica Sinica, 2021, 47(2): 297?315 doi: 10.16383/j.aas.c190720
                        [6] Miller E G, Matsakis N E, Viola P A. Learning from one example through shared densities on transforms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE, 2000. 464?471
                        [7] Li F F, Fergus R, Perona P. One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 594?611
                        [8] Lake B M, Salakhutdinov R, Gross J, Tenenbaum J B. One shot learning of simple visual concepts. In: Proceedings of the 33rd Annual Meeting of the Cognitive Science Society. Boston, USA: CogSci, 2011. 2568?2573
                        [9] Lake B M, Salakhutdinov R, Tenenbaum J B. Human-level concept learning through probabilistic program induction. Science, 2015, 350(11): 1332?1338
                        [10] Edwards H, Storkey A J. Towards a neural statistician. In: Proceedings of the 5th International Conference on Learning Representations. Toulon, France: ICLR, 2017.
                        [11] Vinyals O, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D. Matching networks for one shot learning. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: 2016. 3637?3645
                        [12] Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning. In: Proceedings of the 31th International Conference on Neural Information Processing Systems. Long Beach, USA: 2017. 4080?4090
                        [13] Koch G, Zemel R, Salakhutdinov R. Siamese neural networks for one-shot image recognition. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: JMLR, 2015.
                        [14] Sung F, Yang Y X, Zhang L, Xiang T, Torr P H S, Hospedales T M. Learning to compare: Relation network for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 1199?1208
                        [15] Kaiser L, Nachum O, Roy A, Bengio S. Learning to remember rare events. In: Proceedings of the 5th International Conference on Learning Representations. Toulon, France: ICLR, 2017.
                        [16] Munkhdalai T, Yu H. Meta networks. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: JMLR.org, 2017. 2554?2563
                        [17] Santoro A, Bartunov S, Botvinick M, Wierstra D, Lillicrap T. Meta-learning with memory-augmented neural networks. In: Proceedings of the 33rd International Conference on Machine Learning. New York, USA: PMLR, 2016. 1842?1850
                        [18] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: JMLR.org, 2017. 1126?1135
                        [19] Arandjelovic R, Gronat P, Torii A, Pajdla T, Sivic J. Net-VLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. 5297?5307
                        [20] Jégou H, Douze M, Schmid C, Pérez P. Aggregating local descriptors into a compact image representation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 3304?3311
                        [21] Bertinetto L, Henriques J F, Torr P H, Vedaldi A. Meta-learning with differentiable closed-form solvers. In: Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA: ICLR, 2019.
                        [22] Kim J, Kim T, Kim S, Yoo C D. Edge-labeling graph neural network for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 11?20
                        [23] Yue Z Q, Zhang H W, Sun Q R, Hua X S. Interventional few-shot learning. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Incorporated, 2020. Article No. 230
                        [24] Li W B, Wang L, Xu J L, Huo J, Gao Y, Luo J B. Revisiting local descriptor based image-to-class measure for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 7253?7260
                        [25] Lifchitz Y, Avrithis Y, Picard S, Bursuc A. Dense classification and implanting for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 9250?9259
                        [26] Cai Q, Pan Y W, Yao T, Yan C G, Mei T. Memory matching networks for one-shot image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 4080?4088
                        [27] Qiao S Y, Liu C X, Shen W, Yuille A L. Few-shot image recognition by predicting parameters from activations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 7229?7238
                        [28] Gidaris S, Komodakis N. Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 4367?4375
                        [29] Ravi S, Larochelle H. Optimization as a model for few-shot learning. In: Proceedings of the 5th International Conference on Learning Representations. Toulon, France: ICLR, 2017.
                        [30] Lee K, Maji S, Ravichandran A, Soatto S. Meta-learning with differentiable convex optimization. In: Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 10649?10657
                      2. 加載中
                      3. 圖(2) / 表(5)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  639
                        • HTML全文瀏覽量:  194
                        • PDF下載量:  175
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2021-09-20
                        • 錄用日期:  2021-12-11
                        • 網(wǎng)絡(luò )出版日期:  2023-09-11
                        • 刊出日期:  2024-07-23

                        目錄

                          /

                          返回文章
                          返回