高速公路無(wú)人駕駛的分層抽樣多動(dòng)態(tài)窗口軌跡規劃算法
doi: 10.16383/j.aas.c210673
-
1.
西安交通大學(xué)人工智能與機器人研究所 西安 710049
Stratified Sampling Based Multi-dynamic Window Trajectory Planner for Autonomous Driving on Highway
-
1.
Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049
-
摘要: 高速公路無(wú)人駕駛軌跡規劃面臨著(zhù)實(shí)時(shí)性強、安全性高的挑戰. 為此, 提出一種分層抽樣多動(dòng)態(tài)窗口的軌跡規劃算法(Stratified sampling based multi-dynamic window trajectory planner, SMWTP). 首先, 用多動(dòng)態(tài)窗口表征可行軌跡的搜索空間, 并基于貝葉斯網(wǎng)絡(luò )構建軌跡概率分布模型. 其次, 采用先速度后路徑的分層抽樣策略生成符合動(dòng)態(tài)場(chǎng)景約束的候選軌跡集合. 最后, 利用引入障礙車(chē)輛速度估計不確定性的責任敏感安全模型(Responsibility sensitive safety, RSS)從中選擇最優(yōu)軌跡. 大量仿真實(shí)驗和實(shí)際交通場(chǎng)景測試驗證了算法的有效性, 對比實(shí)驗結果表明, 所提算法性能顯著(zhù)優(yōu)于人工勢場(chǎng)最優(yōu)軌跡規劃算法和多動(dòng)態(tài)窗口模擬退火軌跡規劃算法.
-
關(guān)鍵詞:
- 無(wú)人駕駛 /
- 軌跡規劃 /
- 運動(dòng)規劃 /
- 貝葉斯網(wǎng)絡(luò )
Abstract: Autonomous driving trajectory planning on highways faces challenges of strong real-time performance and safety. This paper proposes a stratified sampling based multi-dynamic window trajectory planner (SMWTP) for unmanned vehicles on highway. Firstly, the search space of feasible trajectories is constructed with multi-dynamic windows. Then, the Bayesian network is used to derive the probability distribution model of trajectories. Secondly, the stratified sampling strategy where speed is sampled before path makes generated candidate trajectories meet the constraints in dynamic scenes. Finally, the uncertainty of traffic participant vehicles' speed estimation is embedded into responsibility sensitive safety (RSS) model to select the optimal trajectory. A large number of simulation experiments and real traffic scenario tests have verified the effectiveness of the algorithm. The comparative experimental results show that the performance of the proposed algorithm is significantly better than the optimal trajectory planning algorithm based on artificial potential fields and multi-dynamic window simulated annealing-optimized trajectory planning algorithm.-
Key words:
- Autonomous driving /
- trajectory planning /
- motion planning /
- Bayesian network
-
圖 5 旁道動(dòng)態(tài)窗口內期望速度的概率密度分布
Fig. 5 Probabilistic density distribution of desired speed in side lane's dynamic window
圖 6 當前道動(dòng)態(tài)窗口內期望速度的概率密度分布
Fig. 6 Probabilistic density distribution of desired speed in current lane's dynamic window
圖 7 無(wú)人車(chē)相對于車(chē)輛$ c_i $的縱向安全概率
Fig. 7 The longitudinal safety probability of ego vehicle with respect to vehicle $ c_i $
圖 10 不考慮障礙車(chē)輛速度估計不確定性時(shí)軌跡代價(jià)與生成概率之間的關(guān)系
Fig. 10 The relationship between the trajectory cost and the generation probability when the uncertainty of the speed estimation of the obstacle is not considered
圖 11 考慮障礙車(chē)輛速度估計不確定性時(shí)軌跡代價(jià)與生成概率之間的關(guān)系
Fig. 11 The relationship between the trajectory cost and the generation probability when the uncertainty of the speed estimation of the obstacle is considered
圖 12 障礙車(chē)輛速度估計不確定性對軌跡規劃的影響(紅色方框所示軌跡為規劃軌跡)
Fig. 12 Impact of uncertainty in speed estimation of obstacle vehicles on trajectory planning (The trajectory shown in the red box is the planned trajectory)
圖 13 2017年IVFC無(wú)人車(chē)行駛中一段航拍視頻(紅色圓圈中心的機動(dòng)車(chē)為無(wú)人車(chē), (a), (b), (j), (k)為跟車(chē)行駛,(c) ~ (i) 為向右換道, (l) ~ (r)為向左換道)
Fig. 13 A continuous aerial view of unmanned vehicles driven in IVFC in 2017 (The motor vehicle in the center of the red circle is the unmanned vehicle, (a), (b), (j), (k) show car-following, (c) ~ (i) show lane-right, (l) ~ (r) show lane-left)
圖 14 2018年IVFC中SMWTP規劃結果示例(橙色矩形為無(wú)人車(chē), 藍色曲線(xiàn)為規劃軌跡)
Fig. 14 Performance of SMWTP planning results in IVFC in 2018 (The orange rectangle represents ego vehicle, and the blue curve is the trajectory planned by SMWTP)
圖 16 2019年IVFC中SMWTP規劃結果示例(橙色矩形為無(wú)人車(chē), 藍色曲線(xiàn)為規劃軌跡)
Fig. 16 Performance of SMWTP planning results in IVFC in 2019 (The orange rectangle represents ego vehicle, and the blue curve is the trajectory planned by SMWTP)
圖 18 SMWTP規劃重型牽引車(chē)換道軌跡示例(橙色矩形為無(wú)人車(chē), 藍色曲線(xiàn)為規劃軌跡)
Fig. 18 Lane-change trajectories for heavy tractor planned by SMWTP (The orange rectangle represents ego vehicle, and the blue curve is the planned trajectory)
圖 21 實(shí)線(xiàn)車(chē)道線(xiàn)下的縱向安全避讓
Fig. 21 Longitudinal safety avoidance with solid lane markings
圖 23 動(dòng)態(tài)交通流中TP-ATP規劃結果
Fig. 23 Performance of TP-ATP planning results in dynamic traffic flow
圖 24 動(dòng)態(tài)交通流中SMWTP規劃結果
Fig. 24 Performance of SMWTP planning results in dynamic traffic flow
表 1 SMWTP參數設置
Table 1 Parameters of SMWTP
參數名稱(chēng) 參數值 $ k $ 1.5 $\sigma_{v}\;({\rm{m/s} })$ 2 $\Delta {v}_{\mathrm{thr} }\;({\rm{m/s} })$ 5 $\omega _{\mathrm{yawr}} $ 20 $\omega _{\mathrm{safe}} $ 5 $ \omega _{\mathrm{acc}} $ 3 $ \omega _{s1} $ 1 $ \omega _{s2} $ 0.5 下載: 導出CSV表 2 TP-ATP參數設置
Table 2 Parameters of TP-ATP
參數名稱(chēng) 參數值 $\omega _{\mathrm{s}} $ 5 $\omega _{\mathrmrf50c1hsl6} $ 5 $ \omega _{\mathrm{c}} $ 0.5 $ \omega _{\mathrm{p}} $ 0.005 $ c _{\mathrm{j},\mathrm{s}} $ 1 $ c _{\mathrm{v},\mathrm{s}} $ 0.2 $ c _{T,\mathrm{s}} $ 0.1 $ c _{\mathrm{j},\mathrmrf50c1hsl6} $ 1.5 $ c _{T,\mathrmrf50c1hsl6} $ 0.1 $ D_0 $ 10 $\tau$ 4 下載: 導出CSV表 3 不同障礙車(chē)輛速度估計誤差下的規劃結果
Table 3 Planning results with different errors in speed estimation of obstacle vehicles
$\sigma_{ {\rm{m} } }\; ({\rm{m/s} })$ $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g} }\;({\rm{m} })$ $T\;({\rm{s} })$ $v_{ {\rm{lim} } }\;({\rm{m/s} })$ 決策 安全
概率
(%)$0.5$ 22.5 167.3 5.60 7.5 25 LC 91.1 $1.0$ 20.5 105.0 1.85 5.1 21 LK 95.9 下載: 導出CSV表 4 2018 ~ 2019年IVFC比賽中SMWTP規劃情況概覽
Table 4 An overview of SMWTP's performance in IVFC in year 2018 ~ 2019
年份 行駛時(shí)長(cháng)
$({\rm{min} })$平均速度
$({\rm{ m/s} })$平均安全
概率(%)最低安全
概率(%)平均耗時(shí)
$({\rm{ms} })$2018 20 13.8 91.3 80 35.1 2019 30 13.2 93.6 80 33.5 下載: 導出CSV表 5 虛線(xiàn)車(chē)道線(xiàn)下的縱向安全避讓規劃結果對比
Table 5 Comparison of planning results for longitudinal safety avoidance with dashed lane
場(chǎng)景1 $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g}} \;({\rm{m} })$ $T\;({\rm{s} })$ $v_{ {\rm{lim} } }\;({\rm{m/s} })$ 決策 TP-ATP 20.0 111.4 1.85 5.4 20 LK SMWTP 19.5 160.0 5.60 8.0 25 LC 下載: 導出CSV表 6 實(shí)線(xiàn)車(chē)道線(xiàn)下的縱向安全避讓規劃結果對比
Table 6 Comparison of planning results for longitudinal safety avoidance with solid lane markings
場(chǎng)景2 $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g} }\;({\rm{m} })$ $T\;({\rm{s} })$ $v_{\mathrm{lim} }\;({\rm{m/s} })$ 決策 TP-ATP 20 107 1.85 5.2 20 LK SMWTP 18 113 1.85 5.6 20 LK 下載: 導出CSV表 7 橫向安全避讓規劃結果對比
Table 7 Comparison of planning results for lateral safety avoidance
場(chǎng)景3 $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m } })$ $d_{\mathrm{g} }\;({\rm{m } })$ $T\;({\rm{s} })$ $v_{\mathrm{lim} }\;({\rm{m/s} })$ 決策 TP-ATP 20.0 80 1.85 4.1 20 LK SMWTP 19.5 103 1.30 5.3 20 LK 下載: 導出CSV表 8 動(dòng)態(tài)交通流中TP-ATP多幀規劃結果
Table 8 Performance of TP-ATP multi-frame planning results in dynamic traffic flow
t (s) $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g} }\;({\rm{m} })$ $T\;({\rm{s} })$ $v_{\mathrm{lim} }\;({\rm{m/s} })$ 決策 $0$ 21 90 1.85 4.0 21 LK $12.5$ 25 159 5.60 6.9 25 LC 下載: 導出CSV表 9 動(dòng)態(tài)交通流中SMWTP多幀規劃結果
Table 9 Performance of SMWTP multi-frame planning results in dynamic traffic flow
t (s) $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g} }\;({\rm{m} })$ $T\;({\rm{s} })$ $v_{\mathrm{lim} }\;({\rm{m/s} })$ 決策 $0$ 22.8 156.0 5.60 6.7 25.0 LC $4.5$ 26.1 172.0 5.60 7.0 25.0 LK $24.5$ 25.1 169.4 1.85 6.8 33.3 LC 下載: 導出CSV表 10 SMWTP與SA-TP規劃結果對比
Table 10 Comparison of SMWTP and SA-TP planning results
測試場(chǎng)景 $v_{\mathrm{g} }\;({\rm{m/s} })$ $\sigma_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g} }\;({\rm{m} })$ $T\;({\rm{s} })$ 安全概率 決策 SA-TP 23.4 2.47 136 5.6 5.2 100% LK SMWTP 25.0 0.19 150 5.6 5.7 100% LK 下載: 導出CSV表 11 SMWTP與SA-TP實(shí)時(shí)性比較
Table 11 Comparison of SMWTP and SA-TP real-time performance
測試場(chǎng)景 平均耗時(shí)$({\rm{ms} })$ 標準差$({\rm{ms} })$ 最大耗時(shí)$({\rm{ms} })$ 最小耗時(shí)$({\rm{ms} })$ SA-TP 72 10 99 61 SMWTP 34 2 49 31 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Claussmann L, Revilloud M, Gruyer D, Glaser S. A review of motion planning for highway autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1826?1848 doi: 10.1109/TITS.2019.2913998 [2] Rasekhipour Y, Khajepour A, Chen S K, Litkouhi B. A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5): 1255?1267 doi: 10.1109/TITS.2016.2604240 [3] Kim D, Kim H, Huh K. Trajectory planning for autonomous highway driving using the adaptive potential field. In: Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, USA: IEEE, 2018. 1069?1074 [4] Wolf M T, Burdick J W. Artificial potential functions for highway driving with collision avoidance. In: Proceedings of the IEEE International Conference on Robotics and Automation. Pasadena, USA: IEEE, 2008. 3731?3736 [5] Claussmann L, Revilloud M, Glaser S. Simulated annealing-optimized trajectory planning within non-collision nominal intervals for highway autonomous driving. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019. 5922?5928 [6] Paden B, ?áp M, Yong S Z, Yershov D, Frazzoli E. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33?55 doi: 10.1109/TIV.2016.2578706 [7] Claussmann L, Revilloud M, Glaser S, Gruyer D. A study on al-based approaches for high-level decision making in highway autonomous driving. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC). Banff, Canada: IEEE, 2017. 3671?3676 [8] Werling M, Ziegler J, Kammel S, Thrun S. Optimal trajectory generation for dynamic street scenarios in a Frenét Frame. In: Proceedings of the IEEE International Conference on Robotics and Automation. Anchorage, USA: IEEE, 2010. 987?993 [9] 蘇銻, 楊明, 王春香, 唐衛, 王冰. 一種基于分類(lèi)回歸樹(shù)的無(wú)人車(chē)匯流決策方法. 自動(dòng)化學(xué)報, 2018, 44(1): 35?43Su Ti, Yang Ming, Wang Chun-Xiang, Tang Wei, Wang Bing. Classification and regression tree based traffic merging for method self-driving vehicles. Acta Automatica Sinica, 2018, 44(1): 35?43 [10] Ziegler J, Stiller C. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA: IEEE, 2009. 1879?1884 [11] McNaughton M, Urmson C, Dolan J M, Lee J W. Motion planning for autonomous driving with a conformal spatiotemporal lattice. In: Proceedings of the IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 4889−4895 [12] 袁靜妮, 楊林, 唐曉峰, 陳傲文. 基于改進(jìn)RRT* 與行駛軌跡優(yōu)化的智能汽車(chē)運動(dòng)規劃. 自動(dòng)化學(xué)報, 2022, 48(12): 2941?2950Yuan Jing-Ni, Yang Lin, Tang Xiao-Feng, Chen Ao-Wen. Autonomous vehicle motion planning based on improved RRT* algorithm and trajectory optimization. Acta Automatica Sinica, 2022, 48(12): 2941?2950 [13] Yue M, Hou X Q, Zhao X D, Wu X M. Robust tube-based model predictive control for lane change maneuver of tractor-trailer vehicles based on a polynomial trajectory. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(12): 5180?5188 doi: 10.1109/TSMC.2018.2867807 [14] Zhou Y, Cholette M E, Bhaskar A, Chung E. Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3409?3420 doi: 10.1109/TITS.2018.2874234 [15] Liu C, Lee S, Varnhagen S, Tseng H E. Path planning for autonomous vehicles using model predictive control. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). Los Angeles, USA: IEEE, 2017. 174?179 [16] Plessen M G, Lima P F, M?rtensson J, Bemporad A, Wahlberg B. Trajectory planning under vehicle dimension constraints using sequential linear programming. In: Proceedings of the IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Yokohama, Japan: IEEE, 2017. 1?6 [17] Werling M, Kammel S, Ziegler J, Gr?ll L. Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. The International Journal of Robotics Research, 2012, 31(3): 346?359 doi: 10.1177/0278364911423042 [18] Zhan W, Chen J Y, Chan C Y, Liu C L, Tomizuka M. Spatially-partitioned environmental representation and planning architecture for on-road autonomous driving. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). Los Angeles, USA: IEEE, 2017. 632?639 [19] Kant K, Zucker S W. Toward efficient trajectory planning: The path-velocity decomposition. The International Journal of Robotics Research, 1986, 5(3): 72?89 doi: 10.1177/027836498600500304 [20] Gu T Y, Atwood J, Dong C Y, Dolan J M, Lee J W. Tunable and stable real-time trajectory planning for urban autonomous driving. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015. 250?256 [21] González D, Milanés V, Pérez J, Nashashibi F. Speed profile generation based on quintic Bézier curves for enhanced passenger comfort. In: Proceedings of the 19th IEEE International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro, Brazil: IEEE, 2016. 814?819 [22] Lima P F, Trincavelli M, M?rtensson J, Wahlberg B. Clothoid-based speed profiler and control for autonomous driving. In: Proceedings of the 18th IEEE International Conference on Intelligent Transportation Systems. Gran Canaria, Spain: IEEE, 2015. 2194?2199 [23] Liu C L, Zhan W, Tomizuka M. Speed profile planning in dynamic environments via temporal optimization. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). Los Angeles, USA: IEEE, 2017. 154?159 [24] Wang Y Y, Chardonnet J R, Merienne F. Speed profile optimization for enhanced passenger comfort: An optimal control approach. In: Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, USA: IEEE, 2018. 723?728 [25] Xu W D, Wei J Q, Dolan J M, Zhao H J, Zha H B. A real-time motion planner with trajectory optimization for autonomous vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation. Saint Paul, USA: IEEE, 2012. 2061?2067 [26] Fan H Y, Zhu F, Liu C C, Zhang L L, Zhuang L, Li D, et al. Baidu apollo EM motion planner. arXiv preprint arXiv: 1904.04671, 2019. [27] Zheng Z D. Recent developments and research needs in modeling lane changing. Transportation Research Part B: Methodological, 2014, 60: 16?32 doi: 10.1016/j.trb.2013.11.009 [28] 聶建強. 高速公路車(chē)輛自主性換道行為建模研究[博士學(xué)位論文], 東南大學(xué), 中國, 2017.Nie Jian-Qiang. Research on Modeling Discretionary Lane-Changing Behaviore of Vehicles in Freeway [Ph.D. dissertation], Southeast University, China, 2017. [29] Shalev-Shwartz S, Shammah S, Shashua A. On a formal model of safe and scalable self-driving cars. arXiv preprint arXiv: 1708.06374, 2017. [30] 符鋅砂, 胡嘉誠, 何石堅. 基于交通狀況及行駛速度的高速公路換道時(shí)間研究. 公路交通科技, 2020, 37(4): 133?139Fu Xin-Sha, Hu Jia-Cheng, He Shi-Jian. Study on expressway lane-changing time based on traffic condition and driving speed. Journal of Highway and Transportation Research and Development, 2020, 37(4): 133?139 [31] Yang D, Zhu L L, Ran B, Pu Y, Hui P. Modeling and analysis of the lane-changing execution in longitudinal direction. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2984?2992 doi: 10.1109/TITS.2016.2542109 [32] Toledo T, Zohar D. Modeling duration of lane changes. Transportation Research Record: Journal of the Transportation Research, 2007, 1999(1): 71?78 doi: 10.3141/1999-08 [33] Kawabata K, Ma L, Xue J R, Zheng N N. A path generation method for automated vehicles based on Bezier curve. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, Australia: IEEE, 2013. 991?996 [34] Ziegler J, Bender P, Dang T, Stiller C. Trajectory planning for Bertha——A local, continuous method. In: Proceedings of the IEEE Intelligent Vehicles Symposium. Dearborn, USA: IEEE, 2014. 450?457 [35] Li L, Wang X, Wang K F, Lin Y L, Xin J M, Chen L, et al. Parallel testing of vehicle intelligence via virtual-real interaction. Science Robotics, 2019, 4(28): Article No. eaaw4106 doi: 10.1126/scirobotics.aaw4106 [36] Wang F Y, Zheng N N, Li L, Xin J M, Wang X, Xu L H, et al. China's 12-year quest of autonomous vehicular intelligence: The intelligent vehicles future challenge program. IEEE Intelligent Transportation Systems Magazine, 2021, 13(2): 6?19 doi: 10.1109/MITS.2021.3058623