1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              高速公路無(wú)人駕駛的分層抽樣多動(dòng)態(tài)窗口軌跡規劃算法

              張琳 薛建儒 馬超 李庚欣 李勇強

              張琳, 薛建儒, 馬超, 李庚欣, 李勇強. 高速公路無(wú)人駕駛的分層抽樣多動(dòng)態(tài)窗口軌跡規劃算法. 自動(dòng)化學(xué)報, 2024, 50(7): 1315?1332 doi: 10.16383/j.aas.c210673
              引用本文: 張琳, 薛建儒, 馬超, 李庚欣, 李勇強. 高速公路無(wú)人駕駛的分層抽樣多動(dòng)態(tài)窗口軌跡規劃算法. 自動(dòng)化學(xué)報, 2024, 50(7): 1315?1332 doi: 10.16383/j.aas.c210673
              Zhang Lin, Xue Jian-Ru, Ma Chao, Li Geng-Xin, Li Yong-Qiang. Stratified sampling based multi-dynamic window trajectory planner for autonomous driving on highway. Acta Automatica Sinica, 2024, 50(7): 1315?1332 doi: 10.16383/j.aas.c210673
              Citation: Zhang Lin, Xue Jian-Ru, Ma Chao, Li Geng-Xin, Li Yong-Qiang. Stratified sampling based multi-dynamic window trajectory planner for autonomous driving on highway. Acta Automatica Sinica, 2024, 50(7): 1315?1332 doi: 10.16383/j.aas.c210673

              高速公路無(wú)人駕駛的分層抽樣多動(dòng)態(tài)窗口軌跡規劃算法

              doi: 10.16383/j.aas.c210673
              基金項目: 國家自然科學(xué)基金(62036008, 61773311)資助
              詳細信息
                作者簡(jiǎn)介:

                張琳:2021年獲得西安交通大學(xué)人工智能與機器人研究所碩士學(xué)位. 主要研究方向為無(wú)人駕駛智能決策與運動(dòng)規劃. E-mail: zhanglin9668@stu.xjtu.edu.cn

                薛建儒:博士, 西安交通大學(xué)人工智能與機器人研究所教授. 主要研究方向為計算機視覺(jué), 模式識別與機器學(xué)習, 無(wú)人駕駛與混合增強智能. 本文通信作者. E-mail: jrxue@mail.xjtu.edu.cn

                馬超:2018年獲得西安交通大學(xué)人工智能與機器人研究所博士學(xué)位. 主要研究方向為無(wú)人駕駛運動(dòng)規劃與控制的統計學(xué)習方法. E-mail: machao0919@stu.xjtu.edu.cn

                李庚欣:西安交通大學(xué)人工智能與機器人研究所博士研究生. 主要研究方向為強化學(xué)習, 無(wú)人駕駛智能決策與運動(dòng)規劃. E-mail: ligengxin@stu.xjtu.edu.cn

                李勇強:西安交通大學(xué)人工智能與機器人研究所博士研究生. 主要研究方向為強化學(xué)習, 無(wú)人駕駛智能決策與運動(dòng)規劃, 微觀(guān)交通動(dòng)力學(xué)仿真. E-mail: keaijile321@163.com

              Stratified Sampling Based Multi-dynamic Window Trajectory Planner for Autonomous Driving on Highway

              Funds: Supported by National Natural Science Foundation of China (62036008, 61773311)
              More Information
                Author Bio:

                ZHANG Lin Received her master degree from the Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University in 2021. Her research interest covers decision making and motion planning for autonomous driving

                XUE Jian-Ru Ph.D., professor at the Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University. His research interest covers computer vision, pattern recognition and machine learning, autonomous driving, and hybrid-augmented intelligence. Corresponding author of this paper

                MA Chao Received his Ph.D. degree from the Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University in 2018. His research interest covers statistical learning on the motion planning and the control for autonomous driving

                LI Geng-Xin Ph.D. candidate at the Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University. His research interest covers reinforcement learning, decision making and motion planning for autonomous driving

                LI Yong-Qiang Ph.D. candidate at the Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University. His research interest covers reinforcement learning, decision making and motion planning for autonomous driving, and microscope traffic dynamics simulation

              • 摘要: 高速公路無(wú)人駕駛軌跡規劃面臨著(zhù)實(shí)時(shí)性強、安全性高的挑戰. 為此, 提出一種分層抽樣多動(dòng)態(tài)窗口的軌跡規劃算法(Stratified sampling based multi-dynamic window trajectory planner, SMWTP). 首先, 用多動(dòng)態(tài)窗口表征可行軌跡的搜索空間, 并基于貝葉斯網(wǎng)絡(luò )構建軌跡概率分布模型. 其次, 采用先速度后路徑的分層抽樣策略生成符合動(dòng)態(tài)場(chǎng)景約束的候選軌跡集合. 最后, 利用引入障礙車(chē)輛速度估計不確定性的責任敏感安全模型(Responsibility sensitive safety, RSS)從中選擇最優(yōu)軌跡. 大量仿真實(shí)驗和實(shí)際交通場(chǎng)景測試驗證了算法的有效性, 對比實(shí)驗結果表明, 所提算法性能顯著(zhù)優(yōu)于人工勢場(chǎng)最優(yōu)軌跡規劃算法和多動(dòng)態(tài)窗口模擬退火軌跡規劃算法.
              • 圖  1  SMWTP算法框圖

                Fig.  1  Pipeline of SMWTP

                圖  2  雙車(chē)道多動(dòng)態(tài)窗口模型

                Fig.  2  Multi-dynamic window model for two lanes

                圖  3  軌跡的生成式模型

                Fig.  3  Trajectory generation model

                圖  4  動(dòng)態(tài)窗口內的累積概率

                Fig.  4  Cumulative probability in dynamic window

                圖  5  旁道動(dòng)態(tài)窗口內期望速度的概率密度分布

                Fig.  5  Probabilistic density distribution of desired speed in side lane's dynamic window

                圖  6  當前道動(dòng)態(tài)窗口內期望速度的概率密度分布

                Fig.  6  Probabilistic density distribution of desired speed in current lane's dynamic window

                圖  7  無(wú)人車(chē)相對于車(chē)輛$ c_i $的縱向安全概率

                Fig.  7  The longitudinal safety probability of ego vehicle with respect to vehicle $ c_i $

                圖  8  期望軌跡候選集示意圖

                Fig.  8  Sketch for desired trajectory candidate set

                圖  9  示例場(chǎng)景

                Fig.  9  Example scenario

                圖  10  不考慮障礙車(chē)輛速度估計不確定性時(shí)軌跡代價(jià)與生成概率之間的關(guān)系

                Fig.  10  The relationship between the trajectory cost and the generation probability when the uncertainty of the speed estimation of the obstacle is not considered

                圖  11  考慮障礙車(chē)輛速度估計不確定性時(shí)軌跡代價(jià)與生成概率之間的關(guān)系

                Fig.  11  The relationship between the trajectory cost and the generation probability when the uncertainty of the speed estimation of the obstacle is considered

                圖  12  障礙車(chē)輛速度估計不確定性對軌跡規劃的影響(紅色方框所示軌跡為規劃軌跡)

                Fig.  12  Impact of uncertainty in speed estimation of obstacle vehicles on trajectory planning (The trajectory shown in the red box is the planned trajectory)

                圖  13  2017年IVFC無(wú)人車(chē)行駛中一段航拍視頻(紅色圓圈中心的機動(dòng)車(chē)為無(wú)人車(chē), (a), (b), (j), (k)為跟車(chē)行駛,(c) ~ (i) 為向右換道, (l) ~ (r)為向左換道)

                Fig.  13  A continuous aerial view of unmanned vehicles driven in IVFC in 2017 (The motor vehicle in the center of the red circle is the unmanned vehicle, (a), (b), (j), (k) show car-following, (c) ~ (i) show lane-right, (l) ~ (r) show lane-left)

                圖  14  2018年IVFC中SMWTP規劃結果示例(橙色矩形為無(wú)人車(chē), 藍色曲線(xiàn)為規劃軌跡)

                Fig.  14  Performance of SMWTP planning results in IVFC in 2018 (The orange rectangle represents ego vehicle, and the blue curve is the trajectory planned by SMWTP)

                圖  15  規劃軌跡的安全概率變化

                Fig.  15  Safety probability's variation of planning trajectories

                圖  16  2019年IVFC中SMWTP規劃結果示例(橙色矩形為無(wú)人車(chē), 藍色曲線(xiàn)為規劃軌跡)

                Fig.  16  Performance of SMWTP planning results in IVFC in 2019 (The orange rectangle represents ego vehicle, and the blue curve is the trajectory planned by SMWTP)

                圖  17  規劃軌跡的安全概率變化

                Fig.  17  Safety probability's variation of planning trajectories

                圖  18  SMWTP規劃重型牽引車(chē)換道軌跡示例(橙色矩形為無(wú)人車(chē), 藍色曲線(xiàn)為規劃軌跡)

                Fig.  18  Lane-change trajectories for heavy tractor planned by SMWTP (The orange rectangle represents ego vehicle, and the blue curve is the planned trajectory)

                圖  19  仿真測試場(chǎng)景

                Fig.  19  Simulation scenes for test

                圖  20  虛線(xiàn)車(chē)道線(xiàn)下的縱向安全避讓

                Fig.  20  Longitudinal safety avoidance with dashed lane

                圖  21  實(shí)線(xiàn)車(chē)道線(xiàn)下的縱向安全避讓

                Fig.  21  Longitudinal safety avoidance with solid lane markings

                圖  22  橫向安全避讓

                Fig.  22  Lateral safety avoidance

                圖  23  動(dòng)態(tài)交通流中TP-ATP規劃結果

                Fig.  23  Performance of TP-ATP planning results in dynamic traffic flow

                圖  24  動(dòng)態(tài)交通流中SMWTP規劃結果

                Fig.  24  Performance of SMWTP planning results in dynamic traffic flow

                圖  25  動(dòng)態(tài)交通流測試場(chǎng)景

                Fig.  25  Dynamic traffic flow for test

                表  1  SMWTP參數設置

                Table  1  Parameters of SMWTP

                參數名稱(chēng) 參數值
                $ k $ 1.5
                $\sigma_{v}\;({\rm{m/s} })$ 2
                $\Delta {v}_{\mathrm{thr} }\;({\rm{m/s} })$ 5
                $\omega _{\mathrm{yawr}} $20
                $\omega _{\mathrm{safe}} $5
                $ \omega _{\mathrm{acc}} $3
                $ \omega _{s1} $1
                $ \omega _{s2} $0.5
                下載: 導出CSV

                表  2  TP-ATP參數設置

                Table  2  Parameters of TP-ATP

                參數名稱(chēng)參數值
                $\omega _{\mathrm{s}} $5
                $\omega _{\mathrmrf50c1hsl6} $5
                $ \omega _{\mathrm{c}} $0.5
                $ \omega _{\mathrm{p}} $0.005
                $ c _{\mathrm{j},\mathrm{s}} $1
                $ c _{\mathrm{v},\mathrm{s}} $0.2
                $ c _{T,\mathrm{s}} $0.1
                $ c _{\mathrm{j},\mathrmrf50c1hsl6} $1.5
                $ c _{T,\mathrmrf50c1hsl6} $0.1
                $ D_0 $10
                $\tau$4
                下載: 導出CSV

                表  3  不同障礙車(chē)輛速度估計誤差下的規劃結果

                Table  3  Planning results with different errors in speed estimation of obstacle vehicles

                $\sigma_{ {\rm{m} } }\; ({\rm{m/s} })$ $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g} }\;({\rm{m} })$ $T\;({\rm{s} })$ $v_{ {\rm{lim} } }\;({\rm{m/s} })$ 決策安全
                概率
                (%)
                $0.5$22.5167.35.607.525LC91.1
                $1.0$20.5105.01.855.121LK95.9
                下載: 導出CSV

                表  4  2018 ~ 2019年IVFC比賽中SMWTP規劃情況概覽

                Table  4  An overview of SMWTP's performance in IVFC in year 2018 ~ 2019

                年份行駛時(shí)長(cháng)
                $({\rm{min} })$
                平均速度
                $({\rm{ m/s} })$
                平均安全
                概率(%)
                最低安全
                概率(%)
                平均耗時(shí)
                $({\rm{ms} })$
                20182013.891.38035.1
                20193013.293.68033.5
                下載: 導出CSV

                表  5  虛線(xiàn)車(chē)道線(xiàn)下的縱向安全避讓規劃結果對比

                Table  5  Comparison of planning results for longitudinal safety avoidance with dashed lane

                場(chǎng)景1 $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g}} \;({\rm{m} })$ $T\;({\rm{s} })$ $v_{ {\rm{lim} } }\;({\rm{m/s} })$ 決策
                TP-ATP20.0111.41.855.420LK
                SMWTP19.5160.05.608.025LC
                下載: 導出CSV

                表  6  實(shí)線(xiàn)車(chē)道線(xiàn)下的縱向安全避讓規劃結果對比

                Table  6  Comparison of planning results for longitudinal safety avoidance with solid lane markings

                場(chǎng)景2 $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g} }\;({\rm{m} })$ $T\;({\rm{s} })$ $v_{\mathrm{lim} }\;({\rm{m/s} })$ 決策
                TP-ATP201071.855.220LK
                SMWTP181131.855.620LK
                下載: 導出CSV

                表  7  橫向安全避讓規劃結果對比

                Table  7  Comparison of planning results for lateral safety avoidance

                場(chǎng)景3$v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m } })$ $d_{\mathrm{g} }\;({\rm{m } })$ $T\;({\rm{s} })$ $v_{\mathrm{lim} }\;({\rm{m/s} })$ 決策
                TP-ATP20.0801.854.120LK
                SMWTP19.51031.305.320LK
                下載: 導出CSV

                表  8  動(dòng)態(tài)交通流中TP-ATP多幀規劃結果

                Table  8  Performance of TP-ATP multi-frame planning results in dynamic traffic flow

                t (s) $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g} }\;({\rm{m} })$ $T\;({\rm{s} })$ $v_{\mathrm{lim} }\;({\rm{m/s} })$ 決策
                $0$21901.854.021LK
                $12.5$251595.606.925LC
                下載: 導出CSV

                表  9  動(dòng)態(tài)交通流中SMWTP多幀規劃結果

                Table  9  Performance of SMWTP multi-frame planning results in dynamic traffic flow

                t (s) $v_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g} }\;({\rm{m} })$ $T\;({\rm{s} })$ $v_{\mathrm{lim} }\;({\rm{m/s} })$ 決策
                $0$22.8156.05.606.725.0LC
                $4.5$26.1172.05.607.025.0LK
                $24.5$25.1169.41.856.833.3LC
                下載: 導出CSV

                表  10  SMWTP與SA-TP規劃結果對比

                Table  10  Comparison of SMWTP and SA-TP planning results

                測試場(chǎng)景 $v_{\mathrm{g} }\;({\rm{m/s} })$ $\sigma_{\mathrm{g} }\;({\rm{m/s} })$ $s_{\mathrm{g} }\;({\rm{m} })$ $d_{\mathrm{g} }\;({\rm{m} })$ $T\;({\rm{s} })$ 安全概率決策
                SA-TP23.42.471365.65.2100%LK
                SMWTP25.00.191505.65.7100%LK
                下載: 導出CSV

                表  11  SMWTP與SA-TP實(shí)時(shí)性比較

                Table  11  Comparison of SMWTP and SA-TP real-time performance

                測試場(chǎng)景平均耗時(shí)$({\rm{ms} })$標準差$({\rm{ms} })$最大耗時(shí)$({\rm{ms} })$最小耗時(shí)$({\rm{ms} })$
                SA-TP72109961
                SMWTP3424931
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Claussmann L, Revilloud M, Gruyer D, Glaser S. A review of motion planning for highway autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1826?1848 doi: 10.1109/TITS.2019.2913998
                        [2] Rasekhipour Y, Khajepour A, Chen S K, Litkouhi B. A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5): 1255?1267 doi: 10.1109/TITS.2016.2604240
                        [3] Kim D, Kim H, Huh K. Trajectory planning for autonomous highway driving using the adaptive potential field. In: Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, USA: IEEE, 2018. 1069?1074
                        [4] Wolf M T, Burdick J W. Artificial potential functions for highway driving with collision avoidance. In: Proceedings of the IEEE International Conference on Robotics and Automation. Pasadena, USA: IEEE, 2008. 3731?3736
                        [5] Claussmann L, Revilloud M, Glaser S. Simulated annealing-optimized trajectory planning within non-collision nominal intervals for highway autonomous driving. In: Proceedings of the International Conference on Robotics and Automation (ICRA). Montreal, Canada: IEEE, 2019. 5922?5928
                        [6] Paden B, ?áp M, Yong S Z, Yershov D, Frazzoli E. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33?55 doi: 10.1109/TIV.2016.2578706
                        [7] Claussmann L, Revilloud M, Glaser S, Gruyer D. A study on al-based approaches for high-level decision making in highway autonomous driving. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC). Banff, Canada: IEEE, 2017. 3671?3676
                        [8] Werling M, Ziegler J, Kammel S, Thrun S. Optimal trajectory generation for dynamic street scenarios in a Frenét Frame. In: Proceedings of the IEEE International Conference on Robotics and Automation. Anchorage, USA: IEEE, 2010. 987?993
                        [9] 蘇銻, 楊明, 王春香, 唐衛, 王冰. 一種基于分類(lèi)回歸樹(shù)的無(wú)人車(chē)匯流決策方法. 自動(dòng)化學(xué)報, 2018, 44(1): 35?43

                        Su Ti, Yang Ming, Wang Chun-Xiang, Tang Wei, Wang Bing. Classification and regression tree based traffic merging for method self-driving vehicles. Acta Automatica Sinica, 2018, 44(1): 35?43
                        [10] Ziegler J, Stiller C. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA: IEEE, 2009. 1879?1884
                        [11] McNaughton M, Urmson C, Dolan J M, Lee J W. Motion planning for autonomous driving with a conformal spatiotemporal lattice. In: Proceedings of the IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 4889−4895
                        [12] 袁靜妮, 楊林, 唐曉峰, 陳傲文. 基于改進(jìn)RRT* 與行駛軌跡優(yōu)化的智能汽車(chē)運動(dòng)規劃. 自動(dòng)化學(xué)報, 2022, 48(12): 2941?2950

                        Yuan Jing-Ni, Yang Lin, Tang Xiao-Feng, Chen Ao-Wen. Autonomous vehicle motion planning based on improved RRT* algorithm and trajectory optimization. Acta Automatica Sinica, 2022, 48(12): 2941?2950
                        [13] Yue M, Hou X Q, Zhao X D, Wu X M. Robust tube-based model predictive control for lane change maneuver of tractor-trailer vehicles based on a polynomial trajectory. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(12): 5180?5188 doi: 10.1109/TSMC.2018.2867807
                        [14] Zhou Y, Cholette M E, Bhaskar A, Chung E. Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3409?3420 doi: 10.1109/TITS.2018.2874234
                        [15] Liu C, Lee S, Varnhagen S, Tseng H E. Path planning for autonomous vehicles using model predictive control. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). Los Angeles, USA: IEEE, 2017. 174?179
                        [16] Plessen M G, Lima P F, M?rtensson J, Bemporad A, Wahlberg B. Trajectory planning under vehicle dimension constraints using sequential linear programming. In: Proceedings of the IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Yokohama, Japan: IEEE, 2017. 1?6
                        [17] Werling M, Kammel S, Ziegler J, Gr?ll L. Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. The International Journal of Robotics Research, 2012, 31(3): 346?359 doi: 10.1177/0278364911423042
                        [18] Zhan W, Chen J Y, Chan C Y, Liu C L, Tomizuka M. Spatially-partitioned environmental representation and planning architecture for on-road autonomous driving. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). Los Angeles, USA: IEEE, 2017. 632?639
                        [19] Kant K, Zucker S W. Toward efficient trajectory planning: The path-velocity decomposition. The International Journal of Robotics Research, 1986, 5(3): 72?89 doi: 10.1177/027836498600500304
                        [20] Gu T Y, Atwood J, Dong C Y, Dolan J M, Lee J W. Tunable and stable real-time trajectory planning for urban autonomous driving. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015. 250?256
                        [21] González D, Milanés V, Pérez J, Nashashibi F. Speed profile generation based on quintic Bézier curves for enhanced passenger comfort. In: Proceedings of the 19th IEEE International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro, Brazil: IEEE, 2016. 814?819
                        [22] Lima P F, Trincavelli M, M?rtensson J, Wahlberg B. Clothoid-based speed profiler and control for autonomous driving. In: Proceedings of the 18th IEEE International Conference on Intelligent Transportation Systems. Gran Canaria, Spain: IEEE, 2015. 2194?2199
                        [23] Liu C L, Zhan W, Tomizuka M. Speed profile planning in dynamic environments via temporal optimization. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV). Los Angeles, USA: IEEE, 2017. 154?159
                        [24] Wang Y Y, Chardonnet J R, Merienne F. Speed profile optimization for enhanced passenger comfort: An optimal control approach. In: Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, USA: IEEE, 2018. 723?728
                        [25] Xu W D, Wei J Q, Dolan J M, Zhao H J, Zha H B. A real-time motion planner with trajectory optimization for autonomous vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation. Saint Paul, USA: IEEE, 2012. 2061?2067
                        [26] Fan H Y, Zhu F, Liu C C, Zhang L L, Zhuang L, Li D, et al. Baidu apollo EM motion planner. arXiv preprint arXiv: 1904.04671, 2019.
                        [27] Zheng Z D. Recent developments and research needs in modeling lane changing. Transportation Research Part B: Methodological, 2014, 60: 16?32 doi: 10.1016/j.trb.2013.11.009
                        [28] 聶建強. 高速公路車(chē)輛自主性換道行為建模研究[博士學(xué)位論文], 東南大學(xué), 中國, 2017.

                        Nie Jian-Qiang. Research on Modeling Discretionary Lane-Changing Behaviore of Vehicles in Freeway [Ph.D. dissertation], Southeast University, China, 2017.
                        [29] Shalev-Shwartz S, Shammah S, Shashua A. On a formal model of safe and scalable self-driving cars. arXiv preprint arXiv: 1708.06374, 2017.
                        [30] 符鋅砂, 胡嘉誠, 何石堅. 基于交通狀況及行駛速度的高速公路換道時(shí)間研究. 公路交通科技, 2020, 37(4): 133?139

                        Fu Xin-Sha, Hu Jia-Cheng, He Shi-Jian. Study on expressway lane-changing time based on traffic condition and driving speed. Journal of Highway and Transportation Research and Development, 2020, 37(4): 133?139
                        [31] Yang D, Zhu L L, Ran B, Pu Y, Hui P. Modeling and analysis of the lane-changing execution in longitudinal direction. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2984?2992 doi: 10.1109/TITS.2016.2542109
                        [32] Toledo T, Zohar D. Modeling duration of lane changes. Transportation Research Record: Journal of the Transportation Research, 2007, 1999(1): 71?78 doi: 10.3141/1999-08
                        [33] Kawabata K, Ma L, Xue J R, Zheng N N. A path generation method for automated vehicles based on Bezier curve. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, Australia: IEEE, 2013. 991?996
                        [34] Ziegler J, Bender P, Dang T, Stiller C. Trajectory planning for Bertha——A local, continuous method. In: Proceedings of the IEEE Intelligent Vehicles Symposium. Dearborn, USA: IEEE, 2014. 450?457
                        [35] Li L, Wang X, Wang K F, Lin Y L, Xin J M, Chen L, et al. Parallel testing of vehicle intelligence via virtual-real interaction. Science Robotics, 2019, 4(28): Article No. eaaw4106 doi: 10.1126/scirobotics.aaw4106
                        [36] Wang F Y, Zheng N N, Li L, Xin J M, Wang X, Xu L H, et al. China's 12-year quest of autonomous vehicular intelligence: The intelligent vehicles future challenge program. IEEE Intelligent Transportation Systems Magazine, 2021, 13(2): 6?19 doi: 10.1109/MITS.2021.3058623
                      2. 加載中
                      3. 圖(25) / 表(11)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  933
                        • HTML全文瀏覽量:  586
                        • PDF下載量:  168
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2021-02-14
                        • 錄用日期:  2021-08-04
                        • 網(wǎng)絡(luò )出版日期:  2022-01-03
                        • 刊出日期:  2024-07-23

                        目錄

                          /

                          返回文章
                          返回