多層異質(zhì)復雜網(wǎng)絡(luò )系統的能控性
doi: 10.16383/j.aas.c210654 cstr: 32138.14.j.aas.c210654
-
1.
東北大學(xué)秦皇島分??刂乒こ虒W(xué)院 秦皇島 066004
Controllability of Multi-layer Heterogeneous Complex Network Systems
-
1.
School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004
-
摘要: 研究了節點(diǎn)狀態(tài)為高維的多層復雜網(wǎng)絡(luò )系統的能控性問(wèn)題. 討論了節點(diǎn)的異質(zhì)性、層間耦合和層內耦合對網(wǎng)絡(luò )能控性的影響. 研究發(fā)現當節點(diǎn)狀態(tài)由同質(zhì)變?yōu)楫愘|(zhì)、內耦合矩陣由相同變?yōu)椴煌瑫r(shí), 對網(wǎng)絡(luò )能控性均有影響(網(wǎng)絡(luò )可以由能控變?yōu)椴荒芸? 反之亦然). 對層間耦合模式為驅動(dòng)響應模式和相互依賴(lài)模式, 分別給出了網(wǎng)絡(luò )系統能控的充分條件或必要條件. 相比于直接應用經(jīng)典的能控性判據, 這些條件更易于驗證, 且驅動(dòng)響應模式比相互依賴(lài)模式實(shí)現系統完全能控所需的條件更弱.
-
關(guān)鍵詞:
- 網(wǎng)絡(luò )能控性 /
- 異質(zhì)網(wǎng)絡(luò ) /
- 多層網(wǎng)絡(luò ) /
- 內耦合矩陣
Abstract: This paper studies the controllability of multi-layer complex network systems with high-dimensional node states. We discuss the influence of node heterogeneity, inter-layer coupling, and intra-layer coupling on the controllability of the network. It is found that when the state of the node changes from homogeneous to heterogeneous or the inner-coupling matrix changes from identical to nonidentical, both have an impact on the controllability of the network (the network can be changed from controllable to uncontrollable, and vice versa). The sufficient or necessary conditions for the controllability of the networked system when the inter-layer coupling mode is the drive response mode and the interdependence mode are given, respectively. These conditions are easier to verify than using the classic controllability criteria directly, and the conditions that the drive response mode to achieve fully controllability are weaker than the conditions for the interdependence mode. -
圖 1 層間耦合為驅動(dòng)響應模式的兩層網(wǎng)絡(luò )
Fig. 1 Two-layer networks with the inter-layer drive-response couplings
圖 2 層間耦合為相互依賴(lài)模式的兩層網(wǎng)絡(luò )
Fig. 2 Two-layer networks with the inter-layer interdependent couplings
圖 3 層間耦合為驅動(dòng)響應模式的M層網(wǎng)絡(luò )結構示意圖
Fig. 3 The illustration of M-layer networks with the inter-layer drive-response couplings
圖 4 層間耦合為相互依賴(lài)模式的3層網(wǎng)絡(luò )結構示意圖
Fig. 4 The illustration of three-layer networks with the inter-layer interdependent couplings
圖 5 驅動(dòng)層為鏈網(wǎng)絡(luò )、響應層為星形網(wǎng)絡(luò )的兩層網(wǎng)絡(luò )
Fig. 5 Two-layer networks with the topology of the drive-layer is a chain network, and the response layer is a star network
表 1 本文模型中所用的特殊符號
Table 1 Special notations used in the model of this paper
特殊符號 含義 ${\boldsymbol{A}}_i^K$ 第$ K $層網(wǎng)絡(luò )的第$ i $個(gè)節點(diǎn)的狀態(tài)矩陣 ${\boldsymbol{B}}_i^K$ 第$ K $層網(wǎng)絡(luò )的第$ i $個(gè)節點(diǎn)的輸入矩陣 ${\boldsymbol{C}}_i^K$ 第$ K $層網(wǎng)絡(luò )的第$ i $個(gè)節點(diǎn)的輸出矩陣 ${\boldsymbol{H}}_i^K$ 第$ K $層網(wǎng)絡(luò )的第$ i $個(gè)節點(diǎn)與該層其他節點(diǎn)之間的內耦合矩陣 ${\boldsymbol{H}}_i^{KJ}$ 第$ J $層網(wǎng)絡(luò )的第$ i $個(gè)節點(diǎn)與第$ K $層網(wǎng)絡(luò )的其他節點(diǎn)之間的內耦合矩陣 ${{\boldsymbol{W}}^K}$ 第$ K $層的網(wǎng)絡(luò )拓撲 ${{\boldsymbol{D}}^{KJ} }$ 第$ J $層到第$ K $層的網(wǎng)絡(luò )拓撲 ${\boldsymbol{x}}$ 整個(gè)網(wǎng)絡(luò )系統的狀態(tài) ${{\boldsymbol{x}}^K}$ 第$ K $層網(wǎng)絡(luò )的狀態(tài) ${\boldsymbol{u}}$ 整個(gè)網(wǎng)絡(luò )系統的輸入 ${{\boldsymbol{u}}^K}$ 第$ K $層網(wǎng)絡(luò )的輸入 ${\boldsymbol{ \Phi}}$ 整個(gè)網(wǎng)絡(luò )系統的狀態(tài)矩陣 ${{\boldsymbol{\Phi}} _{KK} }$ 第$ K $層網(wǎng)絡(luò )的狀態(tài)矩陣 ${{\boldsymbol{\Phi}} _{KJ} }$ 第$ J $層到第$ K $層網(wǎng)絡(luò )的狀態(tài)矩陣 ${\boldsymbol{\Psi}}$ 整個(gè)網(wǎng)絡(luò )系統的輸入矩陣 ${\boldsymbol{ \Xi}}$ 整個(gè)網(wǎng)絡(luò )系統的輸出矩陣 ${{\boldsymbol{\Lambda}} ^K}$ 以${\boldsymbol{A}}_1^K,\cdots,{\boldsymbol{A}}_N^K$為對角元的分塊對角矩陣 ${\boldsymbol{ \Delta}}$ 對角矩陣${ {\text{diag} } } \{ {{\boldsymbol{\Delta}} ^1},\cdots,{{\boldsymbol{\Delta}} ^M}\}$ ${{\boldsymbol{\Delta}} ^K}$ 對角矩陣${ {\text{diag} } } \{ \delta _1^K,\cdots,\delta _N^K\}$ 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Chen G R, Wang X F, Li X. Fundamentals of Complex Networks: Models, Structures, and Dynamics. Singapore: Wiley, 2015. 69?82 [2] Kalman R E. Canonical structure of linear dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48(4): 596?600 [3] Kalman R E. Algebraic structure of linear dynamical systems, I. The module of $ {\Sigma} $. Proceedings of the National Academy of Sciences of the United States of America, 1965, 54(6): 1503?1508 [4] Hautus M L J. Controllability and observability conditions of linear autonomous systems. Indagationes Mathematicae (Proceedings), 1969, 72(5): 443?448 [5] Lin C T. Structural controllability. IEEE Transactions on Automatic Control, 1974, 19(3): 201?208 doi: 10.1109/TAC.1974.1100557 [6] Hosoe S, Matsumoto K. On the irreducibility condition in the structural controllability theorem. IEEE Transactions on Automatic Control, 1979, 24(6): 963?966 doi: 10.1109/TAC.1979.1102192 [7] 段廣仁. 高階系統方法——II. 能控性與全驅性. 自動(dòng)化學(xué)報, 2020, 46(8): 1571?1581Duan Guang-Ren. High-order system approaches: II. Controllability and full-actuation. Acta Automatica Sinica, 2020, 46(8): 1571?1581 [8] Liu Y Y, Slotine J J, Barabási A L. Controllability of complex networks. Nature, 2011, 473(7346): 167?173 doi: 10.1038/nature10011 [9] Liu Y Y, Slotine J J, Barabási A L. Control centrality and hierarchical structure in complex networks. PLoS One, 2012, 7(9): Article No. e44459 doi: 10.1371/journal.pone.0044459 [10] Pequito S, Kar S, Aguiar A P. A framework for structural input/output and control configuration selection in large-scale systems. IEEE Transactions on Automatic Control, 2016, 61(2): 303?318 doi: 10.1109/TAC.2015.2437525 [11] Hsu S P. A necessary and sufficient condition for the controllability of single-leader multi-chain systems. International Journal of Robust and Nonlinear Control, 2017, 27(1): 156?168 doi: 10.1002/rnc.3566 [12] Wang X C, Xi Y G, Huang W Z, Jia S. Deducing complete selection rule set for driver nodes to guarantee network' structural controllability. IEEE/CAA Journal of Automatica Sinica, 2019, 6(5): 1152?1165 doi: 10.1109/JAS.2017.7510724 [13] Bai T, Li S Y, Zou Y Y, Yin X. Block-based minimum input design for the structural controllability of complex networks. Automatica, 2019, 107: 68?76 doi: 10.1016/j.automatica.2019.05.006 [14] Wang B B, Gao L, Gao Y, Deng Y, Wang Y. Controllability and observability analysis for vertex domination centrality in directed networks. Scientific Reports, 2014, 4(1): Article No. 5399 doi: 10.1038/srep05399 [15] Menara T, Bassett D S, Pasqualetti F. Structural controllability of symmetric networks. IEEE Transactions on Automatic Control, 2019, 64(9): 3740?3747 doi: 10.1109/TAC.2018.2881112 [16] Commault C, van der Woude J. A classification of nodes for structural controllability. IEEE Transactions on Automatic Control, 2019, 64(9): 3877?3882 doi: 10.1109/TAC.2018.2886181 [17] Xue M R, Roy S. Structural controllability of linear dynamical networks with homogeneous subsystems. IFAC-PapersOnLine, 2019, 52(3): 25?30 doi: 10.1016/j.ifacol.2019.06.005 [18] Joseph G, Murthy C R. Controllability of linear dynamical systems under input sparsity constraints. IEEE Transactions on Automatic Control, 2021, 66(2): 924?931 doi: 10.1109/TAC.2020.2989245 [19] Pan Y J, Li X. Structural controllability and controlling centrality of temporal networks. PLoS One, 2014, 9(4): Article No. e94998 doi: 10.1371/journal.pone.0094998 [20] Hou B Y, Li X, Chen G R. Structural controllability of temporally switching networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(10): 1771?1781 doi: 10.1109/TCSI.2016.2583500 [21] Yao P, Hou B Y, Pan Y J, Li X. Structural controllability of temporal networks with a single switching controller. PLoS One, 2017, 12(1): Article No. e0170584 doi: 10.1371/journal.pone.0170584 [22] Cui Y L, He S B, Wu M C, Zhou C W, Chen J M. Improving the controllability of complex networks by temporal segmentation. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2765?2774 doi: 10.1109/TNSE.2020.2991056 [23] Mousavi S S, Haeri M, Mesbahi M. Strong structural controllability of networks under time-invariant and time-varying topological perturbations. IEEE Transactions on Automatic Control, 2021, 66(3): 1375?1382 doi: 10.1109/TAC.2020.2992439 [24] Wang L, Chen G R, Wang X F, Tang W K S. Controllability of networked MIMO systems. Automatica, 2016, 69: 405?409 doi: 10.1016/j.automatica.2016.03.013 [25] Wang L, Wang X F, Chen G R. Controllability of networked higher-dimensional systems with one-dimensional communication. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2088): Article No. 20160215 doi: 10.1098/rsta.2016.0215 [26] Hao Y Q, Duan Z S, Chen G R. Further on the controllability of networked MIMO LTI systems. International Journal of Robust and Nonlinear Control, 2018, 28(5): 1778?1788 doi: 10.1002/rnc.3986 [27] Hao Y Q, Duan Z S, Chen G R, Wu F. New controllability conditions for networked, identical LTI systems. IEEE Transactions on Automatic Control, 2019, 64(10): 4223?4228 doi: 10.1109/TAC.2019.2893899 [28] Hao Y Q, Wang Q Y, Duan Z S. Some necessary and sufficient conditions on the controllability of star networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(11): 2582?2586 [29] Hao Y Q, Duan Z S, Chen G R. Decentralised fixed modes of networked MIMO systems. International Journal of Control, 2018, 91(4): 859?873 doi: 10.1080/00207179.2017.1295318 [30] Cai N, Khan M J. On generalized controllability canonical form with multiple input variables. International Journal of Control, Automation and Systems, 2017, 15(1): 169?177 doi: 10.1007/s12555-015-0142-8 [31] Trumpf J, Trentelman H L. Controllability and stabilizability of networks of linear systems. IEEE Transactions on Automatic Control, 2019, 64(8): 3391?3398 doi: 10.1109/TAC.2018.2882713 [32] Yuan Z Z, Zhao C, Di Z R, Wang W X, Lai Y C. Exact controllability of complex networks. Nature Communications, 2013, 4(1): Article No. 2447 doi: 10.1038/ncomms3447 [33] Commault C, Kibangou A. Generic controllability of networks with identical SISO dynamical nodes. IEEE Transactions on Control of Network Systems, 2020, 7(2): 855?865 doi: 10.1109/TCNS.2019.2950587 [34] 陸君安. 從單層網(wǎng)絡(luò )到多層網(wǎng)絡(luò )——結構、動(dòng)力學(xué)和功能. 現代物理知識, 2015, 27(4): 3?8Lu Jun-An. From single-layer networks to multi-layer networks: Structure, dynamics and function. Modern Fhysics, 2015, 27(4): 3?8 [35] Zhang Y, Garas A, Schweitzer F. Value of peripheral nodes in controlling multilayer scale-free networks. Physical Review E, 2016, 93(1): Article No. 012309 [36] Pósfai M, Gao J X, Cornelius S P, Barabási A L, D'Souza R M. Controllability of multiplex, multi-time-scale networks. Physical Review E, 2016, 94(3): Article No. 032316 [37] Wang D J, Zou X F. Control energy and controllability of multilayer networks. Advances in Complex Systems, 2017, 20(4?5): Article No. 1750008 doi: 10.1142/S0219525917500084 [38] Nacher J C, Ishitsuka M, Miyazaki S, Akutsu T. Finding and analysing the minimum set of driver nodes required to control multilayer networks. Scientific Reports, 2019, 9(1): Article No. 576 doi: 10.1038/s41598-018-37046-z [39] Doostmohammadian M, Khan U A. Minimal sufficient conditions for structural observability/controllability of composite networks via Kronecker product. IEEE Transactions on Signal and Information Processing Over Networks, 2020, 6: 78?87 doi: 10.1109/TSIPN.2019.2960002 [40] Song K, Li G Q, Chen X M, Deng L, Xiao G X, Zeng F, et al. Target controllability of two-layer multiplex networks based on network flow theory. IEEE Transactions on Cybernetics, 2021, 51(5): 2699?2711 doi: 10.1109/TCYB.2019.2906700 [41] Chapman A, Nabi-Abdolyousefi M, Mesbahi M. Controllability and observability of network-of-networks via Cartesian products. IEEE Transactions on Automatic Control, 2014, 59(10): 2668?2679 doi: 10.1109/TAC.2014.2328757 [42] Hao Y Q, Wang Q Y, Duan Z S, Chen G R. Controllability of Kronecker product networks. Automatica, 2019, 110: Article No. 108597 doi: 10.1016/j.automatica.2019.108597 [43] Chen C, Surana A, Bloch A M, Rajapakse I. Controllability of hypergraphs. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1646?1657 doi: 10.1109/TNSE.2021.3068203 [44] Wu J N, Li X. Interlayer impacts to deep-coupling dynamical networks: A snapshot of equilibrium stability. Chaos, 2019, 29(7): Article No. 073104 [45] Wu J N, Li X, Chen G R. Controllability of deep-coupling dynamical networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 5211?5222 doi: 10.1109/TCSI.2020.2999451 [46] Jiang L X, Tang L K, Lv J H. Controllability of multilayer networks. Asian Journal of Control, 2022, 24(4): 1517?1527 doi: 10.1002/asjc.2561 [47] Xiang L Y, Zhu J J H, Chen F, Chen G R. Controllability of weighted and directed networks with nonidentical node dynamics. Mathematical Problems in Engineering, 2013, 2013: Article No. 405034 [48] Wang P R, Xiang L Y, Chen F. Controllability of heterogeneous networked MIMO systems. In: Proceedings of the International Workshop on Complex Systems and Networks. Doha, Qatar: IEEE, 2017. 45?49 [49] Xiang L Y, Wang P R, Chen F, Chen G R. Controllability of directed networked MIMO systems with heterogeneous dynamics. IEEE Transactions on Control of Network Systems, 2020, 7(2): 807?817 doi: 10.1109/TCNS.2019.2948994