1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              多層異質復雜網絡系統的能控性

              曹連謙 王立夫 孔芝 郭戈

              曹連謙, 王立夫, 孔芝, 郭戈. 多層異質復雜網絡系統的能控性. 自動化學報, 2021, 48(x): 1?13 doi: 10.16383/j.aas.c210654
              引用本文: 曹連謙, 王立夫, 孔芝, 郭戈. 多層異質復雜網絡系統的能控性. 自動化學報, 2021, 48(x): 1?13 doi: 10.16383/j.aas.c210654
              Cao Lian-Qian, Wang Li-Fu, Kong Zhi, Guo Ge. Controllability of multi-layer heterogeneous complex network systems. Acta Automatica Sinica, 2021, 48(x): 1?13 doi: 10.16383/j.aas.c210654
              Citation: Cao Lian-Qian, Wang Li-Fu, Kong Zhi, Guo Ge. Controllability of multi-layer heterogeneous complex network systems. Acta Automatica Sinica, 2021, 48(x): 1?13 doi: 10.16383/j.aas.c210654

              多層異質復雜網絡系統的能控性

              doi: 10.16383/j.aas.c210654
              基金項目: 國家自然科學基金項目(61573077, U1808205), 中央高?;究蒲袠I務費專項基金項目(N2023022)資助
              詳細信息
                作者簡介:

                曹連謙:東北大學秦皇島分校碩士研究生. 研究方向為復雜網絡能控性. E-mail: caolianqian1@yeah.net

                王立夫:東北大學秦皇島分校副教授. 研究方向為復雜網絡, 同步控制, 能控性, 交通網絡. 本文通信作者. E-mail: wlfkz@qq.com

                孔芝:東北大學秦皇島分校副教授. 研究方向為知識發現, 決策分析, 智能優化算法, 復雜網絡. E-mail: kongz@neuq.edu.cn

                郭戈:東北大學教授. 研究方向為智能交通系統, 交通大數據分析, 人工智能應用, 信息物理系統. E-mail: geguo@yeah.net

              Controllability of Multi-Layer Heterogeneous Complex Network Systems

              Funds: Supported by National Natural Science Foundation of China (61573077, U1808205), Fundamental Research Funds for the Central Universities (N2023022)
              More Information
                Author Bio:

                CAO Lian-Qian Postgraduate student of Northeastern University at Qinhuangdao. His research interest is controllability of complex networks

                WANG Li-Fu Associate professor of Northeastern University at Qinhuangdao. His research interests include complex networks, synchron-ous control, controllability, and traffic networks. Corresponding author of this article

                KONG Zhi Associate professor of Northeastern University at Qinhuang-dao. Her research interests include knowledge discovery, decision analy-sis, intelligent optimization algorithms, and complex networks

                GUO Ge Professor of Northeastern University. His research interests include intelligent transportation systems, traffic big data analysis, artificial intelligence applications, and information physical systems

              • 摘要: 本文研究了節點狀態為高維的多層復雜網絡系統的能控性問題. 討論了節點的異質性、層間耦合、層內耦合對網絡能控性的影響. 發現當節點狀態由同質變為異質, 內耦合矩陣由相同變為不同, 對網絡能控性均有影響(網絡既可由能控變為不能控, 又可由不能控變為能控); 對層間耦合模式為驅動響應模式和相互依賴模式, 分別給出了網絡系統能控的充分條件或必要條件. 相比于直接應用經典的能控性判據, 這些條件更易于驗證, 且驅動響應模式比相互依賴模式實現系統完全能控所需的條件更弱.
              • 圖  1  層間耦合為驅動響應模式的兩層網絡

                Fig.  1  Two-layer networks with the inter-layer drive-response couplings

                圖  2  層間耦合為相互依賴模式的兩層網絡

                Fig.  2  Two-layer networks with the inter-layer interdependent couplings

                圖  3  層間耦合為驅動響應模式的M層網絡結構

                Fig.  3  The illustration of three-layer networks with the inter-layer interdependent couplings

                圖  4  層間耦合為相互依賴模式的3層網絡示意圖

                Fig.  4  The illustration of three-layer networks with the inter-layer interdependent couplings

                圖  5  驅動層為鏈網絡響應層為星形網絡的兩層網絡

                Fig.  5  Two-layer networks with the topology of the drive-layer is a chain network, and the response layer is a star network.

                表    附錄A 本文模型中所用的特殊記號

                Table    Appendix A. Special notations used in the model of this paper

                特殊記號含義
                $ A_i^K $第$ K $層網絡的第$ i $個節點的狀態矩陣
                $ B_i^K $第$ K $層網絡的第$ i $個節點的輸入矩陣
                $ C_i^K $第$ K $層網絡的第$ i $個節點的輸出矩陣
                $ H_i^K $第$ K $層網絡的第$ i $個節點與該層其他節點之間的內耦合矩陣
                $ H_i^{KJ} $第$ J $層網絡的第$ i $個節點與第$ K $層網絡的其他節點之間的內耦合矩陣
                $ {W^K} $第$ K $層的網絡拓撲
                $ {D^{KJ}} $第$ J $層到第$ K $層的網絡拓撲
                $ x $整個網絡系統的狀態
                $ {x^K} $第$ K $層網絡的狀態
                $ u $整個網絡系統的輸入
                $ {u^K} $第$ K $層網絡的輸入
                $ \Phi $整個網絡系統的狀態矩陣
                $ {\Phi _{KK}} $第$ K $層網絡的狀態矩陣
                $ {\Phi _{KJ}} $第$ J $層到第$ K $層網絡的狀態矩陣
                $ \Psi $整個網絡系統的輸入矩陣
                $ \Xi $整個網絡系統的輸出矩陣
                $ {\Lambda ^K} $以$A_1^K,\cdots,A_N^K$為對角元的分塊對角矩陣
                $ \Delta $對角矩陣${ {\text{diag} } } \{ {\Delta ^1},\cdots,{\Delta ^M}\}$
                $ {\Delta ^K} $對角矩陣${ {\text{diag} } } \{ \delta _1^K,\cdots,\delta _N^K\}$
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Chen G R, Wang X F, and Li X. Fundamentals of Complex Networks: Models, Structures and Dynamics. USA: Wiley, 2015. 69?82
                        [2] Kalman R E. Canonical structure of linear dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48(4): 596?600 doi: 10.1073/pnas.48.4.596
                        [3] Kalman R E. Algebraic structure of linear dynamical systems, I. the module of Σ. Proceedings of the National Academy of Sciences of the United States of America, 1965, 54(6): 1503?1508 doi: 10.1073/pnas.54.6.1503
                        [4] Hautus M L J. Controllability and observability conditions of linear autonomous systems. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen A, 1969, 72(5): 443?448
                        [5] Lin C T. Structural controllability. IEEE Transactions on Automatic Control, 1974, 19(3): 201?208 doi: 10.1109/TAC.1974.1100557
                        [6] Hosoe S, Matsumoto K. On the irreducibility condition in the structural controllability theorem. IEEE Transactions on Automatic Control, 1979, 24(6): 963?966 doi: 10.1109/TAC.1979.1102192
                        [7] 段廣仁. 高階系統方法-Ⅱ. 能控性與全驅性. 自動化學報, 2020, 46(8): 1571?1581

                        Duan Guang-Ren. High-order system approaches: Ⅱ. controllability and full-actuation. Acta Automatica Sinica, 2020, 46(8): 1571?1581
                        [8] Liu Y Y, Slotine J J, Barabasi A L. Controllability of complex networks. Nature, 2011, 473: 167?173 doi: 10.1038/nature10011
                        [9] Liu Y Y, Slotine J J, Barabasi A L. Control centrality and hierarchical structure in complex networks. Plos One, 2012, 7(9): e44459 doi: 10.1371/journal.pone.0044459
                        [10] Pequito S, Kar S, Aguiar A P. A framework for structural input/output and control configuration selection of large-scale systems. IEEE Transactions on Automatic Control, 2016, 61(2): 303?318 doi: 10.1109/TAC.2015.2437525
                        [11] Hsu S P. A necessary and sufficient condition for the controllability of single-leader multi-chain systems. International Journal of Robust and Nonlinear Control, 2017, 27(1): 156?168 doi: 10.1002/rnc.3566
                        [12] Wang X C, Xi Y G, Huang W Z, Jia S. Deducing complete selection rule set for driver nodes to guarantee network’s structural controllability. IEEE/CAA Journal of Automatica Sinica, 2019, 6(5): 1152?1165 doi: 10.1109/JAS.2017.7510724
                        [13] Bai T, Li S, Zou Y Y, Yin X. Block-based minimum input design for the structural controllability of complex networks. Automatica, 2019, 107: 68?76 doi: 10.1016/j.automatica.2019.05.006
                        [14] Wang B B, Gao L, Gao Y, Deng Y, Wang Y. Controllability and observability analysis for vertex domination centrality in directed networks. Scientific Reports, 2014, 4(4): 1?10
                        [15] Menara T, Bassett D S, Pasqualetti F. Structural controllability of symmetric networks. IEEE Transactions on Automatic Control, 2019, 64(9): 3740?3747 doi: 10.1109/TAC.2018.2881112
                        [16] Commault C, Commault J V D. A classification of nodes for structural controllability. IEEE Transactions on Automatic Control, 2019, 64(9): 3877?3882 doi: 10.1109/TAC.2018.2886181
                        [17] Xue M R, Roy S. Structural controllability of linear dynamical networks with homogeneous subsystems. IFAC-Papers OnLine, 2019, 52(3): 25?30 doi: 10.1016/j.ifacol.2019.06.005
                        [18] Joseph G and Murthy C R. Controllability of linear dynamical systems under input sparsity constraints. IEEE Transactions on Automatic Control, 2021, 66(2): 924?931 doi: 10.1109/TAC.2020.2989245
                        [19] Pan Y, Li X. Structural controllability and controlling centrality of temporal networks. Plos One, 2014, 9(4): e94998 doi: 10.1371/journal.pone.0094998
                        [20] Hou B, Xiang L, Chen G. Structural controllability of temporally switching networks. IEEE Transactions on Circuits and Systems I, 2016, 63(10): 1771?1781 doi: 10.1109/TCSI.2016.2583500
                        [21] Yao P, Yu B. Structural controllability of temporal networks with a single switching controller. Plos One, 2017, 12(1): e0170584 doi: 10.1371/journal.pone.0170584
                        [22] Cui Y, He S, Wu M. Improving the controllability of complex networks by temporal segmentation. IEEE Transactions on Network Science and Engineering, 2020, 7(3): 1508?1520 doi: 10.1109/TNSE.2019.2936865
                        [23] Mousavi S S, Haeri M, Mesbahi M. Strong structural controllability of networks under time-invariant and time-varying topological perturbations. IEEE Transactions on Automatic Control, 2021, 66(3): 1375?1382 doi: 10.1109/TAC.2020.2992439
                        [24] Wang L, Chen G R, Wang X F, Tang W K S. Controllability of networked MIMO systems. Automatica, 2016, 69: 405?409 doi: 10.1016/j.automatica.2016.03.013
                        [25] Wang L, Wang X F, Chen G R. Controllability of networked higher-dimensional systems with one-dimensional communication. Philosophical Transactions of the Royal Society A, 2017, 375(2): 1?12
                        [26] Hao Y Q, Duan Z S, Chen G R. Further on the controllability of networked MIMO LTI systems. International Journal of Robust and Nonlinear Control, 2018, 28(5): 1778?1788 doi: 10.1002/rnc.3986
                        [27] Hao Y Q, Duan Z S, Chen G R, Wu F. New controllability conditions for networked identical LTI systems. IEEE Transactions on Automatic Control, 2019, 64(10): 4223?4228 doi: 10.1109/TAC.2019.2893899
                        [28] Hao Y Q, Wang Q Y, Duan Z S. Some necessary and sufficient conditions on the controllability of star networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(11): 2582?2586 doi: 10.1109/TCSII.2019.2953667
                        [29] Hao Y Q, Duan Z S, Chen G R. Decentralised fixed modes of networked MIMO systems. International Journal of Robust and Nonlinear Control, 2017, 91(4): 859?873
                        [30] Cai N, Khan M J, On generalized controllability canonical form with multiple input variables, International Journal of Control Automation and Systems, 2017, 15(1): 169?177 doi: 10.1007/s12555-015-0142-8
                        [31] Trumpf J, Trentelman H L. Controllability and stabilizability of networks of linear systems. IEEE Transactions on Automatic Control, 2019, 64(8): 3391?3398 doi: 10.1109/TAC.2018.2882713
                        [32] Yuan Z Z, Zhao C, Di Z R, Wang W X, Lai Y C. Exact controllability of complex networks. Nature Communications, 2013, 4(1): 24?47
                        [33] Commault C, Kibangou A. Generic controllability of networks with identical SISO dynamical nodes. IEEE Transactions on Control of Network Systems, 2020, 7(2): 855?865 doi: 10.1109/TCNS.2019.2950587
                        [34] 陸君安. 從單層網絡到多層網絡-結構、動力學和功能. 現代物理知識, 2015, 27(4): 3?8

                        Lu Jun-An. From single-layer network to multi-layer network-structure, dynamics and function. Modern Fhysics Knowledge, 2015, 27(4): 3?8
                        [35] Zhang Y, Garas A, Schweitzer F. Value of peripheral nodes in controlling multilayer scale-free networks. Physical Review E, 2016, 93(9): 22?30
                        [36] Pósfai M, Gao J, Cornelius S P, Barabási A L, D’Souza R M. Controllability of multiplex, multi-time-scale networks. Physical Review E, 2016, 94(3): 1?14
                        [37] Wang D, Zou X. Control the energy and controllability of multilayer networks. Advances in Complex Systems, 2017: 1750008
                        [38] Nacher J C, Ishitsuka M, Miyazaki S, Akutsu T. Finding and analysing the minimum set of driver nodes required to control multilayer networks. Scientific Reports, 2019, 9(1): 1?12
                        [39] Doostmohammadian M, Khan U A. Minimal sufficient conditions for structural observability/controllability of composite networks via Kronecker product. IEEE Transactions on Signal and Information Processing over Networks, 2020, 6: 78?87 doi: 10.1109/TSIPN.2019.2960002
                        [40] Song K, Li G Q, Chen X M, Deng L, Xiao G X, Zeng F et al. Target controllability of two-layer multiplex networks based on network flow theory. IEEE Transactions on Cybernetics, 2021, 51(5): 2699?2711 doi: 10.1109/TCYB.2019.2906700
                        [41] Chapman A, Nabi-Abdolyousefi M, Mesbahi M. Controllability and observability of network-of-networks via cartesian products. IEEE Transactions on Automatic Control, 2014, 59(10): 2668?2679 doi: 10.1109/TAC.2014.2328757
                        [42] Hao Y Q, Wang Q Y, Duan Z S, Chen G R. Controllability of kronecker product networks. Automatica, 2016, 110: 108597
                        [43] Chen C, Surana A, Bloch A. Controllability of hypergraphs. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1646?1657. doi: 10.1109/TNSE.2021.3068203
                        [44] Wu J N, Li X, Interlayer impacts to deep-coupling dynamical networks: A snapshot of equilibrium stability. Chaos, 2019, 29(7): 073104 doi: 10.1063/1.5093776
                        [45] Wu J N, Li X, Chen G R. Controllability of deep-coupling dynamical networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 5211?5222 doi: 10.1109/TCSI.2020.2999451
                        [46] Jiang L X, Tang L K, Lü J H. Controllability of multilayer networks. Asian Journal of Control, 2021, 10: 1?11
                        [47] Xiang L Y, Zhu J H, Chen F, Chen G R. Controllability of weighted and directed networks with nonidentical node dynamics. Mathematical Problems in Engineering, 2013, 6: 927?940
                        [48] Wang P R, Xiang L Y, Chen F. Controllability of heterogeneous networked MIMO systems. In: International Workshop on Complex Systems and Networks, USA: IEEE Press, 2017. 45?49
                        [49] Xiang L Y, Wang P R, Chen F, Chen G R. Controllability of directed networked MIMO systems with heterogeneous dynamics. IEEE Transactions on Control of Network Systems, 2020, 7(2): 807?817 doi: 10.1109/TCNS.2019.2948994
                      2. 加載中
                      3. 計量
                        • 文章訪問數:  902
                        • HTML全文瀏覽量:  414
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2021-07-14
                        • 修回日期:  2021-12-14
                        • 網絡出版日期:  2022-02-04

                        目錄

                          /

                          返回文章
                          返回