1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              多層異構生物網絡候選疾病基因識別

              丁蒼峰 王君 張紫蕓

              丁蒼峰, 王君, 張紫蕓. 多層異構生物網絡候選疾病基因識別. 自動化學報, 2024, 50(6): 1?15 doi: 10.16383/j.aas.c210577
              引用本文: 丁蒼峰, 王君, 張紫蕓. 多層異構生物網絡候選疾病基因識別. 自動化學報, 2024, 50(6): 1?15 doi: 10.16383/j.aas.c210577
              Ding Cang-Feng, Wang Jun, Zhang Zi-Yun. Identifying candidate disease genes in multilayer heterogeneous networks. Acta Automatica Sinica, 2024, 50(6): 1?15 doi: 10.16383/j.aas.c210577
              Citation: Ding Cang-Feng, Wang Jun, Zhang Zi-Yun. Identifying candidate disease genes in multilayer heterogeneous networks. Acta Automatica Sinica, 2024, 50(6): 1?15 doi: 10.16383/j.aas.c210577

              多層異構生物網絡候選疾病基因識別

              doi: 10.16383/j.aas.c210577
              基金項目: 國家自然科學基金(62041212, 61866038, 61763046, 61962059), 陜西省自然科學基礎研究計劃(2020JM-548, 2020JM-547), 延安大學基金(YDZ2019-04, YDBK2018-35)資助
              詳細信息
                作者簡介:

                丁蒼峰:延安大學數學與計算機科學學院副教授. 2018年獲北京理工大學博士學位. 主要研究方向為多層復雜網絡, 圖神經網絡和自然語言處理. 本文通信作者. E-mail: dcf@yau.edu.cn

                王君:延安大學數學與計算機科學學院碩士研究生. 主要研究方向為知識圖譜及其在紅色文化、文學小說等領域相關應用. E-mail: wangjun03006@163.com

                張紫蕓:延安大學數學與計算機科學學院碩士研究生. 主要研究方向為文本摘要及其在紅色文本等領域相關應用. E-mail: zhangziyun1202@163.com

              Identifying Candidate Disease Genes in Multilayer Heterogeneous Networks

              Funds: Supported by National Natural Science Foundation of China (62041212, 61866038, 61763046, 61962059), Natural Science Basic Research Program of Shaanxi (2020JM-548, 2020JM-547), and Yan'an University Foundation Program (YDZ2019-04, YDBK2018-35)
              More Information
                Author Bio:

                DING Cang-Feng Associate professor at the School of Mathematics and Computer Science, Yan'an University. He received his Ph.D. degree from Beijing Institute of Technology in 2018. His research interest covers multilayer complex network, graph neural network, and natural language processing. Corresponding author of this paper

                WANG Jun Master student at the School of Mathematics and Computer Science, Yan'an University. His research interest covers knowledge graph and its related applications in the field of red culture and literary novels

                ZHANG Zi-Yun Master student at the School of Mathematics and Computer Science, Yan'an University. Her research interest covers text summarization and its related applications in the field of red text

              • 摘要: 現有大多數用于識別候選疾病基因的隨機游走方法通常優先訪問高度連接的基因, 而可能與已知疾病有關的不知名或連接性差的基因易被忽略或難以識別. 此外, 這些方法僅訪問單個基因網絡或各種基因數據的聚合網絡, 導致偏差和不完整性. 因此, 設計一種能控制隨機游走運動方向和整合多種數據源的候選疾病基因識別方法將是一個迫切需要解決的問題. 為此, 首先構建多層網絡和多層異構基因網絡. 然后, 提出一種游走于多層網絡和多層異構網絡的拓撲偏置重啟隨機游走(Biased random walk with restart, BRWR)算法來識別疾病基因. 實驗結果表明, 游走于不同類型網絡上的識別候選疾病基因的BRWR算法優于現有的算法. 最后, 應用于多層異構網絡上的BRWR算法能預測未診斷的新生兒類早衰綜合征中涉及的疾病基因.
                1)  21 http://www.proteinatlas.org2 http://www.biocarta.com
                2)  1http://www.biocarta.com
                3)  33 http://human-phenotype-ontology.github.io/4 http://www.omim.org/
                4)  4http://www.omim.org/
                5)  55 https://www.ncbi.nlm.nih.gov/geo/
              • 圖  1  多層網絡、異構網絡、多層異構網絡以及探索它們的隨機游走路徑(箭頭的實線)的示意圖

                Fig.  1  Schematic of multilayer, heterogeneous and multilayer heterogeneous networks, together with paths of random walks (arrow solid lines)

                圖  2  非異構基因網絡上不同方法的ROC曲線及其對應的AUC值

                Fig.  2  ROC curves and AUC values of different algorithms on the non-heterogeneous gene networks

                圖  3  異構基因網絡上不同方法的ROC曲線及其對應的AUC值

                Fig.  3  ROC curves and AUC values of different algorithms on the heterogeneous gene networks

                圖  4  排名隨偏置參數$ b $變數的累積分布

                Fig.  4  The cumulative distributions of the ranking with change of the biased parameter $ b $

                圖  5  排名隨參數變化的累積分布

                Fig.  5  The cumulative distributions of the ranking with change of the parameters

                圖  6  所有偏置參數為5時的網絡表示[51]

                Fig.  6  Network representation when all the biased parameters equal to 5[51]

                圖  7  所有偏置參數為?5時的網絡表示[51]

                Fig.  7  Network representation when all the biased parameters equal to ?5[51]

                圖  8  所有偏置參數為?1時的網絡表示[51]

                Fig.  8  Network representation when all the biased parameters equal to ?1[51]

                圖  9  所有偏置參數為0時的網絡表示[51]

                Fig.  9  Network representation when all the biased parameters equal to 0[51]

                圖  10  所有偏置參數為1時的網絡表示[51]

                Fig.  10  Network representation when all the biased parameters equal to 1[51]

                表  1  表型、基因和聚合網絡的統計屬性

                Table  1  Statistical properties of phenotype, gene and aggregated networks

                網絡節點數邊數平均度
                COEX10 415998 71247.44
                PPI12 89370 1417.73
                PATH10 966274 05113.47
                聚合網絡17 6111 342 70325.79
                表型網絡7 32429 8534.38
                下載: 導出CSV

                表  2  不同的非異構網絡上的不同方法的AUC值(%)

                Table  2  AUC values of different algorithms on different non-heterogeneous networks (%)

                PPI COEX PATH Aggregated Multilayer
                RWR 73.35 72.84 74.43 76.53 77.98
                ProDige 79.12 73.63 80.29 83.27 84.12
                NDOS 78.27 74.78 79.86 84.49 87.95
                DRS 78.93 74.94 80.87 84.78 88.45
                BRIDGE 79.91 74.26 81.51 85.13 89.33
                BRWR 81.15 75.20 84.18 86.73 90.17
                下載: 導出CSV

                表  3  不同異構網絡上的不同方法的AUC值(%)

                Table  3  AUC values of different algorithms on different heterogeneous networks (%)

                PPIH COEXH PATHH AggregatedH MultilayerH
                CIPHER 74.52 73.51 78.30 77.89 78.31
                RWRH 80.37 75.34 79.47 83.67 86.53
                MAXIF 80.91 76.56 80.15 84.02 88.43
                LapRWRH 81.91 77.80 80.90 84.93 88.78
                NRWRH 81.36 78.38 82.70 86.56 89.36
                IDLP 82.08 79.25 83.37 87.79 90.16
                BRWRH 82.36 80.91 85.17 89.65 91.09
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Guala D, Sonnhammer E L L. A large-scale benchmark of gene prioritization methods. Scientific Reports, 2017, 7: Article No. 46598 doi: 10.1038/srep46598
                        [2] Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nature Biotechnology, 2000, 18(12): 1257?1261 doi: 10.1038/82360
                        [3] Sharma V, Ranjan T, Kumar P, Pal A K, Jha V K, Sahni S, et al. Protein-protein interaction detection: Methods and analysis. Plant Biotechnology. New York: Apple Academic Press, 2018. 391-411
                        [4] Chen Y, Jiang T, Jiang R. Uncover disease genes by maximizing information flow in the phenome-interactome network. Bioinformatics, 2011, 27(13): i167?i176 doi: 10.1093/bioinformatics/btr213
                        [5] Zhang Y G, Wang Y, Liu J H, Liu X H, Hong Y X, Fan X, et al. IDLP: A novel label propagation framework for disease gene prioritization. In: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). Melbourne, Australia: Springer, 2018. 261-272
                        [6] Chen Y, Wu X B, Jiang R. Integrating human omics data to prioritize candidate genes. BMC Medical Genomics, 2013, 6: Article No. 57 doi: 10.1186/1755-8794-6-57
                        [7] Lee J H, Zhao X M, Yoon I, Lee J Y, Kwon N H, Wang Y Y, et al. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers. Cell Discovery, 2016, 2: Article No. 16025
                        [8] Yang K, Zhao X Z, Waxman D, Zhao X M. Predicting drug-disease associations with heterogeneous network embedding. Chaos, 2019, 29(12): Article No. 123109 doi: 10.1063/1.5121900
                        [9] Yang A Y, Chen J Q, Zhao X M. nMAGMA: A network-enhanced method for inferring risk genes from GWAS summary statistics and its application to schizophrenia. Briefings in Bioinformatics, 2021, 22(4): Article No. bbaa298 doi: 10.1093/bib/bbaa298
                        [10] K?hler S, Bauer S, Horn D, Robinson P N. Walking the interactome for prioritization of candidate disease genes. The American Journal of Human Genetics, 2008, 82(4): 949?958 doi: 10.1016/j.ajhg.2008.02.013
                        [11] Li Y J, Patra J C. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Bioinformatics, 2010, 26(9): 1219?1224 doi: 10.1093/bioinformatics/btq108
                        [12] Li Y J, Patra J C. Integration of multiple data sources to prioritize candidate genes using discounted rating system. BMC Bioinformatics, 2010, 11(S1): Article No. S20 doi: 10.1186/1471-2105-11-S1-S20
                        [13] Li Y J, Li J Y. Disease gene identification by random walk on multigraphs merging heterogeneous genomic and phenotype data. BMC Genomics, 2012, 13(S7): Article No. S27
                        [14] Xie M Q, Xu Y J, Zhang Y G, Hwang T, Kuang R. Network-based phenome-genome association prediction by bi-random walk. PLoS One, 2015, 10(5): Article No. e0125138 doi: 10.1371/journal.pone.0125138
                        [15] Zhao Z Q, Han G S, Yu Z G, Li J Y. Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization. Computational Biology and Chemistry, 2015, 57: 21?28 doi: 10.1016/j.compbiolchem.2015.02.008
                        [16] Valdeolivas A, Tichit L, Navarro C, Perrin S, Odelin G, Levy N, et al. Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics, 2019, 35(3): 497?505 doi: 10.1093/bioinformatics/bty637
                        [17] Doncheva N T, Kacprowski T, Albrecht M. Recent approaches to the prioritization of candidate disease genes. WIREs Systems Biology and Medicine, 2012, 4(5): 429?442 doi: 10.1002/wsbm.1177
                        [18] Yang K, Lu K Z, Wu Y, Yu J, Liu B Y, Zhao Y, et al. A network-based machine-learning framework to identify both functional modules and disease genes. Human Genetics, 2021, 140(6): 897?913 doi: 10.1007/s00439-020-02253-0
                        [19] Bonaventura M, Nicosia V, Latora V. Characteristic times of biased random walks on complex networks. Physical Review E, 2014, 89(1): Article No. 012803
                        [20] Ding C F, Li K. Centrality ranking in multiplex networks using topologically biased random walks. Neurocomputing, 2018, 312: 263?275 doi: 10.1016/j.neucom.2018.05.109
                        [21] Pio-Lopez L, Valdeolivas A, Tichit L, Remy é, Baudot A. MultiVERSE: A multiplex and multiplex-heterogeneous network embedding approach. Scientific Reports, 2021, 11(1): Article No. 8794 doi: 10.1038/s41598-021-87987-1
                        [22] Peng J, Zhou Y Y, Wang K. Multiplex gene and phenotype network to characterize shared genetic pathways of epilepsy and autism. Scientific Reports, 2021, 11(1): Article No. 952 doi: 10.1038/s41598-020-78654-y
                        [23] Novoa-del-Toro E M, Mezura-Montes E, Vignes M, Térézol M, Magdinier F, Tichit L, et al. A multi-objective genetic algorithm to find active modules in multiplex biological networks. PLoS Computational Biology, 2021, 17(8): Article No. e1009263 doi: 10.1371/journal.pcbi.1009263
                        [24] Zhao B H, Hu S, Liu X E, Xiong H J, Han X, Zhang Z H, et al. A novel computational approach for identifying essential proteins from multiplex biological networks. Frontiers in Genetics, 2020, 11: Article No. 343 doi: 10.3389/fgene.2020.00343
                        [25] Dursun C, Smith J R, Hayman G T, Kwitek A E, Bozdag S. NECo: A node embedding algorithm for multiplex heterogeneous networks. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Seoul, South Korea: IEEE, 2020. 146?149
                        [26] Bentley B, Branicky R, Barnes C L, Chew Y L, Yemini E, Bullmore E T, et al. The multilayer connectome of Caenorhabditis elegans. PLoS Computational Biology, 2016, 12(12): Article No. e1005283 doi: 10.1371/journal.pcbi.1005283
                        [27] Shi C, Li Y T, Zhang J W, Sun Y Z, Yu P S. A survey of heterogeneous information network analysis. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(1): 17?37 doi: 10.1109/TKDE.2016.2598561
                        [28] Gómez-Garde?es J, Latora V. Entropy rate of diffusion processes on complex networks. Physical Review E, 2008, 78(6): Article No. 065102
                        [29] Brin S, Page L. Reprint of: The anatomy of a large-scale hypertextual web search engine. Computer Networks, 2012, 56(18): 3825?3833 doi: 10.1016/j.comnet.2012.10.007
                        [30] Pan J Y, Yang H J, Faloutsos C, Duygulu P. Automatic multimedia cross-modal correlation discovery. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, USA: ACM, 2004. 653-658
                        [31] Smedley D, K?hler S, Czeschik J C, Amberger J, Bocchini C, Hamosh A, et al. Walking the interactome for candidate prioritization in exome sequencing studies of Mendelian diseases. Bioinformatics, 2014, 30(22): 3215?3222 doi: 10.1093/bioinformatics/btu508
                        [32] Kivel? M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y, Porter M A. Multilayer networks. Journal of Complex Networks, 2014, 2(3): 203?271 doi: 10.1093/comnet/cnu016
                        [33] Rolland T, Ta?an M, Charloteaux B, Pevzner S, Zhong Q, Sahni N, et al. A proteome-scale map of the human interactome network. Cell, 2014, 159(5): 1212?1226 doi: 10.1016/j.cell.2014.10.050
                        [34] Del-Toro N, Dumousseau M, Orchard S, Jimenez R C, Galeota E, Launay G, et al. A new reference implementation of the PSICQUIC web service. Nucleic Acids Research, 2013, 41(W1): W601?W606 doi: 10.1093/nar/gkt392
                        [35] Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Science, 2022, 31(1): 47?53 doi: 10.1002/pro.4172
                        [36] Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Research, 2022, 50(D1): D687?D692 doi: 10.1093/nar/gkab1028
                        [37] Mi H Y, Muruganujan A, Casagrande J T, Thomas P D. Large-scale gene function analysis with the PANTHER classification system. Nature Protocols, 2013, 8(8): 1551?1566 doi: 10.1038/nprot.2013.092
                        [38] Schaefer C F, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: The pathway interaction database. Nucleic Acids Research, 2009, 37(S1): D674?D679
                        [39] K?hler S, Gargano M, Matentzoglu N, Carmody L C, Lewis-Smith D, Vasilevsky N A, et al. The human phenotype ontology in 2021. Nucleic Acids Research, 2021, 49(D1): D1207?D1217 doi: 10.1093/nar/gkaa1043
                        [40] Greene D, BioResource N I H R, Richardson S, Turro E. Gene. Phenotype similarity regression for identifying the genetic determinants of rare diseases. The American Journal of Human Genetics, 2016, 98(3): 490?499 doi: 10.1016/j.ajhg.2016.01.008
                        [41] Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, et al. Gene prioritization through genomic data fusion. Nature Biotechnology, 2006, 24(5): 537?544 doi: 10.1038/nbt1203
                        [42] Pi?ero J, Bravo à, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Research, 2017, 45(D1): D833?D839 doi: 10.1093/nar/gkw943
                        [43] Hanley J A, McNeil B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982, 143(1): 29?36 doi: 10.1148/radiology.143.1.7063747
                        [44] Mordelet F, Vert J P. ProDiGe: Prioritization of disease genes with multitask machine learning from positive and unlabeled examples. BMC Bioinformatics, 2011, 12: Article No. 389 doi: 10.1186/1471-2105-12-389
                        [45] Wu X B, Jiang R, Zhang M Q, Li S. Network-based global inference of human disease genes. Molecular Systems Biology, 2008, 4: Article No. 189 doi: 10.1038/msb.2008.27
                        [46] Chen X, Liu M X, Yan G Y. Drug-target interaction prediction by random walk on the heterogeneous network. Molecular BioSystems, 2012, 8(7): 1970?1978 doi: 10.1039/c2mb00002d
                        [47] Blatti C, Sinha S. Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks. Bioinformatics, 2016, 32(14): 2167?2175 doi: 10.1093/bioinformatics/btw151
                        [48] De Domenico M, Solé-Ribalta A, Gómez S, Arenas A. Navigability of interconnected networks under random failures. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(23): 8351?8356
                        [49] Pivnick E K, Angle B, Kaufman R A, Hall B D, Pitukcheewanont P, Hersh J H, et al. Neonatal progeroid (Wiedemann-Rautenstrauch) syndrome: Report of five new cases and review. American Journal of Medical Genetics, 2000, 90(2): 131?140 doi: 10.1002/(SICI)1096-8628(20000117)90:2<131::AID-AJMG9>3.0.CO;2-E
                        [50] Kiraz A, Ozen S, Tubas F, Usta Y, Aldemir O, Alanay Y. Wiedemann-Rautenstrauch syndrome: Report of a variant case. American Journal of Medical Genetics Part A, 2012, 158A(6): 1434?1436 doi: 10.1002/ajmg.a.35336
                        [51] Kohl M, Wiese S, Warscheid B. Cytoscape: Software for visualization and analysis of biological networks. Data Mining in Proteomics: From Standards to Applications. Totowa: Humana, 2011. 291?303
                        [52] Becerra C H, Contreras-García G A, Perez Vera L A, Díaz-Martínez L A, Beltran Avenda?o M A, Salazar Martínez H A. Wiedemann-Rautenstrauch syndrome prenatal diagnosis. Journal of Perinatology, 2014, 34(12): 954?956 doi: 10.1038/jp.2014.156
                        [53] Paolacci S, Bertola D, Franco J, Mohammed S, Tartaglia M, Wollnik B, et al. Wiedemann-Rautenstrauch syndrome: A phenotype analysis. American Journal of Medical Genetics Part A, 2017, 173(7): 1763?1772 doi: 10.1002/ajmg.a.38246
                        [54] Navarro C L, Esteves-Vieira V, Courrier S, Boyer A, Duong Nguyen T, Huong L T T, et al. New ZMPSTE24 (FACE1) mutations in patients affected with restrictive dermopathy or related progeroid syndromes and mutation update. European Journal of Human Genetics, 2014, 22(8): 1002?1011 doi: 10.1038/ejhg.2013.258
                        [55] Beauregard-Lacroix E, Salian S, Kim H, Ehresmann S, D'Amours G, Gauthier J, et al. A variant of neonatal progeroid syndrome, or Wiedemann-Rautenstrauch syndrome, is associated with a nonsense variant in POLR3GL. European Journal of Human Genetics, 2020, 28(4): 461?468 doi: 10.1038/s41431-019-0539-6
                        [56] Arboleda G, Ramírez N, Arboleda H. The neonatal progeroid syndrome (Wiedemann-Rautenstrauch): A model for the study of human aging? Experimental Gerontology, 2007, 42(10): 939?943 doi: 10.1016/j.exger.2007.07.004
                        [57] Zhao X M, Liu K Q, Zhu G H, He F, Duval B, Richer J M, et al. Identifying cancer-related microRNAs based on gene expression data. Bioinformatics, 2015, 31(8): 1226?1234 doi: 10.1093/bioinformatics/btu811
                        [58] He F, Zhu G H, Wang Y Y, Zhao X M, Huang D S. PCID: A novel approach for predicting disease comorbidity by integrating multi-scale data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(3): 678?686 doi: 10.1109/TCBB.2016.2550443
                        [59] Dong G Y, Feng J F, Sun F Z, Chen J Q, Zhao X M. A global overview of genetically interpretable multimorbidities among common diseases in the UK Biobank. Genome Medicine, 2021, 13(1): Article No. 110 doi: 10.1186/s13073-021-00927-6
                      2. 加載中
                      3. 計量
                        • 文章訪問數:  491
                        • HTML全文瀏覽量:  266
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2021-06-25
                        • 錄用日期:  2022-02-10
                        • 網絡出版日期:  2022-05-09

                        目錄

                          /

                          返回文章
                          返回