具有不確定控制增益嚴格反饋系統的自適應命令濾波控制
doi: 10.16383/j.aas.c210553
-
1.
廣東工業(yè)大學(xué)自動(dòng)化學(xué)院 廣州 510006
-
2.
粵港智能決策與協(xié)同控制聯(lián)合實(shí)驗室 廣州 510006
-
3.
廣東省智能決策與協(xié)同控制重點(diǎn)實(shí)驗室 廣州 510006
Adaptive Command Filtered Control of Strict Feedback Systems With Uncertain Control Gains
-
1.
School of Automation, Guangdong University of Technology, Guangzhou 510006
-
2.
Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, Guangzhou 510006
-
3.
Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control, Guangzhou 510006
-
摘要: 針對一類(lèi)具有不確定控制增益的嚴格反饋系統, 提出一種基于命令濾波反推技術(shù)的自適應神經(jīng)網(wǎng)絡(luò )控制方法. 該方法采用神經(jīng)網(wǎng)絡(luò )對系統中的未知非線(xiàn)性函數進(jìn)行逼近, 并引入命令濾波反推技術(shù)克服“計算膨脹”的問(wèn)題. 與現有的命令濾波反推控制文獻相比, 本文通過(guò)構造自適應誤差補償系統, 同時(shí)消除濾波器產(chǎn)生的邊界層誤差和不確定控制增益對系統性能造成的影響. 仿真結果驗證了所提控制方法的有效性.
-
關(guān)鍵詞:
- 非線(xiàn)性系統 /
- 命令濾波反推 /
- 神經(jīng)網(wǎng)絡(luò )控制 /
- 自適應控制
Abstract: In this paper, a command filtered-based adaptive neural control scheme is developed for strict feedback systems with uncertain control gains. In the developed scheme, neural networks are adopted to approximate the unknown nonlinear system functions and command filtered backstepping technique is utilized to solve the “explosion of complexity” problem. Compared with the literature on command filtered backstepping control, in this paper, an adaptive error compensating system is constructed to eliminate the impacts of the boundary layer errors generated by the filters and the uncertain control gains on system performance simultaneously. Simulation results are presented to verify the effectiveness of the proposed control scheme. -
圖 1 系統輸出$y$, 期望軌跡$y_d$和跟蹤誤差$e_1$
Fig. 1 System output $y$, desired trajectory $y_d$ and tracking error $e_1$
圖 4 自適應參數$||\hat{{\boldsymbol{\theta}}}_{g1}||$和$||\hat{{\boldsymbol{\theta}}}_{g2}||$
Fig. 4 Adaptive parameters $||\hat{{\boldsymbol{\theta}}}_{g1}||$ and $||\hat{{\boldsymbol{\theta}}}_{g2}||$
圖 3 自適應參數$||\hat{{\boldsymbol{\theta}}}_{f1}||$和$||\hat{{\boldsymbol{\theta}}}_{f2}||$
Fig. 3 Adaptive parameters $||\hat{{\boldsymbol{\theta}}}_{f1}||$ and $||\hat{{\boldsymbol{\theta}}}_{f2}||$
亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Edwards C, Spurgeon S. Sliding Mode Control. Bristol, PA: Taylor and Francis, 1998. [2] Isidori A. Nonlinear Control Systems, 3rd ed. Berlin: Springer-Verlag, 1995. [3] Liu Y H, Su C Y, Li H, Lu R. Barrier function-based adaptive control for uncertain strict-feedback systems within predefined neural network approximation sets. IEEE Transactions on Neural Networks and Learing Systems, 2020, 31(8): 2942?2954 doi: 10.1109/TNNLS.2019.2934403 [4] Lin W, Zhang X. A dynamic feedback framework for control of time-delay nonlinear systems with unstable zero dynamics. IEEE Transactions on Automatic Control, 2020, 65(8): 3317?3332 doi: 10.1109/TAC.2019.2940865 [5] Min H, Xu S, Zhang Z. Adaptive finite-time stabilization of stochastic nonlinear systems subject to full-state constraints and input saturation. IEEE Transactions on Automatic Control, 2021, 66(3): 1306?1313 doi: 10.1109/TAC.2020.2990173 [6] Wang C, Wang M, Liu T, Hill D J. Learning from ISS-Modular adaptive NN control of nonlinear strict-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(10): 1539?1550 doi: 10.1109/TNNLS.2012.2205702 [7] Theodorakopoulos A, Rovithakis G A. Guaranteeing preselected tracking quality for uncertain strict-feedback systems with deadzone input nonlinearity and disturbances via low-complexity control. Automatica, 2015, 54: 135?145 doi: 10.1016/j.automatica.2015.01.038 [8] Zhai D, An L W, Dong J X, Zhang Q L. Output feedback adaptive sensor failure compensation for a class of parametric strict feedback systems. Automatica, 2018, 97: 48?57 doi: 10.1016/j.automatica.2018.07.014 [9] Zhao K, Song Y D. Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems. IEEE Transactions on Automatic Control, 2019, 64(3): 1265?1272 doi: 10.1109/TAC.2018.2845707 [10] 周琪, 陳廣登, 魯仁全, 白偉偉. 基于干擾觀(guān)測器的輸入飽和多智能體系統事件觸發(fā)控制. 中國科學(xué): 信息科學(xué), 2019, 49(11): 1502?1516 doi: 10.1360/SSI-2019-0105Zhou Qi, Chen Guang-Deng, Lu Ren-Quan, Bai Wei-Wei. Disturbance-observer-based event-triggered control for multi-agent systems with input saturation. Scientia Sinica Informationis, 2019, 49(11): 1502?1516 doi: 10.1360/SSI-2019-0105 [11] 楊彬, 周琪, 曹亮, 魯仁全. 具有指定性能和全狀態(tài)約束的多智能體系統事件觸發(fā)控制. 自動(dòng)化學(xué)報, 2019, 45(8): 1527?1535Yang Bin, Zhou Qi, Cao Liang, Lu Ren-Quan. Event-triggered control for multi-agent systems with prescribed performance and full state constraints. Acta Automatica Sinica, 2019, 45(8): 1527?1535 [12] 周琪, 林國懷, 馬慧, 魯仁全. 輸入死區下的多輸入多輸出系統自適應神經(jīng)網(wǎng)絡(luò )容錯控制. 中國科學(xué): 信息科學(xué), 2021, 51(4): 618?632 doi: 10.1360/SSI-2019-0198Zhou Qi, Lin Guo-Huai, Ma Hui, Lu Ren-Quan. Adaptive neural network fault-tolerant control for MIMO systems with dead zone inputs. Scientia Sinica Informationis, 2021, 51(4): 618?632 doi: 10.1360/SSI-2019-0198 [13] Yu X, Wang T, Qiu J, Gao H. Barrier Lyapunov function-based adaptive fault-tolerant control for a class of strict-feedback stochastic nonlinear systems. IEEE Transactions on Cybernetics, 2021, 51(2): 938?946 doi: 10.1109/TCYB.2019.2941367 [14] Liu Y H, Li H. Adaptive asymptotic tracking using barrier functions. Automatica, 2018, 98: 239?246 doi: 10.1016/j.automatica.2018.09.017 [15] Wang Z, Yuan Y, Yang H. Adaptive fuzzy tracking control for strict-feedback Markov jumping nonlinear systems with actuator failures and unmodeled dynamics. IEEE Transactions on Cybernetics, 2020, 50(1): 126?139 doi: 10.1109/TCYB.2018.2865677 [16] 張吉烈, 張化光, 羅艷紅, 梁洪晶. 基于廣義模糊雙曲模型的自適應動(dòng)態(tài)規劃最優(yōu)控制設計. 自動(dòng)化學(xué)報, 2013, 39(2): 142?149 doi: 10.1016/S1874-1029(13)60016-6Zhang Ji-Lie, Zhang Hua-Guang, Luo Yan-Hong, Liang Hong-Jing. Nearly optimal control scheme using adaptive dynamic programming based on generalized fuzzy hyperbolic model. Acta Automatica Sinica, 2013, 39(2): 142?149 doi: 10.1016/S1874-1029(13)60016-6 [17] Song Y D, Shen Z Y, He L, Huang X C. Neuroadaptive control of strict feedback systems with full-state constraints and unknown actuation characteristics: An inexpensive solution. IEEE Transactions on Cybernetics, 2018, 48(11): 3126?3134 doi: 10.1109/TCYB.2017.2759498 [18] Jing Y H, Yang G H. Fuzzy adaptive fault-tolerant control for uncertain nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Transactions on Fuzzy Systems, 2020, 27(12): 2265?2278 [19] Swaroop D, Hedrick J K, Yip P P, Gerdes J C. Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(10): 1893?1899 doi: 10.1109/TAC.2000.880994 [20] Yip P P, Hedrick J K. Adaptive dynamic surface control: A simplified algorithm for adaptive backstepping control of nonlinear systems. International Journal of Control, 2010, 71(5): 959?979 [21] Pan Y, Yu H. Composite learning from adaptive dynamic surface control. IEEE Transactions on Automatic Control, 2016, 61(9): 2603?2609 doi: 10.1109/TAC.2015.2495232 [22] 劉希, 孫秀霞, 劉樹(shù)光, 徐嵩, 程志浩. 非線(xiàn)性增益遞歸滑模動(dòng)態(tài)面自適應 NN 控制. 自動(dòng)化學(xué)報, 2014, 40(10): 2193?2202Liu Xi, Sun Xiu-Xia, Liu Shu-Guang, Xu Song, Cheng Zhi-Hao. Recursive sliding-mode dynamic surface adaptive NN control with nonlinear gains. Acta Automatica Sinica, 2014, 40(10): 2193?2202 [23] Liu Y H. Adaptive dynamic surface asymptotic tracking for a class of uncertain nonlinear systems. International Journal of Robust and Nonlinear Control, 2017, 28(4): 1233?1245 [24] Farrell J A, Polycarpou M M, Sharma M, Dong W. Command filtered backstepping. IEEE Transactions on Automatic Control, 2009, 54(6): 1391?1395 doi: 10.1109/TAC.2009.2015562 [25] Dong W, Farrell J A, Polycarpou M M, Djapic V, Sharma M. Command filtered adaptive backstepping. IEEE Transactions on Control Systems Technology, 2012, 20(3): 566?580 doi: 10.1109/TCST.2011.2121907 [26] Yu J, Shi P, Zhao L. Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica, 2018, 92: 173?180 doi: 10.1016/j.automatica.2018.03.033 [27] Li Y X. Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica, 2019, 106: 117?123 doi: 10.1016/j.automatica.2019.04.022 [28] Ma J, Park J H, Xu S. Command-filter-based finite-time adaptive control for nonlinear systems with quantized input. IEEE Transactions on Automatic Control, 2021, 66(5): 2339?2344 doi: 10.1109/TAC.2020.3006283 [29] Jiang B, Shen Q, Shi P. Neural-networked adaptive tracking control for switched nonlinear pure-feedback systems under arbitrary switching. Automatica, 2015, 61: 119?125 doi: 10.1016/j.automatica.2015.08.001 [30] Zheng X, Yang X. Command filter and universal approximator based backstepping control design for strict-feedback nonlinear systems with uncertainty. IEEE Transactions on Automatic Control, 2020, 65(3): 1310?1317 doi: 10.1109/TAC.2019.2929067 [31] Sun W, Wu Y Q, Sun Z Y. Command filter-based finite-time adaptive fuzzy control for uncertain nonlinear systems with prescribed performance. IEEE Transactions on Fuzzy Systems, 2020, 28(12): 3161?3170 doi: 10.1109/TFUZZ.2020.2967295 [32] Sun W, Su S F, Xia J, Zhuang G. Command filter-based adaptive prescribed performance tracking control for stochastic uncertain nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(10): 6555?6563 doi: 10.1109/TSMC.2019.2963220 [33] Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica, 2000, 36: 1635?1646 [34] Gong J Q, Yao B. Neural network adaptive robust control of nonlinear systems in semi-strict feedback form. Automatica, 2001, 37: 1149?1160 doi: 10.1016/S0005-1098(01)00069-3 [35] Bechlioulis C P, Rovithakis G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica, 2009, 45: 532?538 doi: 10.1016/j.automatica.2008.08.012 [36] Huang X, Song Y, Lai J. Neuro-adaptive control with given performance specifications for strict feedback systems under full-state constraints. IEEE Transactions on Neural Networks and Learing Systems, 2019, 30(1): 25?34 doi: 10.1109/TNNLS.2018.2821668 [37] Tong S, Min X, Li Y, Huang X C. Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Transactions on Cybernetics, 2020, 50(9): 3903?3913 doi: 10.1109/TCYB.2020.2977175 [38] Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 1996, 41(3): 447?451 doi: 10.1109/9.486648 [39] 李玉玲, 楊洪勇, 劉凡, 楊怡澤. 帶有不匹配干擾的多智能體系統有限時(shí)間積分滑??刂? 自動(dòng)化學(xué)報, 2019, 45(9): 1783?1790Li Yu-Ling, Yang Hong-Yong, Liu Fan, Yang Yi-Ze. Finite-time containment control of second-order multi-agent systems with mismatched disturbances. Acta Automatica Sinica, 2019, 45(9): 1783?1790 [40] Wang M, Zou Y T, Yang C G. System transformation-based neural control for full-state-constrained pure-feedback systems via disturbance observer. IEEE Transactions on Cybernetics, 2022, 52(3): 1479?1489