1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              具有不確定控制增益嚴格反饋系統的自適應命令濾波控制

              吳錦娃 劉勇華 蘇春翌 魯仁全

              吳錦娃, 劉勇華, 蘇春翌, 魯仁全. 具有不確定控制增益嚴格反饋系統的自適應命令濾波控制. 自動化學報, 2024, 50(5): 1015?1023 doi: 10.16383/j.aas.c210553
              引用本文: 吳錦娃, 劉勇華, 蘇春翌, 魯仁全. 具有不確定控制增益嚴格反饋系統的自適應命令濾波控制. 自動化學報, 2024, 50(5): 1015?1023 doi: 10.16383/j.aas.c210553
              Wu Jin-Wa, Liu Yong-Hua, Su Chun-Yi, Lu Ren-Quan. Adaptive command filtered control of strict feedback systems with uncertain control gains. Acta Automatica Sinica, 2024, 50(5): 1015?1023 doi: 10.16383/j.aas.c210553
              Citation: Wu Jin-Wa, Liu Yong-Hua, Su Chun-Yi, Lu Ren-Quan. Adaptive command filtered control of strict feedback systems with uncertain control gains. Acta Automatica Sinica, 2024, 50(5): 1015?1023 doi: 10.16383/j.aas.c210553

              具有不確定控制增益嚴格反饋系統的自適應命令濾波控制

              doi: 10.16383/j.aas.c210553
              基金項目: 國家自然科學基金(62173097, U2013601), 廣東省自然科學基金(2022A1515011239), 廣東省特支計劃本土創新創業團隊項目(2019BT02X353)資助
              詳細信息
                作者簡介:

                吳錦娃:廣東工業大學自動化學院碩士研究生. 主要研究方向為自適應控制與智能控制. E-mail: jinwa.wu@outlook.com

                劉勇華:廣東工業大學自動化學院副教授. 主要研究方向為非線性控制與智能控制. 本文通信作者. E-mail: yonghua.liu@outlook.com

                蘇春翌:廣東工業大學自動化學院教授. 主要研究方向為控制理論及其在機電系統中的應用. E-mail: chunyi.su@concordia.ca

                魯仁全:廣東工業大學自動化學院教授. 主要研究方向為網絡化控制系統理論及應用, 醫療大數據分析, 智能制造. E-mail: rqlu@gdut.edu.cn

              Adaptive Command Filtered Control of Strict Feedback Systems With Uncertain Control Gains

              Funds: Supported by National Natural Science Foundation of China (62173097, U2013601), Natural Science Foundation of Guangdong Province (2022A1515011239), and the Local Innovative and Research Teams Project of Guangdong Special Support Program (2019BT02X353)
              More Information
                Author Bio:

                WU Jin-Wa Master student at the School of Automation, Guangdong University of Technology. Her research interest covers adaptive control and intelligent control

                LIU Yong-Hua Associate professor at the School of Automation, Guangdong University of Technology. His research interest covers nonlinear control and intelligent control. Corresponding author of this paper

                SU Chun-Yi Professor at the School of Automation, Guangdong University of Technology. His research interest covers control theory and its applications to mechanical systems

                LU Ren-Quan Professor at the School of Automation, Guangdong University of Technology. His research interest covers theory and application of networked control system, medical big data analysis, and intelligent manufacturing

              • 摘要: 針對一類具有不確定控制增益的嚴格反饋系統, 提出一種基于命令濾波反推技術的自適應神經網絡控制方法. 該方法采用神經網絡對系統中的未知非線性函數進行逼近, 并引入命令濾波反推技術克服“計算膨脹”的問題. 與現有的命令濾波反推控制文獻相比, 本文通過構造自適應誤差補償系統, 同時消除濾波器產生的邊界層誤差和不確定控制增益對系統性能造成的影響. 仿真結果驗證了所提控制方法的有效性.
              • 圖  1  系統輸出$y$, 期望軌跡$y_d$和跟蹤誤差$e_1$

                Fig.  1  System output $y$, desired trajectory $y_d$ and tracking error $e_1$

                圖  4  自適應參數$||\hat{{\boldsymbol{\theta}}}_{g1}||$和$||\hat{{\boldsymbol{\theta}}}_{g2}||$

                Fig.  4  Adaptive parameters $||\hat{{\boldsymbol{\theta}}}_{g1}||$ and $||\hat{{\boldsymbol{\theta}}}_{g2}||$

                圖  2  控制信號$u$

                Fig.  2  Control signal $u$

                圖  3  自適應參數$||\hat{{\boldsymbol{\theta}}}_{f1}||$和$||\hat{{\boldsymbol{\theta}}}_{f2}||$

                Fig.  3  Adaptive parameters $||\hat{{\boldsymbol{\theta}}}_{f1}||$ and $||\hat{{\boldsymbol{\theta}}}_{f2}||$

                圖  5  基于本文與文獻[36]控制方法的跟蹤誤差$e_1$

                Fig.  5  Tracking errors $e_1$ under the control schemes in this paper and in [36]

                圖  6  基于本文與文獻[36] 控制方法的控制信號$u$

                Fig.  6  Control signals $u$ under the control schemes in this paper and in [36]

                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Edwards C, Spurgeon S. Sliding Mode Control. Bristol, PA: Taylor and Francis, 1998.
                        [2] Isidori A. Nonlinear Control Systems, 3rd ed. Berlin: Springer-Verlag, 1995.
                        [3] Liu Y H, Su C Y, Li H, Lu R. Barrier function-based adaptive control for uncertain strict-feedback systems within predefined neural network approximation sets. IEEE Transactions on Neural Networks and Learing Systems, 2020, 31(8): 2942?2954 doi: 10.1109/TNNLS.2019.2934403
                        [4] Lin W, Zhang X. A dynamic feedback framework for control of time-delay nonlinear systems with unstable zero dynamics. IEEE Transactions on Automatic Control, 2020, 65(8): 3317?3332 doi: 10.1109/TAC.2019.2940865
                        [5] Min H, Xu S, Zhang Z. Adaptive finite-time stabilization of stochastic nonlinear systems subject to full-state constraints and input saturation. IEEE Transactions on Automatic Control, 2021, 66(3): 1306?1313 doi: 10.1109/TAC.2020.2990173
                        [6] Wang C, Wang M, Liu T, Hill D J. Learning from ISS-Modular adaptive NN control of nonlinear strict-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(10): 1539?1550 doi: 10.1109/TNNLS.2012.2205702
                        [7] Theodorakopoulos A, Rovithakis G A. Guaranteeing preselected tracking quality for uncertain strict-feedback systems with deadzone input nonlinearity and disturbances via low-complexity control. Automatica, 2015, 54: 135?145 doi: 10.1016/j.automatica.2015.01.038
                        [8] Zhai D, An L W, Dong J X, Zhang Q L. Output feedback adaptive sensor failure compensation for a class of parametric strict feedback systems. Automatica, 2018, 97: 48?57 doi: 10.1016/j.automatica.2018.07.014
                        [9] Zhao K, Song Y D. Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems. IEEE Transactions on Automatic Control, 2019, 64(3): 1265?1272 doi: 10.1109/TAC.2018.2845707
                        [10] 周琪, 陳廣登, 魯仁全, 白偉偉. 基于干擾觀測器的輸入飽和多智能體系統事件觸發控制. 中國科學: 信息科學, 2019, 49(11): 1502?1516 doi: 10.1360/SSI-2019-0105

                        Zhou Qi, Chen Guang-Deng, Lu Ren-Quan, Bai Wei-Wei. Disturbance-observer-based event-triggered control for multi-agent systems with input saturation. Scientia Sinica Informationis, 2019, 49(11): 1502?1516 doi: 10.1360/SSI-2019-0105
                        [11] 楊彬, 周琪, 曹亮, 魯仁全. 具有指定性能和全狀態約束的多智能體系統事件觸發控制. 自動化學報, 2019, 45(8): 1527?1535

                        Yang Bin, Zhou Qi, Cao Liang, Lu Ren-Quan. Event-triggered control for multi-agent systems with prescribed performance and full state constraints. Acta Automatica Sinica, 2019, 45(8): 1527?1535
                        [12] 周琪, 林國懷, 馬慧, 魯仁全. 輸入死區下的多輸入多輸出系統自適應神經網絡容錯控制. 中國科學: 信息科學, 2021, 51(4): 618?632 doi: 10.1360/SSI-2019-0198

                        Zhou Qi, Lin Guo-Huai, Ma Hui, Lu Ren-Quan. Adaptive neural network fault-tolerant control for MIMO systems with dead zone inputs. Scientia Sinica Informationis, 2021, 51(4): 618?632 doi: 10.1360/SSI-2019-0198
                        [13] Yu X, Wang T, Qiu J, Gao H. Barrier Lyapunov function-based adaptive fault-tolerant control for a class of strict-feedback stochastic nonlinear systems. IEEE Transactions on Cybernetics, 2021, 51(2): 938?946 doi: 10.1109/TCYB.2019.2941367
                        [14] Liu Y H, Li H. Adaptive asymptotic tracking using barrier functions. Automatica, 2018, 98: 239?246 doi: 10.1016/j.automatica.2018.09.017
                        [15] Wang Z, Yuan Y, Yang H. Adaptive fuzzy tracking control for strict-feedback Markov jumping nonlinear systems with actuator failures and unmodeled dynamics. IEEE Transactions on Cybernetics, 2020, 50(1): 126?139 doi: 10.1109/TCYB.2018.2865677
                        [16] 張吉烈, 張化光, 羅艷紅, 梁洪晶. 基于廣義模糊雙曲模型的自適應動態規劃最優控制設計. 自動化學報, 2013, 39(2): 142?149 doi: 10.1016/S1874-1029(13)60016-6

                        Zhang Ji-Lie, Zhang Hua-Guang, Luo Yan-Hong, Liang Hong-Jing. Nearly optimal control scheme using adaptive dynamic programming based on generalized fuzzy hyperbolic model. Acta Automatica Sinica, 2013, 39(2): 142?149 doi: 10.1016/S1874-1029(13)60016-6
                        [17] Song Y D, Shen Z Y, He L, Huang X C. Neuroadaptive control of strict feedback systems with full-state constraints and unknown actuation characteristics: An inexpensive solution. IEEE Transactions on Cybernetics, 2018, 48(11): 3126?3134 doi: 10.1109/TCYB.2017.2759498
                        [18] Jing Y H, Yang G H. Fuzzy adaptive fault-tolerant control for uncertain nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Transactions on Fuzzy Systems, 2020, 27(12): 2265?2278
                        [19] Swaroop D, Hedrick J K, Yip P P, Gerdes J C. Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(10): 1893?1899 doi: 10.1109/TAC.2000.880994
                        [20] Yip P P, Hedrick J K. Adaptive dynamic surface control: A simplified algorithm for adaptive backstepping control of nonlinear systems. International Journal of Control, 2010, 71(5): 959?979
                        [21] Pan Y, Yu H. Composite learning from adaptive dynamic surface control. IEEE Transactions on Automatic Control, 2016, 61(9): 2603?2609 doi: 10.1109/TAC.2015.2495232
                        [22] 劉希, 孫秀霞, 劉樹光, 徐嵩, 程志浩. 非線性增益遞歸滑模動態面自適應 NN 控制. 自動化學報, 2014, 40(10): 2193?2202

                        Liu Xi, Sun Xiu-Xia, Liu Shu-Guang, Xu Song, Cheng Zhi-Hao. Recursive sliding-mode dynamic surface adaptive NN control with nonlinear gains. Acta Automatica Sinica, 2014, 40(10): 2193?2202
                        [23] Liu Y H. Adaptive dynamic surface asymptotic tracking for a class of uncertain nonlinear systems. International Journal of Robust and Nonlinear Control, 2017, 28(4): 1233?1245
                        [24] Farrell J A, Polycarpou M M, Sharma M, Dong W. Command filtered backstepping. IEEE Transactions on Automatic Control, 2009, 54(6): 1391?1395 doi: 10.1109/TAC.2009.2015562
                        [25] Dong W, Farrell J A, Polycarpou M M, Djapic V, Sharma M. Command filtered adaptive backstepping. IEEE Transactions on Control Systems Technology, 2012, 20(3): 566?580 doi: 10.1109/TCST.2011.2121907
                        [26] Yu J, Shi P, Zhao L. Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica, 2018, 92: 173?180 doi: 10.1016/j.automatica.2018.03.033
                        [27] Li Y X. Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica, 2019, 106: 117?123 doi: 10.1016/j.automatica.2019.04.022
                        [28] Ma J, Park J H, Xu S. Command-filter-based finite-time adaptive control for nonlinear systems with quantized input. IEEE Transactions on Automatic Control, 2021, 66(5): 2339?2344 doi: 10.1109/TAC.2020.3006283
                        [29] Jiang B, Shen Q, Shi P. Neural-networked adaptive tracking control for switched nonlinear pure-feedback systems under arbitrary switching. Automatica, 2015, 61: 119?125 doi: 10.1016/j.automatica.2015.08.001
                        [30] Zheng X, Yang X. Command filter and universal approximator based backstepping control design for strict-feedback nonlinear systems with uncertainty. IEEE Transactions on Automatic Control, 2020, 65(3): 1310?1317 doi: 10.1109/TAC.2019.2929067
                        [31] Sun W, Wu Y Q, Sun Z Y. Command filter-based finite-time adaptive fuzzy control for uncertain nonlinear systems with prescribed performance. IEEE Transactions on Fuzzy Systems, 2020, 28(12): 3161?3170 doi: 10.1109/TFUZZ.2020.2967295
                        [32] Sun W, Su S F, Xia J, Zhuang G. Command filter-based adaptive prescribed performance tracking control for stochastic uncertain nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(10): 6555?6563 doi: 10.1109/TSMC.2019.2963220
                        [33] Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica, 2000, 36: 1635?1646
                        [34] Gong J Q, Yao B. Neural network adaptive robust control of nonlinear systems in semi-strict feedback form. Automatica, 2001, 37: 1149?1160 doi: 10.1016/S0005-1098(01)00069-3
                        [35] Bechlioulis C P, Rovithakis G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica, 2009, 45: 532?538 doi: 10.1016/j.automatica.2008.08.012
                        [36] Huang X, Song Y, Lai J. Neuro-adaptive control with given performance specifications for strict feedback systems under full-state constraints. IEEE Transactions on Neural Networks and Learing Systems, 2019, 30(1): 25?34 doi: 10.1109/TNNLS.2018.2821668
                        [37] Tong S, Min X, Li Y, Huang X C. Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Transactions on Cybernetics, 2020, 50(9): 3903?3913 doi: 10.1109/TCYB.2020.2977175
                        [38] Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 1996, 41(3): 447?451 doi: 10.1109/9.486648
                        [39] 李玉玲, 楊洪勇, 劉凡, 楊怡澤. 帶有不匹配干擾的多智能體系統有限時間積分滑??刂? 自動化學報, 2019, 45(9): 1783?1790

                        Li Yu-Ling, Yang Hong-Yong, Liu Fan, Yang Yi-Ze. Finite-time containment control of second-order multi-agent systems with mismatched disturbances. Acta Automatica Sinica, 2019, 45(9): 1783?1790
                        [40] Wang M, Zou Y T, Yang C G. System transformation-based neural control for full-state-constrained pure-feedback systems via disturbance observer. IEEE Transactions on Cybernetics, 2022, 52(3): 1479?1489
                      2. 加載中
                      3. 圖(6)
                        計量
                        • 文章訪問數:  1157
                        • HTML全文瀏覽量:  429
                        • PDF下載量:  150
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2021-06-19
                        • 網絡出版日期:  2021-11-28
                        • 刊出日期:  2024-05-20

                        目錄

                          /

                          返回文章
                          返回