1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.765

              2022影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學文摘

              留言板

              尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言內容
              驗證碼

              自適應特征融合的多模態實體對齊研究

              郭浩 李欣奕 唐九陽 郭延明 趙翔

              郭浩, 李欣奕, 唐九陽, 郭延明, 趙翔. 自適應特征融合的多模態實體對齊研究. 自動化學報, 2024, 50(4): 758?770 doi: 10.16383/j.aas.c210518
              引用本文: 郭浩, 李欣奕, 唐九陽, 郭延明, 趙翔. 自適應特征融合的多模態實體對齊研究. 自動化學報, 2024, 50(4): 758?770 doi: 10.16383/j.aas.c210518
              Guo Hao, Li Xin-Yi, Tang Jiu-Yang, Guo Yan-Ming, Zhao Xiang. Adaptive feature fusion for multi-modal entity alignment. Acta Automatica Sinica, 2024, 50(4): 758?770 doi: 10.16383/j.aas.c210518
              Citation: Guo Hao, Li Xin-Yi, Tang Jiu-Yang, Guo Yan-Ming, Zhao Xiang. Adaptive feature fusion for multi-modal entity alignment. Acta Automatica Sinica, 2024, 50(4): 758?770 doi: 10.16383/j.aas.c210518

              自適應特征融合的多模態實體對齊研究

              doi: 10.16383/j.aas.c210518
              基金項目: 國家自然科學基金(62002373, 61872446, 71971212, U19B2024)資助
              詳細信息
                作者簡介:

                郭浩:國防科技大學博士研究生. 主要研究方向為知識圖譜構建與融合技術. E-mail: guo_hao@nudt.edu.cn

                李欣奕:博士, 國防科技大學講師. 主要研究方向為自然語言處理和信息檢索. 本文通信作者. E-mail: lixinyimichael@163.com

                唐九陽:國防科技大學教授. 主要研究方向為智能分析, 大數據和社會計算. E-mail: 13787319678@163.com

                郭延明:國防科技大學副教授. 主要研究方向為深度學習, 跨媒體信息處理與智能博弈對抗. E-mail: guoyanming@nudt.edu.cn

                趙翔:國防科技大學教授. 主要研究方向為圖數據管理與挖掘和智能分析. E-mail: xiangzhao@nudt.edu.cn

              Adaptive Feature Fusion for Multi-modal Entity Alignment

              Funds: Supported by National Natural Science Foundation of China (62002373, 61872446, 71971212, U19B2024)
              More Information
                Author Bio:

                GUO Hao Ph.D. candidate at National University of Defense Technology. His research interest covers knowledge graph construction and fusion

                LI Xin-Yi Ph.D., lecturer at National University of Defense Technology. His research interest covers natural language processing and information retrieval. Corresponding author of this paper

                TANG Jiu-Yang Professor at National University of Defense Technology. His research interest covers intelligence analysis, big data, and social computing

                GUO Yan-Ming Associate professor at National University of Defense Technology. His research interest covers deep learning, cross-media information processing, and adversarial intelligent game

                ZHAO Xiang Professor at National University of Defense Technology. His research interest covers graph data management and mining, and intelligence analysis

              • 摘要: 多模態數據間交互式任務的興起對于綜合利用不同模態的知識提出了更高的要求, 因此融合不同模態知識的多模態知識圖譜應運而生. 然而, 現有多模態知識圖譜存在圖譜知識不完整的問題, 嚴重阻礙對信息的有效利用. 緩解此問題的有效方法是通過實體對齊進行知識圖譜補全. 當前多模態實體對齊方法以固定權重融合多種模態信息, 在融合過程中忽略不同模態信息貢獻的差異性. 為解決上述問題, 設計一套自適應特征融合機制, 根據不同模態數據質量動態融合實體結構信息和視覺信息. 此外, 考慮到視覺信息質量不高、知識圖譜之間的結構差異也影響實體對齊的效果, 本文分別設計提升視覺信息有效利用率的視覺特征處理模塊以及緩和結構差異性的三元組篩選模塊. 在多模態實體對齊任務上的實驗結果表明, 提出的多模態實體對齊方法的性能優于當前最好的方法.
              • 圖  1  知識圖譜FreeBase和DBpedia的結構差異性表現

                Fig.  1  Structural differences between knowledge graphs FreeBase and DBpedia

                圖  2  自適應特征融合的多模態實體對齊框架

                Fig.  2  Multi-modal entity alignment framework based on adaptive feature fusion

                圖  3  視覺特征處理模塊

                Fig.  3  Visual feature processing module

                圖  4  三元組篩選模塊

                Fig.  4  Triples filtering module

                圖  5  自適應特征融合與固定權重融合的實體對齊Hits@1對比

                Fig.  5  Entity alignment Hits@1's comparison of adaptive feature fusion and fixed feature fusion

                表  1  多模態知識圖譜數據集數據統計

                Table  1  Statistic of the MMKGs datasets

                數據集實體關系三元組圖片SameAs
                FB15K14 9151 345592 21313 444
                DB15K14 77727999 02812 84112 846
                Yago15K15 40432122 88611 19411 199
                下載: 導出CSV

                表  2  多模態實體對齊結果

                Table  2  Results of multi-modal entity alignment

                數據集方法seed = 20%seed = 50%
                Hits@1Hits@10MRRHits@1Hits@10MRR
                FB15K-DB15KIKRL2.9611.450.0595.5324.410.121
                GCN-align6.2618.810.10513.7934.600.210
                PoE11.1017.8023.5033.00
                HMEA12.1634.860.19127.2451.770.354
                AF2MEA17.7534.140.23329.4550.250.365
                FB15K-Yago15KIKRL3.8412.500.0756.1620.450.111
                GCN-align6.4418.720.10614.0934.800.209
                PoE8.7013.3018.5024.70
                HMEA10.0329.380.16827.9155.310.371
                AF2MEA21.6540.220.28235.7256.030.423
                下載: 導出CSV

                表  3  消融實驗實體對齊結果

                Table  3  Entity alignment results of ablation study

                數據集方法seed = 20%seed = 50%
                Hits@1Hits@10MRRHits@1Hits@10MRR
                FB15K-DB15KAF2MEA17.7534.140.23329.4550.250.365
                AF2MEA-Adaptive16.0331.010.21226.2945.350.331
                AF2MEA-Visual16.1930.710.21226.1445.380.323
                AF2MEA-Filter14.1328.770.19122.9143.080.297
                FB15K-Yago15KAF2MEA21.6540.220.28235.7256.250.423
                AF2MEA-Adaptive19.3237.380.25531.7753.240.393
                AF2MEA-Visual19.7536.380.25432.0851.530.388
                AF2MEA-Filter15.8432.360.21627.3848.140.345
                下載: 導出CSV

                表  4  實體視覺特征的對齊結果

                Table  4  Entity alignment results of visual feature

                數據集方法seed = 20%seed = 50%
                Hits@1Hits@10MRRHits@1Hits@10MRR
                FB15K-DB15KHMEA-v2.07 9.820.0583.9114.410.086
                Att8.8120.160.1289.5721.130.139
                Att+Filter8.9820.520.1319.9622.580.144
                FB15K-Yago15KHMEA-v2.7711.490.0724.2815.380.095
                Att9.2521.380.13710.56 23.550.157
                Att+Filter9.4321.910.13811.07 24.510.158
                下載: 導出CSV

                表  5  不同三元組篩選機制下實體結構特征對齊結果

                Table  5  Entity alignment results of structure feature in different filtering mechanism

                數據集方法seed = 20%seed = 50%
                Hits@1Hits@10MRRHits@1Hits@10MRR
                FB15K-DB15KBaseline6.2618.810.10513.7934.600.210
                ${\rm{F}}_{\text{PageRank}}$8.0321.370.12518.9039.250.259
                ${\rm{F}}_{\text{random}}$7.5720.760.12016.3236.480.231
                ${\rm{F}}_{\text{our}}$9.7425.280.15022.0944.850.297
                FB15K-Yago15KBaseline6.4418.720.10615.8836.700.229
                ${\rm{F}}_{\text{PageRank}}$9.5423.450.14421.6742.300.290
                ${\rm{F}}_{\text{random}}$8.1720.860.12618.2238.550.254
                ${\rm{F}}_{\text{our}}$11.59 28.440.17524.8847.850.327
                下載: 導出CSV

                表  6  自適應特征融合與固定權重融合多模態實體對齊結果

                Table  6  Multi-modal entity alignment results of fixed feature fusion and adaptive feature fusion

                方法Group 1Group 2Group 3
                Hits@1Hits@10Hits@1Hits@10Hits@1Hits@10
                FB15K-DB15K
                Adaptive16.4432.9717.4333.4719.2935.40
                Fixed13.8728.9115.8231.0818.1234.33
                FB15K-Yago15K
                Adaptive16.4432.9717.4333.4719.2935.40
                Fixed16.2133.2319.5537.1122.2745.52
                下載: 導出CSV

                表  7  補充實驗多模態實體對齊結果

                Table  7  Multi-modal entity alignment results of additional experiment

                方法seed = 20%seed = 50%
                Hits@1Hits@10MRRHits@1Hits@10MRR
                PoE16.4432.9717.43034.7053.600.414
                MMEA13.8728.9115.82040.2664.510.486
                AF2MEA28.6548.220.38248.2575.830.569
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] Zhu S G, Cheng X, Su S. Knowledge-based question answering by tree-to-sequence learning. Neurocomputing, 2020, 372: 64?72 doi: 10.1016/j.neucom.2019.09.003
                        [2] Martinez-Rodriguez J L, Hogan A, Lopez-Arevalo I. Information extraction meets the semantic web: A survey. Semantic Web, 2020, 11(2): 255?335 doi: 10.3233/SW-180333
                        [3] Yao X C, Van Durme B. Information extraction over structured data: Question answering with freebase. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, USA: ACL, 2014. 956?966
                        [4] Sun Z, Yang J, Zhang J, Bozzon A, Huang L K, Xu C. Recurrent knowledge graph embedding for effective recommendation. In: Proceedings of the 12th ACM Conference on Recommender Systems. Vancouver, Canada: ACM, 2018. 297?305
                        [5] Wang M, Qi G L, Wang H F, Zheng Q S. Richpedia: A comprehensive multi-modal knowledge graph. In: Proceedings of the 9th Joint International Conference on Semantic Technology. Hangzhou, China: Springer, 2019. 130?145
                        [6] Liu Y, Li H, Garcia-Duran A, Niepert M, Onoro-Rubio D, Rosenblum D S. MMKG: Multi-modal knowledge graphs. In: Proceedings of the 16th International Conference on the Semantic Web. Portoro?, Slovenia: Springer, 2019. 459?474
                        [7] Shen L, Hong R C, Hao Y B. Advance on large scale near-duplicate video retrieval. Frontiers of Computer Science, 2020, 14(5): Article No. 145702 doi: 10.1007/s11704-019-8229-7
                        [8] Han Y H, Wu A M, Zhu L C, Yang Y. Visual commonsense reasoning with directional visual connections. Frontiers of Information Technology & Electronic Engineering, 2021, 22(5): 625?637
                        [9] Zheng W F, Yin L R, Chen X B, Ma Z Y, Liu S, Yang B. Knowledge base graph embedding module design for visual question answering model. Pattern Recognition, 2021, 120: Article No. 108153 doi: 10.1016/j.patcog.2021.108153
                        [10] Zeng W X, Zhao X, Wang W, Tang J Y, Tan Z. Degree-aware alignment for entities in tail. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual Event: ACM, 2020. 811?820
                        [11] Zhao X, Zeng W X, Tang J Y, Wang W, Suchanek F. An experimental study of state-of-the-art entity alignment approaches. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(6): 2610?2625
                        [12] Zeng W X, Zhao X, Tang J Y, Li X Y, Luo M N, Zheng Q H. Towards entity alignment in the open world: An unsupervised approach. In: Proceedings of the 26th International Conference Database Systems for Advanced Applications. Taipei, China: Springer, 2021. 272?289
                        [13] Guo H, Tang J Y, Zeng W X, Zhao X, Liu L. Multi-modal entity alignment in hyperbolic space. Neurocomputing, 2021, 461: 598?607 doi: 10.1016/j.neucom.2021.03.132
                        [14] Wang Z C, Lv Q S, Lan X H, Zhang Y. Cross-lingual knowledge graph alignment via graph convolutional networks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: ACL, 2018. 349?357
                        [15] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: ICLR, 2015.
                        [16] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 770?778
                        [17] Chen M H, Tian Y T, Yang M H, Zaniolo C. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: IJCAI.org, 2017. 1511?1517
                        [18] Sun Z Q, Hu W, Zhang Q H, Qu Y Z. Bootstrapping entity alignment with knowledge graph embedding. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: IJCAI.org, 2018. 4396?4402
                        [19] Chen L Y, Li Z, Wang Y J, Xu T, Wang Z F, Chen E H. MMEA: Entity alignment for multi-modal knowledge graph. In: Proceedings of the 13th International Conference on Knowledge Science, Engineering and Management. Hangzhou, China: Springer, 2020. 134?147
                        [20] Guo L B, Sun Z Q, Hu W. Learning to exploit long-term relational dependencies in knowledge graphs. In: Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: PMLR, 2019. 2505?2514
                        [21] 莊嚴, 李國良, 馮建華. 知識庫實體對齊技術綜述. 計算機研究與發展, 2016, 53(1): 165?192 doi: 10.7544/issn1000-1239.2016.20150661

                        Zhuang Yan, Li Guo-Liang, Feng Jian-Hua. A survey on entity alignment of knowledge base. Journal of Computer Research and Development, 2016, 53(1): 165?192 doi: 10.7544/issn1000-1239.2016.20150661
                        [22] 喬晶晶, 段利國, 李愛萍. 融合多種特征的實體對齊算法. 計算機工程與設計, 2018, 39(11): 3395?3400

                        Qiao Jing-Jing, Duan Li-Guo, Li Ai-Ping. Entity alignment algorithm based on multi-features. Computer Engineering and Design, 2018, 39(11): 3395?3400
                        [23] Trisedya B D, Qi J Z, Zhang R. Entity alignment between knowledge graphs using attribute embeddings. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Honolulu, USA: AAAI Press, 2019. 297?304
                        [24] Zhu H, Xie R B, Liu Z Y, Sun M S. Iterative entity alignment via joint knowledge embeddings. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: IJCAI.org, 2017. 4258?4264
                        [25] Chen M H, Tian Y T, Chang K W, Skiena S, Zaniolo C. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: IJCAI.org, 2018. 3998?4004
                        [26] Cao Y X, Liu Z Y, Li C J, Liu Z Y, Li J Z, Chua T S. Multi-channel graph neural network for entity alignment. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL, 2019. 1452?1461
                        [27] Li C J, Cao Y X, Hou L, Shi J X, Li J Z, Chua T S. Semi-supervised entity alignment via joint knowledge embedding model and cross-graph model. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: ACL, 2019. 2723?2732
                        [28] Mao X, Wang W T, Xu H M, Lan M, Wu Y B. MRAEA: An efficient and robust entity alignment approach for cross-lingual knowledge graph. In: Proceedings of the 13th International Conference on Web Search and Data Mining. Houston, USA: ACM, 2020. 420?428
                        [29] Sun Z Q, Hu W, Li C K. Cross-lingual entity alignment via joint attribute-preserving embedding. In: Proceedings of the 16th International Semantic Web Conference on the Semantic Web (ISWC). Vienna, Austria: Springer, 2018. 628?644
                        [30] Galárraga L, Razniewski S, Amarilli A, Suchanek F M. Predicting completeness in knowledge bases. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining. Cambridge, United Kingdom: ACM, 2017. 375?383
                        [31] Ferrada S, Bustos B, Hogan A. IMGpedia: A linked dataset with content-based analysis of Wikimedia images. In: Proceedings of the 16th International Semantic Web Conference on the Semantic Web (ISWC). Vienna, Austria: Springer, 2017. 84?93
                        [32] Xie R B, Liu Z Y, Luan H B, Sun M S. Image-embodied knowledge representation learning. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: IJCAI.org, 2017. 3140?3146
                        [33] Mousselly-Sergieh H, Botschen T, Gurevych I, Roth S. A multimodal translation-based approach for knowledge graph representation learning. In: Proceedings of the 7th Joint Conference on Lexical and Computational Semantics. New Orleans, USA: ACL, 2018. 225?234
                        [34] Tan H, Bansal M. LXMERT: Learning cross-modality encoder representations from transformers. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: ACL, 2019. 5100?5111
                        [35] Li L H, Yatskar M, Yin D, Hsieh C J, Chang K W. What does BERT with vision look at? In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Virtual Event: ACL, 2020. 5265?5275
                        [36] Wang H R, Zhang Y, Ji Z, Pang Y W, Ma L. Consensus-aware visual-semantic embedding for image-text matching. In: Proceedings of the 16th European Conference on Computer Vision (ECCV). Glasgow, UK: Springer, 2020. 18?34
                        [37] Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft coco: Common objects in context. In: Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland: Springer, 2014. 740?755
                        [38] Plummer B A, Wang L W, Cervantes C M, Caicedo J C, Hockenmaier J, Lazebnik S. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 2641?2649
                        [39] Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137?1149 doi: 10.1109/TPAMI.2016.2577031
                        [40] Schuster M, Paliwal K K. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 1997, 45(11): 2673–2681
                        [41] Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 1025?1035
                        [42] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. Toulon, France: OpenReview.net, 2017.
                        [43] Wu Y T, Liu X, Feng Y S, Wang Z, Yan R, Zhao D Y. Relation-aware entity alignment for heterogeneous knowledge graphs. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China: IJCAI, 2019. 5278?5284
                        [44] Xing W P, Ghorbani A. Weighted pagerank algorithm. In: Proceedings of the 2nd Annual Conference on Communication Networks and Services Research. Fredericton, Canada: IEEE, 2004. 305?314
                        [45] Zhang Q H, Sun Z Q, Hu W, Chen M H, Guo L B, Qu Y Z. Multi-view knowledge graph embedding for entity alignment. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China: IJCAI.org, 2019. 5429?5435
                        [46] Pang N, Zeng W X, Tang J Y, Tan Z, Zhao X. Iterative entity alignment with improved neural attribute embedding. In: Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG2019) Co-located With the 16th Extended Semantic Web Conference (ESWC). Portoro?, Slovenia: CEUR-WS, 2019. 41?46
                        [47] Huang B, Yang F, Yin M X, Mo X Y, Zhong C. A review of multimodal medical image fusion techniques. Computational and Mathematical Methods in Medicine, 2020, 2020: Article No. 8279342
                        [48] Atrey P K, Hossain M A, El Saddik A, Kankanhalli M S. Multimodal fusion for multimedia analysis: A survey. Multimedia Systems, 2010, 16(6): 345?379 doi: 10.1007/s00530-010-0182-0
                        [49] Poria S, Cambria E, Bajpai R, Hussain A. A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 2017, 37: 98?125 doi: 10.1016/j.inffus.2017.02.003
                      2. 加載中
                      3. 圖(5) / 表(7)
                        計量
                        • 文章訪問數:  1706
                        • HTML全文瀏覽量:  1108
                        • PDF下載量:  264
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2021-06-09
                        • 錄用日期:  2021-11-26
                        • 網絡出版日期:  2022-11-10
                        • 刊出日期:  2024-04-26

                        目錄

                          /

                          返回文章
                          返回