1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
      <samp id="qm3rj"></samp>
      <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

      <video id="qm3rj"><code id="qm3rj"></code></video>

        1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
            1. 2.845

              2023影響因子

              (CJCR)

              • 中文核心
              • EI
              • 中國科技核心
              • Scopus
              • CSCD
              • 英國科學(xué)文摘

              留言板

              尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復。謝謝您的支持!

              姓名
              郵箱
              手機號碼
              標題
              留言?xún)热?/th>
              驗證碼

              融合屬性偏好和多階交互信息的可解釋評分預測研究

              鄭建興 李沁文 王素格 李德玉

              鄭建興, 李沁文, 王素格, 李德玉. 融合屬性偏好和多階交互信息的可解釋評分預測研究. 自動(dòng)化學(xué)報, 2024, 50(11): 2231?2244 doi: 10.16383/j.aas.c210457
              引用本文: 鄭建興, 李沁文, 王素格, 李德玉. 融合屬性偏好和多階交互信息的可解釋評分預測研究. 自動(dòng)化學(xué)報, 2024, 50(11): 2231?2244 doi: 10.16383/j.aas.c210457
              Zheng Jian-Xing, Li Qin-Wen, Wang Su-Ge, Li De-Yu. Research on explainable rating prediction by fusing attribute preference and multi-order interaction information. Acta Automatica Sinica, 2024, 50(11): 2231?2244 doi: 10.16383/j.aas.c210457
              Citation: Zheng Jian-Xing, Li Qin-Wen, Wang Su-Ge, Li De-Yu. Research on explainable rating prediction by fusing attribute preference and multi-order interaction information. Acta Automatica Sinica, 2024, 50(11): 2231?2244 doi: 10.16383/j.aas.c210457

              融合屬性偏好和多階交互信息的可解釋評分預測研究

              doi: 10.16383/j.aas.c210457 cstr: 32138.14.j.aas.c210457
              基金項目: 國家自然科學(xué)基金(61632011, 62076158, 62072294, 61603229), 山西省自然科學(xué)基金(20210302123468)資助
              詳細信息
                作者簡(jiǎn)介:

                鄭建興:山西大學(xué)智能信息處理研究所副教授. 主要研究方向為自然語(yǔ)言處理, 推薦系統. E-mail: jxzheng@sxu.edu.cn

                李沁文:山西大學(xué)計算機與信息技術(shù)學(xué)院碩士研究生. 主要研究方向為自然語(yǔ)言處理, 推薦系統. E-mail: 201922404015@email.sxu.edu.cn

                王素格:山西大學(xué)智能信息處理研究所教授. 主要研究方向為自然語(yǔ)言處理, 情感分析. 本文通信作者. E-mail: wsg@sxu.edu.cn

                李德玉:山西大學(xué)智能信息處理研究所教授. 主要研究方向為數據挖掘. E-mail: lidy@sxu.edu.cn

              Research on Explainable Rating Prediction by Fusing Attribute Preference and Multi-order Interaction Information

              Funds: Supported by National Natural Science Foundation of China (61632011, 62076158, 62072294, 61603229) and Natural Science Foundation of Shanxi Province (20210302123468)
              More Information
                Author Bio:

                ZHENG Jian-Xing Associate professor at the Institute of Intelligent Information Processing, Shanxi University. His research interest covers natural language processing and recommender systems

                LI Qin-Wen Master student at the School of Computer and Information Technology, Shanxi University. His research interest covers natural language processing and recommender systems

                WANG Su-Ge Professor at the Institute of Intelligent Information Processing, Shanxi University. Her research interest covers natural language processing and sentiment analysis. Corresponding author of this paper

                LI De-Yu Professor at the Institute of Intelligent Information Processing, Shanxi University. His main research interest is data mining

              • 摘要: 已有推薦系統主要基于用戶(hù)?項目交互矩陣來(lái)學(xué)習用戶(hù)和項目的向量表示, 而當交互矩陣稀疏時(shí), 推薦系統的精度較低, 推薦的結果缺乏可解釋性. 考慮到用戶(hù)?項目交互行為中的評分標簽信息, 提出了一種融合屬性偏好和多階交互信息的可解釋評分預測方法, 并根據屬性偏好對推薦結果進(jìn)行解釋. 首先, 基于注意力機制分析了用戶(hù)和項目屬性信息與評分標簽的關(guān)系, 建模了節點(diǎn)的屬性偏好特征表示; 然后, 聚合了用戶(hù)?項目交互矩陣中節點(diǎn)自身、交互鄰居和評分標簽信息, 通過(guò)圖神經(jīng)網(wǎng)絡(luò )學(xué)習了節點(diǎn)的多階交互行為特征表示; 最后, 融合了節點(diǎn)的屬性偏好特征和交互行為特征, 在異質(zhì)類(lèi)型信息空間下學(xué)習了用戶(hù)和項目的語(yǔ)義特征表示, 利用多層感知機實(shí)現了評分預測, 并在MovieLens和Douban數據集上驗證了方法的有效性. 實(shí)驗結果表明, 所提方法在平均絕對誤差(Mean absolute error, MAE)和均方根誤差(Root mean square error, RMSE)指標上有效提高了推薦系統的精度, 緩解了數據稀疏場(chǎng)景下推薦模型性能較低的問(wèn)題, 提升了推薦結果的可解釋性.
                1)  11 https://grouplens.org/datasets/movielens/2 https://movie.douban.com/
                2)  22 https://movie.douban.com/
              • 圖  1  融合屬性偏好和多階交互信息的評分預測

                Fig.  1  Rating prediction by fusing attribute preference and multi-order interaction information

                圖  2  高階交互鄰居的信息傳播

                Fig.  2  Information diffusion of higher-order interaction neighbors

                圖  3  幾種方法在ML-L-S數據集上不同稀疏性的MAE結果

                Fig.  3  MAE results of different methods on ML-L-S dataset with different sparsities

                圖  4  幾種方法在ML-L-S數據集上不同稀疏性的RMSE結果

                Fig.  4  RMSE results of different methods on ML-L-S dataset with different sparsities

                圖  5  幾種方法在ML-1M數據集上不同稀疏性的MAE結果

                Fig.  5  MAE results of different methods on ML-1M dataset with different sparsities

                圖  6  幾種方法在ML-1M數據集上不同稀疏性的RMSE結果

                Fig.  6  RMSE results of different methods on ML-1M dataset with different sparsities

                圖  7  幾種方法在Douban數據集上不同稀疏性的MAE結果

                Fig.  7  MAE results of different methods on Douban dataset with different sparsities

                圖  8  幾種方法在Douban數據集上不同稀疏性的RMSE結果

                Fig.  8  RMSE results of different methods on Douban dataset with different sparsities

                圖  9  用戶(hù)和電影的評分預測可解釋案例

                Fig.  9  Explainable example of rating prediction for users and movies

                圖  10  ML-1M數據集上的用戶(hù)和電影節點(diǎn)嵌入表示(轉換前)

                Fig.  10  The embedding representation of user and movie nodes on ML-1M dataset (before transformation)

                圖  11  ML-1M數據集上的用戶(hù)和電影節點(diǎn)嵌入表示(轉換后)

                Fig.  11  The embedding representation of user and movie nodes on ML-1M dataset (after transformation)

                圖  12  ML-L-S數據集上的用戶(hù)和電影節點(diǎn)嵌入表示(轉換前)

                Fig.  12  The embedding representation of user and movie nodes on ML-L-S dataset (before transformation)

                圖  13  ML-L-S數據集上的用戶(hù)和電影節點(diǎn)嵌入表示(轉換后)

                Fig.  13  The embedding representation of user and movie nodes on ML-L-S dataset (after transformation)

                圖  14  Douban數據集上的用戶(hù)和電影節點(diǎn)嵌入表示(轉換前)

                Fig.  14  The embedding representation of user and movie nodes on Douban dataset (before transformation)

                圖  15  Douban數據集上的用戶(hù)和電影節點(diǎn)嵌入表示(轉換后)

                Fig.  15  The embedding representation of user and movie nodes on Douban dataset (after transformation)

                表  1  實(shí)驗數據集統計信息

                Table  1  Statistical information of experimental datasets

                數據庫用戶(hù)數項目數交互數評分等級稀疏度(%)
                ML-L-S61097241008360.5 ~ 5.098.30
                ML-1M6040388310002091.0 ~ 5.095.74
                Douban302269711954931.0 ~ 5.099.07
                下載: 導出CSV

                表  2  不同方法在三組數據集上的MAE和RMSE結果

                Table  2  MAE and RMSE results of different methods on three datasets

                方法ML-L-S ML-1M Douban
                MAERMSEMAERMSEMAERMSE
                UserKNN0.875 21.278 4 0.771 00.969 3 0.649 40.825 6
                ItemKNN0.680 80.886 90.739 40.925 70.697 40.872 8
                BiasedMF0.676 90.882 40.684 50.872 40.577 50.728 4
                SVD++0.672 40.877 00.672 90.863 30.569 00.720 0
                NCF0.668 50.868 00.695 60.886 60.578 10.730 4
                AFM0.665 10.867 30.688 00.873 90.564 30.713 6
                Wide&Deep0.674 20.875 40.686 30.873 50.565 40.714 1
                ACCM0.662 80.865 70.673 40.856 60.578 90.730 1
                NGCF0.664 70.866 40.682 10.869 00.576 80.727 1
                LightGCN0.662 60.861 10.675 90.857 80.570 90.721 3
                AFN0.657 90.852 50.678 00.860 40.565 50.715 2
                IncorAtt-
                MOIntRec
                0.645 1*0.837 2*0.659 4**0.843 3**0.558 30.708 0
                注: 加粗字體表示各列最優(yōu)結果; 下劃線(xiàn)字體表示各列次優(yōu)結果. “*”表示p值小于0.05; “**”表示p值小于0.01.
                下載: 導出CSV

                表  3  IncorAttMOIntRec方法在不同嵌入維度下的MAE和RMSE結果

                Table  3  MAE and RMSE results for IncorAttMOIntRec method with different embedding dimension sizes

                嵌入維度ML-L-S ML-1M Douban
                MAERMSEMAERMSEMAERMSE
                640.650 30.847 9 0.662 20.849 7 0.558 30.708 0
                1280.645 10.837 20.659 50.844 60.563 70.711 7
                2560.648 80.844 00.659 40.843 30.568 50.717 2
                5120.651 60.849 30.662 60.845 70.576 60.723 1
                注: 加粗字體表示各列最優(yōu)結果.
                下載: 導出CSV

                表  4  IncorAttMOIntRec方法在不同注意力維度下的MAE和RMSE結果

                Table  4  MAE and RMSE results for IncorAttMOIntRec method with different attention dimension sizes

                注意力維度ML-L-S ML-1M Douban
                MAERMSEMAERMSEMAERMSE
                320.653 20.848 7 0.666 20.847 5 0.566 20.714 7
                640.645 10.837 20.657 10.846 30.558 30.708 0
                1280.648 60.842 40.659 40.843 30.566 90.718 6
                2560.650 20.846 10.659 20.845 90.573 10.722 6
                注: 加粗字體表示各列最優(yōu)結果.
                下載: 導出CSV

                表  5  三組數據集上的IncorAttMOIntRec方法消融研究

                Table  5  Ablation study of IncorAttMOIntRec method on three datasets

                變體模型ML-L-S ML-1MDouban
                MAERMSEMAERMSEMAERMSE
                去掉Rating-tag0.653 80.854 70.667 90.847 70.568 30.713 4
                去掉Multi-order
                interaction
                0.688 40.890 10.680 20.866 70.574 60.722 8
                去掉Att-preference0.656 20.854 90.668 90.848 60.569 50.717 6
                去掉Interaction0.700 70.908 70.738 10.924 50.580 30.731 9
                去掉MLP-
                outputlayer
                0.667 50.873 60.710 50.896 20.568 40.713 7
                IncorAttMOIntRec0.645 10.837 20.659 40.843 30.558 30.708 0
                注: 加粗字體表示各列最優(yōu)結果.
                下載: 導出CSV
                1. <button id="qm3rj"><thead id="qm3rj"></thead></button>
                  <samp id="qm3rj"></samp>
                  <source id="qm3rj"><menu id="qm3rj"><pre id="qm3rj"></pre></menu></source>

                  <video id="qm3rj"><code id="qm3rj"></code></video>

                    1. <tt id="qm3rj"><track id="qm3rj"></track></tt>
                        亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页
                      1. [1] 湯文兵, 任正云, 韓芳. 基于注意力機制的協(xié)同卷積動(dòng)態(tài)推薦網(wǎng)絡(luò ). 自動(dòng)化學(xué)報, 2021, 47(10): 2438?2448

                        Tang Wen-Bing, Ren Zheng-Yun, Han Fang. Attention-based collaborative convolutional dynamic network for recommendation. Acta Automatica Sinica, 2021, 47(10): 2438?2448
                        [2] Zhang Y F, Chen X. Explainable recommendation: A survey and new perspectives. Foundations and Trends in Information Retrieval, 2020, 14(1): 1?101
                        [3] Lops P, De Gemmis M, Semeraro G. Content-based recommender systems: State of the art and trends. Recommender Systems Handbook. New York: Springer, 2011. 73?105
                        [4] 潘濤濤, 文峰, 劉勤讓. 基于矩陣填充和物品可預測性的協(xié)同過(guò)濾算法. 自動(dòng)化學(xué)報, 2017, 43(9): 1597?1606

                        Pan Tao-Tao, Wen Feng, Liu Qin-Rang. Collaborative filtering recommendation algorithm based on rating matrix filling and item predictability. Acta Automatica Sinica, 2017, 43(9): 1597?1606
                        [5] Shi S Y, Zhang M, Liu Y Q, Ma S P. Attention-based adaptive model to unify warm and cold starts recommendation. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino, Italy: ACM, 2018. 127?136
                        [6] Wu L, Yang Y H, Zhang K, Hong R C, Fu Y J, Wang M. Joint item recommendation and attribute inference: An adaptive graph convolutional network approach. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi'an, China: ACM, 2020. 679?688
                        [7] Deshpande M, Karypis, G. Item-based top-N recommendation algorithms. ACM Transactions on Information Systems, 2004, 22(1): 143?177 doi: 10.1145/963770.963776
                        [8] Konstan J A, Miller B N, Maltz D, Herlocker J L, Riedl J. GroupLens: Applying collaborative filtering to Usenet news. Communications of the ACM, 1997, 40(3): 77?87 doi: 10.1145/245108.245126
                        [9] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734?749 doi: 10.1109/TKDE.2005.99
                        [10] Herlocker J L, Konstan J A, Terveen L G, Riedl J T. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 2004, 22(1): 5?53 doi: 10.1145/963770.963772
                        [11] Koren Y. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA: ACM, 2008. 426?434
                        [12] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30?37
                        [13] Salakhutdinov R, Mnih A. Probabilistic matrix factorization. In: Proceedings of the 20th International Conference on Neural Information Processing Systems. Vancouver, Canada: ACM, 2007. 1257?1264
                        [14] Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: ACM, 2008. 880?887
                        [15] Lee J, Kim S, Lebanon G, Singer Y, Bengio S. LLORMA: Local low-rank matrix approximation. Journal of Machine Learning Research, 2016, 17: 1?24
                        [16] Zhang Y F, Lai G K, Zhang M, Zhang Y, Liu Y Q, Ma S P. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. Gold Coast, Australia: ACM, 2014. 83?92
                        [17] Ren Z C, Liang S S, Li P J, Wang S Q, De Rijke M. Social collaborative viewpoint regression with explainable recommendations. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining. Cambridge, UK: ACM, 2017. 485?494
                        [18] Chen X, Qin Z, Zhang Y F, Xu T. Learning to rank features for recommendation over multiple categories. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. Pisa, Italy: ACM, 2016. 305?314
                        [19] Tan Y Z, Zhang M, Liu Y Q, Ma S P. Rating-boosted latent topics: Understanding users and items with ratings and reviews. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, USA: ACM, 2016. 2640?2646
                        [20] Zhao K Q, Cong G, Yuan Q, Zhu K Q. SAR: A sentiment-aspect-region model for user preference analysis in geo-tagged reviews. In: Proceedings of the 31st International Conference on Data Engineering. Seoul, South Korea: IEEE, 2015. 675?686
                        [21] Zhang S, Yao L N, Sun A X, Tay Y. Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys, 2020, 52(1): Article No. 5
                        [22] Xiao J, Ye H, He X N, Zhang H W, Wu F, Chua T S. Attentional factorization machines: Learning the weight of feature interactions via attention networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: ACM, 2017. 3119?3125
                        [23] Cheng H T, Koc L, Harmsen J, Shaked T, Chandra T, Aradhye H, et al. Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston, USA: ACM, 2016. 7?10
                        [24] Wang X, He X N, Wang M, Feng F L, Chua T S. Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris, France: ACM, 2019. 165?174
                        [25] Yang Z X, Dong S B. HAGERec: Hierarchical attention graph convolutional network incorporating knowledge graph for explainable recommendation. Knowledge-Based Systems, 2020, 204: Article No. 106194 doi: 10.1016/j.knosys.2020.106194
                        [26] He X N, Liao L Z, Zhang H W, Nie L Q, Hu X, Chua T S. Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web. Perth, Australia: 2017. 173?182
                        [27] Lian J X, Zhou X H, Zhang F Z, Chen Z X, Xie X, Sun G Z. xDeepFM: Combining explicit and implicit feature interactions for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London, UK: ACM, 2018. 1754?1763
                        [28] Chang S, Harper F M, Terveen L G. Crowd-based personalized natural language explanations for recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems. Boston, USA: ACM, 2016. 175?182
                        [29] Seo S, Huang J, Yang H, Liu Y. Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In: Proceedings of the 11th ACM Conference on Recommender Systems. Como, Italy: ACM, 2017. 297?305
                        [30] Chen C, Zhang M, Liu Y Q, Ma S P. Neural attentional rating regression with review-level explanations. In: Proceedings of the World Wide Web Conference. Lyon, France: ACM, 2018. 1583?1592
                        [31] 馮永, 陳以剛, 強保華. 融合社交因素和評論文本卷積網(wǎng)絡(luò )模型的汽車(chē)推薦研究. 自動(dòng)化學(xué)報, 2019, 45(3): 518?529

                        Feng Yong, Chen Yi-Gang, Qiang Bao-Hua. Social and comment text CNN model based automobile recommendation. Acta Automatica Sinica, 2019, 45(3): 518?529
                        [32] Li P J, Wang Z H, Ren Z C, Bing L D, Lam W. Neural rating regression with abstractive tips generation for recommendation. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. Shinjuku, Japan: ACM, 2017. 345?354
                        [33] Chen X, Zhang Y F, Xu H T, Qin Z, Zha H Y. Adversarial distillation for efficient recommendation with external knowledge. ACM Transactions on Information Systems, 2019, 37(1): Article No. 12
                        [34] 饒子昀, 張毅, 劉俊濤, 曹萬(wàn)華. 應用知識圖譜的推薦方法與系統. 自動(dòng)化學(xué)報, 2021, 47(9): 2061?2077

                        Rao Zi-Yun, Zhang Yi, Liu Jun-Tao, Cao Wan-Hua. Recommendation methods and systems using knowledge graph. Acta Automatica Sinica, 2021, 47(9): 2061?2077
                        [35] Wang H W, Zhao M, Xie X, Li W J, Guo M Y. Knowledge graph convolutional networks for recommender systems. In: Proceedings of the World Wide Web Conference. San Francisco, USA: ACM, 2019. 3307?3313
                        [36] Wang X, He X N, Cao Y X, Liu M, Chua T S. KGAT: Knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage, USA: ACM, 2019. 950?958
                        [37] Ying R, He R N, Chen K F, Eksombatchai P, Hamilton W L, Leskovec J. Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London, UK: ACM, 2018. 974?983
                        [38] He X N, Deng K, Wang X, Li Y, Zhang Y D, Wang M. LightGCN: Simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi'an, China: ACM, 2020. 639?648
                        [39] Jin B W, Gao C, He X N, Jin D P, Li Y. Multi-behavior recommendation with graph convolutional networks. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Xi'an, China: ACM, 2020. 659?668
                        [40] Yao Q M, Chen X N, Kwok J T, Li Y, Hsieh C J. Efficient neural interaction function search for collaborative filtering. In: Proceedings of the World Wide Web Conference. Taipei, China: ACM, 2020. 1660?1670
                        [41] Zheng J, Liu J, Shi C, Zhuang F Z, Li J Z, Wu B. Dual similarity regularization for recommendation. In: Proceedings of the 20th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Auckland, New Zealand: Springer, 2016. 542?554
                        [42] Cheng W Y, Shen Y Y, Huang L P. Adaptive factorization network: Learning adaptive-order feature interactions. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2020. 3609?3616
                      2. 加載中
                      3. 圖(15) / 表(5)
                        計量
                        • 文章訪(fǎng)問(wèn)數:  900
                        • HTML全文瀏覽量:  385
                        • PDF下載量:  62
                        • 被引次數: 0
                        出版歷程
                        • 收稿日期:  2021-05-25
                        • 錄用日期:  2021-08-12
                        • 網(wǎng)絡(luò )出版日期:  2022-01-08
                        • 刊出日期:  2024-11-26

                        目錄

                          /

                          返回文章
                          返回