基于觀(guān)測器和指定性能的非線(xiàn)性系統事件觸發(fā)跟蹤控制
doi: 10.16383/j.aas.c210387 cstr: 32138.14.j.aas.c210387
-
1.
四川大學(xué)電氣工程學(xué)院 成都 610065
-
2.
四川大學(xué) & 瀚維智能機器人感知與控制聯(lián)合實(shí)驗室 成都 610065
Event-triggered Tracking Control for a Class of Nonlinear Systems With Observer and Prescribed Performance
-
1.
College of Electrical Engineering, Sichuan University, Chengdu 610065
-
2.
Robot Perception and Control Joint Laboratory, Sichuan University & Aisono, Chengdu 610065
-
摘要: 針對一類(lèi)具有外部擾動(dòng)的非線(xiàn)性系統, 提出了一種自適應模糊跟蹤控制方法. 首先, 利用模糊邏輯系統逼近系統未知的非線(xiàn)性函數, 并設計了一個(gè)模糊狀態(tài)觀(guān)測器來(lái)估計系統的不可測狀態(tài). 其次, 通過(guò)指定性能函數, 使系統的跟蹤誤差能夠約束在指定范圍內. 然后, 利用Backsteping方法結合包含對數函數的Lyapunov泛函, 設計了一個(gè)基于事件觸發(fā)條件的自適應模糊控制器. 基于Lyapunov穩定性理論和$\tanh$函數的性質(zhì)證明了所提出的控制策略能夠保證閉環(huán)系統中所有信號是半全局一致最終有界的. 最后, 通過(guò)一個(gè)數值仿真例子驗證了所提出方法的有效性.
-
關(guān)鍵詞:
- 自適應控制 /
- 指定性能 /
- 事件觸發(fā) /
- 模糊邏輯系統 /
- 模糊觀(guān)測器
Abstract: This paper investigates an adaptive fuzzy tracking control method for a class of nonlinear systems with external disturbances. Firstly, fuzzy logic systems and the fuzzy state observer are implemented to approximate unknown nonlinear functions and estimate the unmeasured states of systems, respectively. Then, the tracking error can be constrained within the specified range by means of the performance function. Furthermore, an event-triggered adaptive fuzzy controller is designed by employing the Backstepping method and Lyapunov functional with logarithm function. The proposed control strategy can ensure that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded based on the Lyapunov stability theory and the properties of $\tanh$function. Finally, a numerical simulation example is provided to verify the effectiveness of proposed method.-
Key words:
- Adaptive control /
- prescribed performance /
- event-triggered /
- fuzzy logic system /
- fuzzy observer
-
圖 3 參考信號${y}_rf50c1hsl6$和不同方法下的系統狀態(tài)$z_{1}$
Fig. 3 Reference signal${y}_rf50c1hsl6$and system states$z_{1}$ under different methods
圖 4 參考信號${\dot{y}}_rf50c1hsl6$和不同方法下的系統狀態(tài)$z_{2}$
Fig. 4 Reference signal${\dot{y}}_rf50c1hsl6$and system states$z_{2}$underdifferent methods
圖 5 系統輸出$y = z_{1}$和觀(guān)測狀態(tài)$\hat{z}_{1}$
Fig. 5 System output$y = z_{1}$and observed state$\hat{z}_{1}$
圖 6 系統狀態(tài)$z_{2}$和觀(guān)測狀態(tài)$\hat{z}_{2}$
Fig. 6 System state$z_{2}$and observed state$\hat{z}_{2}$
圖 7 自適應律$\|{{\boldsymbol{ \vartheta}}}_{1}\|$和$\|{{\boldsymbol{ \vartheta}}}_{2}\|$
Fig. 7 Adaptive laws$\|{{\boldsymbol{ \vartheta}}}_{1}\|$and$\|{{\boldsymbol{ \vartheta}}}_{2}\|$
亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Martin J, Corless G L. Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Transactions on Automatic Control, 1981, 26(5): 1139?1144 doi: 10.1109/TAC.1981.1102785 [2] 王新華, 陳增強, 袁著(zhù)祉. 基于擴張觀(guān)測器的非線(xiàn)性不確定系統輸出跟蹤. 控制與決策, 2004, 19(10): 1113?1116 doi: 10.3321/j.issn:1001-0920.2004.10.008Wang Xin-Hua, Chen Zeng-Qiang, Yuan Zhu-Zhi. Output tracking based on extended observer for nonlinear uncertain systems. Control and Decision, 2004, 19(10): 1113?1116 doi: 10.3321/j.issn:1001-0920.2004.10.008 [3] Cai Z, Dequeiroz M S, Dawson D M. Robust adaptive asymptotic tracking of nonlinear systems with additive disturbance. IEEE Transactions on Automatic Control, 2006, 51(3): 524?529 doi: 10.1109/TAC.2005.864204 [4] Pan H H, Chang X P, Zhang D. Event-triggered adaptive control for uncertain constrained nonlinear systems with its application. IEEE Transactions on Industrial Informatics, 2020, 16(6): 3818?3827 doi: 10.1109/TII.2019.2929748 [5] Xing L T, Wen C Y, Liu Z T, Su H Y, Cai J P. Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Transactions on Automatic Control, 2017, 62(4): 2071?2076 doi: 10.1109/TAC.2016.2594204 [6] Wang W, Tong S. Distributed adaptive fuzzy event-triggered containment control of nonlinear strict-feedback systems. IEEE Transactions on Cybernetics, 2020, 50(9): 3973?3983 doi: 10.1109/TCYB.2019.2917078 [7] Su X H, Liu Z, Lai G Y, Zhang Y, Chen C L P. Event-triggered adaptive fuzzy control for uncertain strict-feedback nonlinear systems with guaranteed transient performance. IEEE Transactions on Fuzzy Systems, 2019, 27(12): 2327?2337 doi: 10.1109/TFUZZ.2019.2898156 [8] Wang J H, Liu Z, Chen C L P, Zhang Y. Event-triggered fuzzy adaptive compensation control for uncertain stochastic nonlinear systems with given transient specification and actuator failures. Fuzzy Sets and Systems, 2019, 365: 1?21 doi: 10.1016/j.fss.2018.04.013 [9] 王敏, 黃龍旺, 楊辰光. 基于事件觸發(fā)的離散MIMO系統自適應評判容錯控制. 自動(dòng)化學(xué)報, 2022, 48(5): 1234?1245 doi: 10.16383/j.aas.c200721Wang Min, Huang Long-Wang, Yang Chen-Guang. Event-triggered adaptive critic fault-tolerant control for a class of discrete-time MIMO systems. Acta Automatica Sinica, 2022, 48(5): 1234?1245 doi: 10.16383/j.aas.c200721 [10] Bechlioulis C P, Rovithakis G A. A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica, 2014, 50(4): 1217?1226 doi: 10.1016/j.automatica.2014.02.020 [11] 司文杰, 王聰, 曾瑋. 狀態(tài)觀(guān)測的未知死區非線(xiàn)性系統的自適應神經(jīng)網(wǎng)絡(luò )跟蹤控制. 控制與決策, 2017, 32(5): 780?788Si Wen-Jie, Wang Cong, Zeng Wei. Observed-based adaptive neural tracking control for nonlinear systems with unknown dead-zone. Control and Decision, 2017, 32(5): 780?788 [12] 楊彬, 周琪, 曹亮, 魯仁全. 具有指定性能和全狀態(tài)約束的多智能體系統事件觸發(fā)控制. 自動(dòng)化學(xué)報, 2019, 45(8): 1527?1535Yang Bin, Zhou Qi, Cao Liang, Lu Ren-Quan. Event-triggered control for multi-agent systems with prescribed performance and full state constraints. Acta Automatica Sinica, 2019, 45(8): 1527?1535 [13] Qiu J B, Sun K K, Wang T, Gao H J. Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Transactions on Fuzzy Systems, 2019, 27(11): 2152?2162 doi: 10.1109/TFUZZ.2019.2895560 [14] Qiu J B, Wang T, Sun K K, Rudas I J, Gao H J. Disturbance observer-based adaptive fuzzy control for strict-feedback nonlinear systems with finite-time prescribed performance. IEEE Transactions on Fuzzy Systems, 2022, 30(4): 1175?1184 doi: 10.1109/TFUZZ.2021.3053327 [15] Fischer N, Dani A, Sharma N, Dixon W E. Saturated control of an uncertain nonlinear system with input delay. Automatica, 2013, 49(6): 1741?1747 doi: 10.1016/j.automatica.2013.02.013 [16] 張化光, 張欣, 羅艷紅, 楊珺. 自適應動(dòng)態(tài)規劃綜述. 自動(dòng)化學(xué)報, 2013, 39(4): 303?311 doi: 10.1016/S1874-1029(13)60031-2Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4): 303?311 doi: 10.1016/S1874-1029(13)60031-2 [17] Sun Z Y, Zhang C H, Wang Z. Adaptive disturbance attenuation for generalized high-order uncertain nonlinear systems. Automatica, 2017, 80: 102?109 doi: 10.1016/j.automatica.2017.02.036 [18] Li D F, Pan Z H, Deng H B, Hu L Y. Adaptive path following controller of a multi-joint snake robot based on the improved serpenoid curve. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3831?3842 doi: 10.1109/TIE.2021.3075851 [19] Deng H, Krsti? M. Stochastic nonlinear stabilization-I: A backstepping design. Systems and Control Letters, 1997, 32(3): 143−150 [20] Li Y X, Yang G H. Adaptive neural control of pure-feedback nonlinear systems with event-triggered communications. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6242?6251 doi: 10.1109/TNNLS.2018.2828140 [21] 王桐, 邱劍彬, 高會(huì )軍. 隨機非線(xiàn)性系統基于事件觸發(fā)機制的自適應神經(jīng)網(wǎng)絡(luò )控制. 自動(dòng)化學(xué)報, 2019, 45(1): 226?233Wang Tong, Qiu Jian-Bin, Gao Hui-Jun. Event-triggered adaptive neural network control for a class of stochastic nonlinear systems. Acta Automatica Sinica, 2019, 45(1): 226?233 [22] Zhang C H, Yang G H. Event-triggered adaptive output feedback control for a class of uncertain nonlinear systems with actuator failures. IEEE Transactions on Cybernetics, 2020, 50(1): 201?210 doi: 10.1109/TCYB.2018.2868169 [23] Zhou Q, Shi P, Xu S. Adaptive output-feedback fuzzy tracking control for a class of nonlinear systems. IEEE Transactions on Fuzzy Systems, 2011, 19(5): 972?982 doi: 10.1109/TFUZZ.2011.2158652 [24] Huang L T, Li Y M, Tong S C. Fuzzy adaptive output feedback control for MIMO switched nontriangular structure nonlinear systems with unknown control directions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(2): 550?564 doi: 10.1109/TSMC.2017.2778099 [25] Cao L, Li H Y, Wang N, Zhou Q. Observer-based event-triggered adaptive decentralized fuzzy control for nonlinear large-scale systems. IEEE Transactions on Fuzzy Systems, 2019, 27(6): 1201?1214 doi: 10.1109/TFUZZ.2018.2873971 [26] Tong S C, Min X, Li Y. Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Transactions on Cybernetics, 2020, 50(9): 3903?3913 doi: 10.1109/TCYB.2020.2977175 [27] Tong S C, Li Y M, Feng G, Li T S. Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Transactions on Systems, Man and Cybernetics, Part B, Cybernetics, 2011, 41(4): 1124?1135 doi: 10.1109/TSMCB.2011.2108283 [28] Wang W, Tong S. Adaptive fuzzy bounded control for consensus of multiple strict-feedback nonlinear systems. IEEE Transactions on Cybernetics, 2018, 48(2): 522?531 doi: 10.1109/TCYB.2016.2645763 [29] Zhang L L, Yang G H. Adaptive fuzzy prescribed performance control of nonlinear systems with hysteretic actuator nonlinearity and faults. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(12): 2349?2358 doi: 10.1109/TSMC.2017.2707241 [30] Wang L, Basin M V, Li H, Lu R Q. Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Transactions on Fuzzy Systems, 2018, 26(4): 2336?2347 doi: 10.1109/TFUZZ.2017.2774185