基于網(wǎng)格重構學(xué)習的染色體分類(lèi)模型
doi: 10.16383/j.aas.c210303
-
1.
中國礦業(yè)大學(xué)地下空間智能控制教育部工程研究中心 徐州 221116
-
2.
中國礦業(yè)大學(xué)信息與控制工程學(xué)院 徐州 221116
A Grid Reconstruction Learning Model for Chromosome Classification
-
1.
Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education, China University of Mining and Technology, Xuzhou 221116
-
2.
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116
-
摘要: 染色體的分類(lèi)是核型分析的重要任務(wù)之一. 因其柔軟易彎曲, 且類(lèi)間差異小、類(lèi)內差異大等特點(diǎn), 其精準分類(lèi)仍然是一個(gè)具有挑戰性的難題. 對此, 提出一種基于網(wǎng)格重構學(xué)習(Grid reconstruction learning, GRiCoL)的染色體分類(lèi)模型. 該模型首先將染色體圖像網(wǎng)格化, 提取局部分類(lèi)特征; 然后通過(guò)重構網(wǎng)絡(luò )對全局特征進(jìn)行二次提取; 最后完成分類(lèi). 相比于現有幾種先進(jìn)方法, GRiCoL同時(shí)兼顧局部和全局特征提取更有效的分類(lèi)特征, 有效改善染色體彎曲導致的分類(lèi)性能下降, 參數規模合理. 通過(guò)基于G帶、熒光原位雜交 (Fluorescence in situ hybridization, FISH)、Q帶染色體公開(kāi)數據集的實(shí)驗表明: GRiCoL能夠更好地弱化染色體彎曲帶來(lái)的影響, 在不同數據集上的分類(lèi)準確度均優(yōu)于現有分類(lèi)方法.
-
關(guān)鍵詞:
- 核型分析 /
- 染色體分類(lèi) /
- 特征重構 /
- 網(wǎng)格化
Abstract: Chromosome classification is one of the key tasks of karyotype analysis. However, due to chromosomes are flexible hence exhibit less difference between different types while significant difference within same type, accurate classification of chromosome remains a challenging issue. In this paper, a chromosome classification model based on grid reconstruction learning (GRiCoL) is proposed. To weaken the impact of the bendy state, chromosome images are first grid-enabled for feature extraction separately. Subsequentially, global features are extracted for the second time by reconstruction network, which is followed by classification. Compared with the state-of-the-art methods, the proposed GRiCoL can get more efficient discriminable features based on both local and global features, therefore can overcome the adverse effects of bandy form of chromosome with reasonable parameter scale. Experiments on public G band, fluorescence in situ hybridization (FISH) as well as Q band chromosome datasets show that GRiCoL can extract discriminative features that weaken the bending of chromosomes more efficiently, meanwhile, higher performance was obtained as compared to current classification algorithms.-
Key words:
- Karyotype analysis /
- chromosome classification /
- feature reconstruction /
- gridding
-
圖 1 基于網(wǎng)格重構學(xué)習的染色體分類(lèi)模型
Fig. 1 Chromosome classification model based on grid reconstruction learning
圖 5 骨干網(wǎng)絡(luò )第50層特征的導向反向傳播可視化
Fig. 5 Visualization of guided back propagation of the 50th layer features of the backbone network
表 1 交疊網(wǎng)格設計的分類(lèi)性能對比
Table 1 Classification performance comparison between grid with and without overlapping
模型 G帶 FISH Q帶 無(wú)交疊 GRiCoL 98.1% 96.2% 95.3% GRiCoL 99.5% 97.2% 97.3% p值 2.66e?22 0.52 1.71e?8 下載: 導出CSV表 2 不同N數量下分類(lèi)性能的對比
Table 2 Classification performance comparison between grids with different N
N G帶(%) FISH (%) Q帶(%) Gflops 參數量(M) 2 98.5 96.1 95.8 11.5 22.1 3 99.5 97.2 97.3 26.0 27.5 4 99.2 97.8 97.6 46.3 35.0 下載: 導出CSV表 3 不同模型分類(lèi)性能對比(%)
Table 3 Classification performance comparison between different models (%)
下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Madian N, Jayanthi K B. Analysis of human chromosome classification using centromere position. Measurement, 2014, 47: 287?295 doi: 10.1016/j.measurement.2013.08.033 [2] Abid F, Hamami L. A survey of neural network based automated systems for human chromosome classification. Artificial Intelligence Review, 2018, 49(1): 41?56 doi: 10.1007/s10462-016-9515-5 [3] Poletti E, Grisan E, Ruggeri A. A modular framework for the automatic classification of chromosomes in Q-band images. Computer Methods and Programs in Biomedicine, 2012, 105(2): 120?130 doi: 10.1016/j.cmpb.2011.07.013 [4] Khan S, DSouza A, Sanches J, Ventura R. Geometric correction of deformed chromosomes for automatic Karyotyping. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, USA: IEEE, 2012. 4438?4441 [5] Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S. CNN features off-the-shelf: An astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus, USA: IEEE, 2014. 512?519 [6] Lerner B, Guterman H, Dinstein I, Romem Y. Medial axis transform-based features and a neural network for human chromosome classification. Pattern Recognition, 1995, 28(11): 1673?1683 doi: 10.1016/0031-3203(95)00042-X [7] Ming D L, Tian J W. Automatic pattern extraction and classification for chromosome images. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31(7): 866?877 doi: 10.1007/s10762-010-9640-1 [8] Markou C M C, Delopoulos A. Automatic chromosome classification using support vector machines. In: Proceedings of the IEEE Information Technology, Networking, Electronic and Automation Control Conference. 2012. 1?24 [9] Gao D Y, Madden M, Chambers D, Lyons G. Bayesian ANN classifier for ECG arrhythmia diagnostic system: A comparison study. In: Proceedings of the IEEE International Joint Conference on Neural Networks. Montreal, Canada: IEEE, 2005. 2383?2388 [10] 田娟秀, 劉國才, 谷珊珊, 鞠忠建, 劉勁光, 顧冬冬. 醫學(xué)圖像分析深度學(xué)習方法研究與挑戰. 自動(dòng)化學(xué)報, 2018, 44(3): 401?424Tian Juan-Xiu, Liu Guo-Cai, Gu Shan-Shan, Ju Zhong-Jian, Liu Jin-Guang, Gu Dong-Dong. Deep learning in medical image analysis and its challenges. Acta Automatica Sinica, 2018, 44(3): 401?424 [11] 宋燕, 王勇. 多階段注意力膠囊網(wǎng)絡(luò )的圖像分類(lèi). 自動(dòng)化學(xué)報, 2024, 50(9): 1804?1817Song Yan, Wang Yong. Multi-stage attention-based capsule networks for image classification. Acta Automatica Sinica, 2024, 50(9): 1804?1817 [12] 馮建周, 馬祥聰. 基于遷移學(xué)習的細粒度實(shí)體分類(lèi)方法的研究. 自動(dòng)化學(xué)報, 2020, 46(8): 1759?1766Feng Jian-Zhou, Ma Xiang-Cong. Fine-grained entity type classification based on transfer learning. Acta Automatica Sinica, 2020, 46(8): 1759?1766 [13] Sharma M, Saha O, Sriraman A, Hebbalaguppe R, Vig L, Karande S. Crowdsourcing for chromosome segmentation and deep classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE, 2017. 786?793 [14] Swati, Gupta G, Yadav M, Sharma M, Vig L. Siamese networks for chromosome classification. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW). Venice, Italy: IEEE, 2017. 72?81 [15] Javan-Roshtkhari M, Setarehdan S K. A new approach to automatic classification of the curved chromosomes. In: Proceedings of the 5th International Symposium on Image and Signal Processing and Analysis. Istanbul, Turkey: IEEE, 2007. 19?24 [16] Zhang J P, Hu W J, Li S Y, Wen Y F, Bao Y, Huang H F, et al. Chromosome classification and straightening based on an interleaved and multi-task network. IEEE Journal of Biomedical and Health Informatics, 2021, 25(8): 3240?3251 doi: 10.1109/JBHI.2021.3062234 [17] Qin Y L, Wen J, Zheng H, Huang X L, Yang J, Song N, et al. Varifocal-net: A chromosome classification approach using deep convolutional networks. IEEE Transactions on Medical Imaging, 2019, 38(11): 2569?2581 doi: 10.1109/TMI.2019.2905841 [18] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016. 770?778 [19] Wu Y R, Yue Y S, Tan X, Wang W, Lu T. End-to-end chromosome karyotyping with data augmentation using GAN. In: Proceedings of the 25th IEEE International Conference on Image Processing (ICIP). Athens, Greece: IEEE, 2018. 2456?2460 [20] Yang Z, Luo T G, Wang D, Hu Z Q, Gao J, Wang L W. Learning to navigate for fine-grained classification. In: Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018. 438?454 [21] 羅建豪, 吳建鑫. 基于深度卷積特征的細粒度圖像分類(lèi)研究綜述. 自動(dòng)化學(xué)報, 2017, 43(8): 1306?1318Luo Jian-Hao, Wu Jian-Xin. A survey on fine-grained image categorization using deep convolutional features. Acta Automatica Sinica, 2017, 43(8): 1306?1318 [22] Cui Y, Zhou F, Wang J, Liu X, Lin Y Q, Belongie S. Kernel pooling for convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 3049?3058 [23] Lin T Y, RoyChowdhury A, Maji S. Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 1449?1457 [24] Chen Y, Bai Y L, Zhang W, Mei T. Destruction and construction learning for fine-grained image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 5152?5161 [25] Fu J L, Zheng H L, Mei T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE, 2017. 4476?4484 [26] Wei X S, Xie C W, Wu J X, Shen C H. Mask-CNN: Localizing parts and selecting descriptors for fine-grained bird species categorization. Pattern Recognition, 2018, 76: 704?714 doi: 10.1016/j.patcog.2017.10.002 [27] Fukui H, Hirakawa T, Yamashita T, Fujiyoshi H. Attention branch network: Learning of attention mechanism for visual explanation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 10697?10706 [28] Lin C C, Zhao G S, Yang Z R, Yin A H, Wang X M, Guo L, et al. CIR-Net: Automatic classification of human chromosome based on inception-ResNet architecture. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(3): 1285?1293 doi: 10.1109/TCBB.2020.3003445 [29] Hu X, Yi W L, Jiang L, Wu S J, Zhang Y, Du J Q, et al. Classification of metaphase chromosomes using deep convolutional neural network. Journal of Computational Biology, 2019, 26(5): 473?484 doi: 10.1089/cmb.2018.0212 [30] Wang X W, Zheng B, Li S B, Mulvihill J J, Wood M C, Liu H. Automated classification of metaphase chromosomes: Optimization of an adaptive computerized scheme. Journal of Biomedical Informatics, 2009, 42(1): 22?31 doi: 10.1016/j.jbi.2008.05.004 [31] 劉嘉敏, 蘇遠歧, 魏平, 劉躍虎. 基于長(cháng)短記憶與信息注意的視頻?腦電交互協(xié)同情感識別. 自動(dòng)化學(xué)報, 2020, 46(10): 2137?2147Liu Jia-Min, Su Yuan-Qi, Wei Ping, Liu Yue-Hu. Video-EEG based collaborative emotion recognition using LSTM and information-attention. Acta Automatica Sinica, 2020, 46(10): 2137?2147 [32] Springenberg J T, Dosovitskiy A, Brox T, Riedmiller M A. Striving for simplicity: The all convolutional net. In: Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: 2015. [33] Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9: 2579?2605 [34] Zhang Y Z, Liu S W, Qi L, Coleman S, Kerr D, Shi W D. Multi-level and multi-scale horizontal pooling network for person re-identification. Multimedia Tools and Applications, 2020, 79(39): 28603?28619 [35] 王雅湄, 王振友. 基于多區域特征的深度卷積神經(jīng)網(wǎng)絡(luò )模型. 應用數學(xué)進(jìn)展, 2019, 8(11): 1753?1765 doi: 10.12677/AAM.2019.811205Wang Ya-Mei, Wang Zhen-You. Deep convolutional neural network model based on multi-region feature. Advances in Applied Mathematics, 2019, 8(11): 1753?1765 doi: 10.12677/AAM.2019.811205