Bone Ultrasound Segmentation Network Based on Sequential Attention and Local Phase Guidance
-
摘要: 在超聲輔助的骨科手術導航中, 需要從采集的超聲圖像序列中精確分割出骨結構, 并展示給醫生, 來輔助醫生進行術中決策. 但是, 圖像噪聲、成像偽影以及模糊的骨邊界導致從超聲圖像序列中精確分割提取骨結構十分困難. 為解決該問題, 提出一種新的基于序列注意力與局部相位引導的骨超聲圖像分割網絡. 該網絡一方面自適應地利用超聲序列幀之間的關系即序列注意力來輔助骨結構的語義分割. 另一方面, 該網絡通過引入局部相位引導模塊, 突出骨邊緣信息, 進一步提高分割精度. 利用包含19 050幅圖像的骨超聲數據集, 進行交叉實驗、消融實驗并與最新的超聲骨分割方法進行比較. 實驗結果表明所提方法對骨結構分割精度高, 優于現有的超聲骨分割方法.Abstract: In the ultrasound assisted navigation of orthopaedics, the bone structure needs to be segmented accurately from the collected ultrasound images and displayed to the doctor to assist the intraoperative decision-making. However, it is difficult to segment bone structures from ultrasound images because of imaging noises, shadow artifacts and blurred bone boundaries. For solving this problem, this paper proposes a bone ultrasound image segmentation network based on sequential attention and local phase guidance. On the one hand, the network adaptively uses the relationship between frames of ultrasound sequence, that is, sequence attention, to assist the semantic segmentation of bone structures. On the other hand, the local phase guidance module is introduced to highlight the bone edge information and further improve the segmentation accuracy. We performed the cross validation, ablation experiments and the comparison experiments with the state-of-arts by using a dataset that contained 19 050 bone ultrasound images. The experimental results show that the proposed method has high accuracy and is superior to the existing bone segmentation methods.
-
圖 1 基于序列注意力與局部相位引導的骨超聲圖像分割網絡系統框圖; 圖中ConvA表示卷積核為1×1 、步長為1的卷積操作; ConvB表示卷積核為3×3、 步長為1的卷積操作
Fig. 1 Bone ultrasound segmentation network based on sequential attention and local phase guidance; ConvA denotes the convolution operation with kernel size of 1×1 and a stride of 1; ConvB denotes the convolution operation with kernel size of 3×3 and a stride of 1
圖 5 利用所提出的分割網絡對骨結構進行分割的實際結果(第1行: 待分割的骨超聲圖像;第2行: 專家手動標注的骨結構; 第3行: 利用所提出的方法自動分割的骨結構)
Fig. 5 Bone segmentation results by using the proposed segmentation network (The first line: Ultrasound bone images to be segmented; The second line: Bone structures manually delineated by experts; The third line: Segmented bone structures using the proposed method)
圖 7 局部相位模塊消融實驗結果示例. 第1幀: 超聲圖像幀; 第2幀: 手動標注的骨結構;第3幀: 帶有局部相位模塊的模型分割結果; 第4幀: 去除局部相位模塊的模型分割結果
Fig. 7 Ablation results of local phase guidance (The first graph: Ultrasound image frame; The second graph: Manually delineated bone structures; The third graph: Results of the model with local phase guidance; The fourth graph: Results of the model without local phase guidance)
表 1 本研究采集的超聲圖像序列數據集的信息
Table 1 Information of the ultrasound image sequence dataset collected in this study
志愿者ID 圖像幀數量 圖像分辨率(mm/像素) 1 1 900 0.19 ~ 0.21 2 2 010 0.17 ~ 0.21 3 1 740 0.19 ~ 0.21 4 1 870 0.21 ~ 0.23 5 2 010 0.19 ~ 0.23 6 1 980 0.17 ~ 0.21 7 1 560 0.18 ~ 0.23 8 1 980 0.19 ~ 0.21 9 1 900 0.21 ~ 0.23 10 2 100 0.17 ~ 0.23 表 2 所提出的分割網絡對10名志愿者采集的超聲序列圖像的分割結果
Table 2 Results of our proposed model obtained on the ultrasound images from ten volunteers
Exp_K 交并比 IoU 平均歐氏距離 AED Exp_1 0.91 ± 0.08 0.41 ± 0.06 Exp_2 0.90 ± 0.08 0.39 ± 0.07 Exp_3 0.91 ± 0.07 0.39 ± 0.06 Exp_4 0.92 ± 0.07 0.37 ± 0.05 Exp_5 0.90 ± 0.07 0.41 ± 0.08 Exp_6 0.89 ± 0.08 0.43 ± 0.08 Exp_7 0.91 ± 0.06 0.42 ± 0.07 Exp_8 0.90 ± 0.07 0.41 ± 0.09 Exp_9 0.92 ± 0.06 0.40 ± 0.07 Exp_10 0.91 ± 0.08 0.39 ± 0.09 表 3 針對主干網絡的比較實驗結果
Table 3 Comparison experiments by using different backbones
主干網絡 ResNet18 ResNet34 ResNet50 ResNet101 VGGNet 超聲圖像骨分割平均交并比IoU值 0.89 ± 0.10 0.90 ± 0.08 0.91 ± 0.07 0.89 ± 0.09 0.89 ± 0.09 表 4 本文所提出的超聲圖像分割網絡與其他最新的分割方法的實驗結果(IoU值)比較
Table 4 Comparison of the experimental results (IoU values) of the ultrasound image segmentation network proposed in this study with other state-of-the-art segmentation methods
實驗結果/
方法局部相位引導
CNNBoneNet模型 濾波層引導
CNN時空CNN 注意引導網絡
AGNet三重注意力網絡
TriANet本文方法 Exp_1 0.88 0.88 0.87 0.85 0.85 0.86 0.91 Exp_2 0.87 0.88 0.86 0.84 0.85 0.85 0.90 Exp_3 0.87 0.89 0.87 0.86 0.86 0.88 0.91 Exp_4 0.89 0.89 0.87 0.85 0.86 0.87 0.92 Exp_5 0.87 0.89 0.85 0.86 0.87 0.87 0.90 Exp_6 0.86 0.88 0.85 0.84 0.85 0.85 0.89 Exp_7 0.86 0.90 0.86 0.84 0.86 0.87 0.91 Exp_8 0.87 0.88 0.84 0.85 0.86 0.86 0.90 Exp_9 0.89 0.91 0.89 0.86 0.87 0.88 0.92 Exp_10 0.87 0.89 0.87 0.87 0.87 0.89 0.91 平均值 0.87 ± 0.13 0.88 ± 0.08 0.86 ± 0.14 0.87 ± 0.12 0.86 ± 0.09 0.88 ± 0.10 0.91 ± 0.07 亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Zhe Z, Zhu J J, Song F, He D W, Deng J Z, Chen F, et al. Intraoperative ultrasound-guided reduction of femoral shaft fractures using intramedullary nailing: A technical note. Archives of Orthopaedic and Trauma Surgery, 2019, 139(5): 589?596 doi: 10.1007/s00402-018-3085-8 [2] Zhou H, Zhang G, Li M, Qu X Y, Cao Y J, Liu X, et al. Ultrasonography-guided closed reduction in the treatment of displaced transphyseal fracture of the distal humerus. Journal of Orthopaedic Surgery and Research, 2020, 15(1): Article No. 575 doi: 10.1186/s13018-020-02118-2 [3] Wein W, Karamalis A, Baumgartner A, Navab N. Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery. International Journal of Computer Assisted Radiology and Surgery, 2015, 10(6): 971?979 doi: 10.1007/s11548-015-1208-z [4] Hacihaliloglu I. Ultrasound imaging and segmentation of bone surfaces: A review. Technology, 2017, 5(2): 74?80 doi: 10.1142/S2339547817300049 [5] Pandey P U, Quader N, Guy P, Garbi R, Hodgson A J. Ultrasound bone segmentation: A scoping review of techniques and validation practices. Ultrasound in Medicine and Biology, 2020, 46(4): 921?935 doi: 10.1016/j.ultrasmedbio.2019.12.014 [6] Masson-Sibut A, Nakib A, Petit E, Leitner F. Computer-assisted intramedullary nailing using real-time bone detection in 2D ultrasound images. In: Proceedings of the 2nd International Workshop on Machine Learning in Medical Imaging. Toronto, Canada: Springer, 2011. 18?25 [7] Wang P Y, Patel V M, Hacihaliloglu I. Simultaneous segmentation and classification of bone surfaces from ultrasound using a multi-feature guided CNN. In: Proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention. Granada, Spain: Springer, 2018. 134?142 [8] Huang Z X, Wang L W, Leung F H F, Banerjee S, Yang D, Lee T, et al. Bone feature segmentation in ultrasound spine image with robustness to speckle and regular occlusion noise. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics (SMC). Toronto, Canada: IEEE, 2020. 1566?1571 [9] Hacihaliloglu I, Abugharbieh R, Hodgson A, Rohling R. Bone segmentation and fracture detection in ultrasound using 3D local phase features. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention. New York, USA: Springer, 2008. 287?295 [10] 范家偉, 張如如, 陸萌, 何佳雯, 康霄陽, 柴文俊, 等. 深度學習方法在糖尿病視網膜病變診斷中的應用. 自動化學報, 2021, 47(5): 985?1004Fan Jia-Wei, Zhang Ru-Ru, Lu Meng, He Jia-Wen, Kang Xiao-Yang, Chai Wen-Jun, et al. Applications of deep learning techniques for diabetic retinal diagnosis. Acta Automatica Sinica, 2021, 47(5): 985?1004 [11] 蔣蕓, 譚寧. 基于條件深度卷積生成對抗網絡的視網膜血管分割. 自動化學報, 2021, 47(1): 136?147Jiang Yun, Tan Ning. Retinal vessel segmentation based on conditional deep convolutional generative adversarial networks. Acta Automatica Sinica, 2021, 47(1): 136?147 [12] 夏平, 施宇, 雷幫軍, 龔國強, 胡蓉, 師冬霞. 復小波域混合概率圖模型的超聲醫學圖像分割. 自動化學報, 2021, 47(1): 185?196Xia Ping, Shi Yu, Lei Bang-Jun, Gong Guo-Qiang, Hu Rong, Shi Dong-Xia. Ultrasound medical image segmentation based on hybrid probabilistic graphical model in complex-wavelet domain. Acta Automatica Sinica, 2021, 47(1): 185?196 [13] Ouahabi A, Taleb-Ahmed A. RETRACTED: Deep learning for real-time semantic segmentation: Application in ultrasound imaging. Pattern Recognition Letters, 2021, 144: 27?34 doi: 10.1016/j.patrec.2021.01.010 [14] Baka N, Leenstra S, van Walsum T. Ultrasound aided vertebral level localization for lumbar surgery. IEEE Transactions on Medical Imaging, 2017, 36(10): 2138?2147 doi: 10.1109/TMI.2017.2738612 [15] Ciganovic M, ?zdemir F, Farshad M, G?ksel O. Deep learning techniques for bone surface delineation in ultrasound. In: Proceedings of the SPIE 10955, Medical Imaging 2019: Ultrasonic Imaging and Tomography. San Diego, USA: SPIE, 2019. Article No. 109550Y [16] Wang P Y, Vives M, Patel V M, Hacihaliloglu I. Robust real-time bone surfaces segmentation from ultrasound using a local phase tensor-guided CNN. International Journal of Computer Assisted Radiology and Surgery, 2020, 15(7): 1127?1135 doi: 10.1007/s11548-020-02184-1 [17] Alsinan A Z, Patel V M, Hacihaliloglu I. Automatic segmentation of bone surfaces from ultrasound using a filter-layer-guided CNN. International Journal of Computer Assisted Radiology and Surgery, 2019, 14(5): 775?783 doi: 10.1007/s11548-019-01934-0 [18] Luan K, Li Z Y, Li J. An efficient end-to-end CNN for segmentation of bone surfaces from ultrasound. Computerized Medical Imaging and Graphics, 2020, 84: Article No. 101766 doi: 10.1016/j.compmedimag.2020.101766 [19] Hu P, Caba F, Wang O, Lin Z, Sclaroff S, Perazzi F. Temporally distributed networks for fast video semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020. 8815?8824 [20] Yao R, Xu X, Zhou Y, Zhao J Q, Fang L. Joint attention mechanism for unsupervised video object segmentation. In: Proceedings of the 4th Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Beijing, China: Springer, 2021. 154?165 [21] Alcázar J L, Bravo M A, Jeanneret G, Thabet A K, Brox T, Arbeláez P, et al. MAIN: Multi-attention instance network for video segmentation. Computer Vision and Image Understanding, 2021, 210: Article No. 103240 doi: 10.1016/j.cviu.2021.103240 [22] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. 770?778 [23] He K M, Zhang X Y, Ren S Q, Sun J. Identity mappings in deep residual networks. In: Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016. 630?645 [24] Cox J, Rubin S, Adams J, Pereira C, Dighe M, Alessio A. Hyperparameter selection for ResNet classification of malignancy from thyroid ultrasound images. In: Proceedings of the SPIE 11314, Medical Imaging 2020: Computer-Aided Diagnosis. Houston, USA: SPIE, 2020. Article No. 1131447 [25] Zhang Q, Cui Z P, Niu X G, Geng S J, Qiao Y. Image segmentation with pyramid dilated convolution based on ResNet and U-Net. In: Proceedings of the 24th International Conference on Neural Information Processing. Guangzhou, China: Springer, 2017. 364?372 [26] Hacihaliloglu I, Rasoulian A, Rohling R N, Abolmaesumi P. Local phase tensor features for 3-D ultrasound to statistical shape+pose spine model registration. IEEE Transactions on Medical Imaging, 2014, 33(11): 2167?2179 doi: 10.1109/TMI.2014.2332571 [27] Hacihaliloglu I. Localization of bone surfaces from ultrasound data using local phase information and signal transmission maps. In: Proceedings of the 5th International Workshop on Computational Methods and Clinical Applications in Musculoskeletal Imaging. Quebec City, Canada: Springer, 2017. 1?11 [28] Xu K, Wen L Y, Li G R, Bo L F, Huang Q M. Spatiotemporal CNN for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 1379?1388 [29] Li J Y, Zhao Y K, Fu J, Wu J J, Liu J. Attention-guided network for semantic video segmentation. IEEE Access, 2019, 7: 140680?140689 doi: 10.1109/ACCESS.2019.2943365 [30] Tian Y, Zhang Y J, Zhou D, Cheng G H, Chen W G, Wang R L. Triple attention network for video segmentation. Neurocomputing, 2020, 417: 202?211 doi: 10.1016/j.neucom.2020.07.078