異構集成代理輔助的區間多模態(tài)粒子群優(yōu)化算法
doi: 10.16383/j.aas.c210223 cstr: 32138.14.j.aas.c210223
-
1.
中國礦業(yè)大學(xué)信息與控制工程學(xué)院 徐州 221116
-
2.
中國礦業(yè)大學(xué)機械電子與信息工程學(xué)院(北京) 北京 100083
Interval Multimodal Particle Swarm Optimization Algorithm Assisted by Heterogeneous Ensemble Surrogate
-
1.
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116
-
2.
School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083
-
摘要: 現實(shí)生活中的很多黑盒優(yōu)化問(wèn)題可歸為高計算代價(jià)的多模態(tài)優(yōu)化問(wèn)題(Multimodal optimization problem, MMOP), 即昂貴多模態(tài)優(yōu)化問(wèn)題(Expensive MMOP, EMMOP). 在處理該類(lèi)問(wèn)題時(shí), 決策者希望以盡量少的計算代價(jià)(即盡量少的真實(shí)函數評價(jià)次數)找到多個(gè)高質(zhì)量的最優(yōu)解. 然而, 已有代理輔助的進(jìn)化優(yōu)化算法(Surrogate-assisted evolutionary algorithm, SAEA)很少考慮問(wèn)題的多模態(tài)屬性, 運行一次僅可獲得問(wèn)題的一個(gè)最優(yōu)解. 鑒于此, 研究一種異構集成代理輔助的區間多模態(tài)粒子群優(yōu)化(Interval multimodal particle swarm optimization algorithm assisted by heterogeneous ensemble surrogate, IMPSO-HES)算法. 首先, 借助異構集成的思想構建一個(gè)由多個(gè)基礎代理模型組成的模型池; 隨后, 依據待評價(jià)粒子與已發(fā)現模態(tài)之間的匹配關(guān)系, 從模型池中自主選擇部分基礎代理模型進(jìn)行集成, 并使用集成后的代理模型預測該粒子的適應值. 進(jìn)一步, 為節約代理模型管理的代價(jià), 設計一種增量式的代理模型管理策略; 為減少代理模型預測誤差對算法性能的影響, 首次將區間排序關(guān)系引入到進(jìn)化過(guò)程中. 將所提算法與當前流行的5種代理輔助進(jìn)化優(yōu)化算法和7 種最先進(jìn)的多模態(tài)優(yōu)化算法進(jìn)行對比, 在20個(gè)測試函數和1個(gè)建筑節能實(shí)際問(wèn)題上的實(shí)驗結果表明, 所提算法可以在較少計算代價(jià)下獲得問(wèn)題的多個(gè)高競爭最優(yōu)解.
-
關(guān)鍵詞:
- 粒子群優(yōu)化 /
- 多模態(tài)優(yōu)化 /
- 高昂計算代價(jià) /
- 代理輔助
Abstract: Many real-world black-box optimization problems can be classified as multimodal optimization problems (MMOPs) with high computational cost, that is, expensive multimodal optimization problems (EMMOPs). When dealing with such problems, decision-makers hope to find multiple high-quality solutions with less computational cost (i.e., the least number of real function evaluations). However, existing surrogate-assisted evolutionary algorithms (SAEAs) seldom consider the multimodal properties of problem, and they can only obtain one optimal solution of the problem at a time. In view of this, this paper studies an interval multimodal particle swarm optimization (PSO) algorithm assisted by heterogeneous ensemble surrogate (IMPSO-HES). Firstly, a model pool composed of multiple basic surrogate models is constructed with the idea of heterogeneous ensemble. Then, according to the matching relationship between the particle to be evaluated and the discovered modalities, some basic surrogate models will be selected from the model pool for integration, and the integrated surrogate model is utilized to predict the fitness value of the particle. Furthermore, in order to save the cost of model management, an incremental surrogate model management strategy is designed. In order to reduce the influence of prediction error of surrogate model on the algorithm's performance, the interval ordering relation is introduced into the evolutionary process for the first time. The proposed algorithm is compared with five SAEAs and seven state-of-the-art multimodal algorithms, experimental results on 20 benchmark functions and the building energy conservation problem show that the proposed algorithm can obtain multiple highly-competitive optimal solutions at a low computational cost. -
圖 2 精確評價(jià)和區間評價(jià)策略下IMPSO-HES所得GS值
Fig. 2 GS values obtained by IMPSO-HES under precision and interval evaluation
圖 3 精確評價(jià)和區間評價(jià)策略下IMPSO-HES所得VR值
Fig. 3 VR values obtained by IMPSO-HES under precision and interval evaluation
表 1 基準問(wèn)題
Table 1 Benchmark problems
問(wèn)題 測試函數 維數 變量空間 全局/局部解個(gè)數 全局最優(yōu)解的目標值 F1 Ellipsoid 10/20 $\boldsymbol{X} \in [-1,1]^{D}$ 1/0 0 F2 Ackley 10/20 $\boldsymbol{X} \in [-30,30]^{D}$ 1/many 0 F3 Rastrigin 10/20 $\boldsymbol{X }\in [-5.12,5.12]^{D}$ 1/many 0 F4 Rosenbrock 10/20 $\boldsymbol{X} \in [-2.048,2.048]^{D}$ 1/many 0 F5 Griewank 10/20 $\boldsymbol{X} \in [-600,600]^{D}$ 1/many 0 F6 Reverse five-uneven-peak trap 1 $\boldsymbol{X} \in [0,30] $ 2/3 ?200 F7 Reverse equal maxima 1 $\boldsymbol{X} \in [0,1] $ 5/0 ?1 F8 Reverse uneven decreasing maxima 1 $\boldsymbol{X} \in [0,1] $ 1/4 ?1 F9 Reverse himmelblau 2 $\boldsymbol{X} \in [-6,6]^{D}$ 4/0 ?200 F10 Six-hump camel 2 $x_1\in[-1.9,1.9], x_2\in[-1.1,1.1] $ 2/2 ?1.031 6 F11 Reverse shubert 2 $\boldsymbol{X} \in [-10,10]^{D}$ 18/many ?186.73 F12 Reverse vincent 2 $\boldsymbol{X} \in [0.25,10]^{D}$ 36/0 ?1 F13 Reverse modified rastrigin 2 $\boldsymbol{X} \in [0,1]^{D}$ 12/0 2 F14 Reverse CF1 2 $\boldsymbol{X}\in [-5,5]^D$ 6/0 0 F15 Reverse CF2 2 $\boldsymbol{X}\in [-5,5]^D$ 8/0 0 F16 Reverse CF3 2 $\boldsymbol{X} \in[-5,5]^D $ 6/0 0 F17 Reverse CF4 3 $\boldsymbol{X}\in [-5,5]^D$ 8/0 0 F18 UrsemF4 back 2 $\boldsymbol{X }\in [-2,2]^{D}$ 2/0 ?0.267 9 F19 Branin RCOS 2 $x_1\in[-5,10], x_2\in[0,15] $ 3/0 0.397 8 F20 Waves 2 $x_1\in[-0.9,1.2], x_2\in[-1.2,1.2]$ 1/9 ?7.776 下載: 導出CSV表 2 F6 ~ F20的幅值精度和距離精度
Table 2 Amplitude accuracy and distance accuracy for F6 ~ F20
F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 $R_{v}$ 1 0.05 0.1 0.5 0.05 10 0.1 0.5 1 1 1 1 0.1 0.1 0.5 $R_rf50c1hsl6$ 1 0.05 0.5 0.5 0.2 2 0.5 0.5 1 1 1 1 0.5 1 0.2 下載: 導出CSV表 3 不同$g_{{\rm{max}}}$取值下IMPSO-HES所得的性能指標值
Table 3 Performance values obtained by IMPSO-HES under different $g_{{\rm{max}}}$ values
問(wèn)題 $g_{{\rm{max}}}$ $GS $均值(標準差) $VR $均值 耗時(shí)(s) F5 (D = 10) 3 3.800 7 (3.5E+00)+ — 64 6 1.174 5 (3.7E?02) — 85 9 1.108 3 (2.5E?02) = — 116 F5 (D = 20) 3 8.198 0 (9.8E+00) + — 776 6 1.075 7 (1.6E?02) — 1 400 9 0.807 9 (2.8E?01) ? — 2 045 F9 3 ?199.93 (3.1E?03) = 0.68 11 6 ?199.99 (1.0E?04) 0.70 19 9 ?200.00 (1.4E?03) = 0.63 36 F10 3 ?1.031 6 (1.7E?06) = 1.00 19 6 ?1.031 6 (9.8E?07) 1.00 28 9 ?1.031 6 (9.8E?07) = 1.00 38 F12 3 ?0.999 0 (7.1E?06) = 0.13 10 6 ?0.999 9 (1.0E?06) 0.13 14 9 ?0.999 9 (2.2E?06) = 0.11 25 注: 加粗字體表示各組的最優(yōu)結果值. 下載: 導出CSV表 4 不同Q取值下IMPSO-HES所得的性能指標值
Table 4 Performance values obtained by IMPSO-HES under different Q values
問(wèn)題 Q GS 均值(標準差) VR 均值 耗時(shí)(s) F5 (D = 10) K/5 1.658 1 (2.2E?01) + — 64 K/4 1.174 5 (3.7E?02) — 85 K/3 1.382 1 (1.5E?01) + — 108 K/2 1.269 6 (5.1E?02) + — 160 F5 (D = 20) K/5 1.980 0 (1.0E+00) + — 1137 K/4 1.075 7 (1.6E?02) — 1400 K/3 1.832 1 (1.1E+00) + — 1920 K/2 1.835 2 (1.7E+00) + — 2700 F9 K/5 ?199.98 (7.2E?04) = 0.53 17 K/4 ?199.99 (1.0E?04) 0.70 19 K/3 ?199.98 (4.6E?04) = 0.55 24 K/2 ?199.14 (6.8E+00) + 0.33 34 F10 K/5 ?1.031 6 (1.1E?09) = 1.00 28 K/4 ?1.031 6 (9.8E?07) 1.00 28 K/3 ?1.031 6 (9.8E?07) = 1.00 30 K/2 ?1.030 0 (1.4E?03) + 0.85 48 F12 K/5 ?0.999 1 (2.3E?06) + 0.12 12 K/4 ?0.999 9 (1.0E?06) 0.13 14 K/3 ?0.999 6 (8.5E?07) + 0.10 18 K/2 ?0.994 9 (9.2E?05) + 0.10 24 注: 加粗字體表示各組的最優(yōu)結果值. 下載: 導出CSV表 5 異構集成與同質(zhì)集成下IMPSO-HES所得結果
Table 5 Performance values obtained by IMPSO-HES under heterogeneous and homogeneous ensemble
問(wèn)題 算法 GS均值(標準差) VR均值 耗時(shí)(s) F5 (D = 10) IMPSO-PR 1.631 0 (7.1E?01) + — 86 IMPSO-RBFN 45.27 2 (8.9E+02) + — 39 IMPSO-HES 1.174 5 (3.7E?02) — 85 F5 (D = 20) IMPSO-PR 2.003 7 (2.9E+00) + — 1 478 IMPSO-RBFN 116.7 8 (9.5E+02) + — 180 IMPSO-HES 1.075 7 (1.6E?02) — 1 400 F9 IMPSO-PR ?196.81 (9.5E+00) + 0.05 16 IMPSO-RBFN ?199.99 (4.7E?07) = 0.65 22 IMPSO-HES ?199.99 (1.0E?04) 0.70 19 F10 IMPSO-PR ?0.962 0 (2.5E?03) + 0.2 17 IMPSO-RBFN ?1.031 6 (9.8E?09) = 1.00 20 IMPSO-HES ?1.031 6 (9.8E?07) 1.00 28 F12 IMPSO-PR ?0.988 6 (1.5E?04) + 0.06 11 IMPSO-RBFN ?0.999 5 (9.4E?07) + 0.09 19 IMPSO-HES ?0.999 9 (1.0E?06) 0.13 14 注: 加粗字體表示各組的最優(yōu)結果值. 下載: 導出CSV表 6 不同更新概率$p_{m}$下IMPSO-HES所得結果
Table 6 Performance values obtained by IMPSO-HES under different $p_{m}$ values
問(wèn)題 $p_{m}$ GS 均值 (標準差) VR 均值 耗時(shí)(s) F5 (D = 10) 固定 1.439 3 (3.8E?01) + — 84 自適應 1.174 5 (3.7E?02) — 85 F5 (D = 20) 固定 1.750 3 (1.7E+00) + — 1313 自適應 1.075 7 (1.6E?02) — 1400 F9 固定 ?199.91 (2.6E?02) + 0.40 19 自適應 ?199.99 (1.0E?04) 0.70 19 F10 固定 ?1.031 6 (4.7E?08) = 1.00 26 自適應 ?1.031 6 (9.8E?07) 1.00 28 F12 固定 ?0.996 9 (4.8E?05) + 0.12 14 自適應 ?0.999 9 (1.0E?06) 0.13 14 注: 加粗字體表示各組的最優(yōu)結果值. 下載: 導出CSV表 7 使用All-S和Mod-S時(shí)IMPSO-HES所得結果
Table 7 Performance values obtained by IMPSO-HES with All-S and Mod-S
問(wèn)題 集成策略 GS 均值 (標準差) VR 均值 耗時(shí)(s) F5 (D = 10) All-S 3.878 5 (3.8E+00) + — 243 Mod-S 1.174 5 (3.7E?02) — 85 F5 (D = 20) All-S 8.838 7 (8.1E+00) + — 3 362 Mod-S 1.075 7 (1.6E?02) — 1 400 F9 All-S ?187.33 (2.0E+2) + 0.05 80 Mod-S ?199.99 (1.0E?04) 0.70 19 F10 All-S ?0.9751 (1.4E?02) + 0.70 57 Mod-S ?1.031 6 (9.8E?07) 1.00 28 F12 All-S ?0.973 7 (1.9E?02) + 0.08 42 Mod-S ?0.999 9 (1.0E?06) 0.13 14 注: 加粗字體表示各組的最優(yōu)結果值. 下載: 導出CSV表 8 不同模型更新策略下IMPSO-HES所得結果
Table 8 Performance values obtained by IMPSO-HES under different model update strategies
問(wèn)題 更新策略 GS 均值 (標準差) VR 均值 耗時(shí)(s) F5 (D = 10) All-up 1.500 9 (3.9E?02) + — 97 Inc-up 1.174 5 (3.7E?02) — 85 F5 (D = 20) All-up 32.184 (2.4E+04) + — 1 509 Inc-up 1.075 7 (1.6E?02) — 1 400 F9 All-up ?200.00 (3.6E-10) = 0.63 30 Inc-up ?199.99 (1.0E?04) 0.70 19 F10 All-up ?1.031 6 (1.2E?04) = 0.95 30 Inc-up ?1.031 6 (9.8E?07) 1.00 28 F12 All-up ?0.999 8 (2.7E?07) = 0.11 16 Inc-up ?0.999 9 (1.0E?06) 0.13 14 注: 加粗字體表示各組的最優(yōu)結果值. 下載: 導出CSV表 9 IMPSO-HES與5種SAEA所得GS值(均值(方差))
Table 9 GS values obtained by IMPSO-HES and 5 SAEAs (mean (variance))
問(wèn)題 D IMPSO-HES SA-COSO CAL-SAPSO Gr-based SAPSO PESPSO ESPSO F1 10 3.660 0 3.160 0? 0.115 3? 0.147 6? 0.296 2? 0.664 5? (4.2E+00) (6.5E?02) (4.9E?02) (1.1E?03) (1.3E?03) (5.0E?02) 20 21.398 11.017? 0.229 2? 0.027 9? 1.377 0? 1.866 4? (6.1E+01) (1.2E+01) (1.9E?02) (8.2E?06) (1.2E?01) (2.4E?01) F2 10 17.990 17.248= 18.606+ 15.910? 11.820? 13.786? (1.1E+00) (4.1E?02) (4.8E?01) (6.4E?01) (4.3E+00) (2.0E+00) 20 18.866 18.025? 18.421= 14.717? 12.584? 15.958? (9.0E?01) (4.4E?01) (2.4E+00) (1.1E+00) (2.3E+01) (1.6E+01) F3 10 78.266 97.683+ 79.727= 94.349+ 82.325= 89.952= (1.3E+02) (5.8E+02) (1.6E+03) (7.3E+01) (1.2E+02) (2.0E+02) 20 173.97 177.43= 128.71? 168.14= 173.99= 175.65= (2.4E+02) (6.6E+02) (4.0E+03) (1.6E+02) (1.7E+02) (1.1E+02) F4 10 37.310 537.31+ 39.003= 173.66+ 90.531+ 66.581+ (1.1E+02) (2.4E+04) (2.0E+02) (3.3E+02) (6.7E+02) (1.0E+02) 20 41.469 891.97+ 42.758= 330.37+ 97.508+ 195.90+ (5.7E+02) (1.7E+04) (2.0E+02) (3.9E+03) (6.8E+02) (1.9E+03) F5 10 1.174 5 66.556+ 1.736 4+ 1.310 6+ 2.798 7+ 2.317 2+ (3.7E?02) (1.8E+02) (1.4E?01) (1.7E?02) (2.4E+00) (3.9E?01) 20 1.075 7 43.897+ 2.255 3+ 1.057 2= 6.701 8+ 10.373+ (1.6E?02) (1.9E+02) (3.2E?01) (2.0E?05) (7.4E+00) (6.2E+00) F6 1 ?199.15 ?200.00? ?200.00? ?190.91+ ?200.00? ?200.00? (4.6E+00) (2.1E-10) (1.6E?09) (3.2E+01) (1.2E-13) (1.0E-11) F7 1 ?0.999 9 ?1.00= ?0.505 2+ ?0.999 1+ ?0.999 9= ?0.999 8= (3.1E?06) (0.0E+00) (1.2E?01) (1.1E?07) (2.7E?05) (3.8E?06) F8 1 ?0.985 4 ?0.980 8= ?0.511 4+ ?0.944 7+ ?0.948 6+ ?0.948 6+ (1.3E?05) (1.0E-10) (8.0E?02) (7.4E?04) (5.1E?04) (5.1E?04) F9 2 ?199.99 ?196.14+ ?157.69+ ?199.93+ ?199.98= ?199.74+ (1.0E?04) (3.8E+01) (8.6E+02) (5.1E?04) (2.7E?04) (6.4E?03) F10 2 ?1.031 6 ?0.995 6+ ?0.464 6+ ?1.030 6+ ?1.030 3+ ?1.029 2+ (9.8E?07) (1.6E?03) (1.3E?01) (1.9E?06) (1.7E?07) (5.3E?07) F11 2 ?158.32 ?89.368+ ?52.464+ ?113.85+ ?130.53+ ?94.463+ (1.9E+03) (2.4E+03) (2.6E+03) (3.5E+04) (2.5E+03) (1.5E+03) F12 2 ?0.999 9 ?0.979 8+ ?0.719 4+ ?0.984 5+ ?0.995 4+ ?0.980 0+ (1.0E?06) (5.6E?04) (9.0E?02) (1.9E?04) (2.0E?06) (5.5E?05) F13 2 2.232 9 2.890 3+ 7.846 7+ 2.298 5= 2.022 8? 2.060 9? (2.3E?01) (6.4E?02) (3.0E+01) (1.0E?01) (4.6E?03) (3.1E?03) F14 2 0.087 9 40.011+ 197.39+ 23.774+ 7.588 4+ 9.961 7+ (5.0E?01) (2.6E+02) (9.2E+03) (6.3E+03) (1.1E+02) (3.0E+02) F15 2 36.423 89.091+ 183.14+ 80.557+ 26.116= 57.889+ (3.7E+03) (2.7E+02) (3.6E+03) (1.1E+03) (7.6E+02) (2.8E+03) F16 2 0.242 3 90.430+ 350.88+ 60.296+ 1.162 1+ 18.280+ (1.3E?01) (1.2E+04) (4.8E+04) (3.2E+03) (2.5E+00) (1.2E+03) F17 3 32.566 88.270+ 173.56+ 57.380+ 26.079= 37.233= (2.0E+04) (5.3E+02) (2.6E+04) (2.1E+03) (6.2E+02) (6.0E+02) F18 2 ?0.267 9 ?0.245 7+ ?0.130 4+ ?0.267 1+ ?0.267 8= ?0.267 8= (1.6E?06) (3.6E?04) (5.6E?03) (6.8E?08) (1.6E?06) (5.4E?09) F19 2 0.399 9 1.148 8+ 2.260 3+ 0.425 9+ 0.424 9+ 0.513 6+ (2.4E?05) (8.6E?01) (6.2E+00) (1.3E?03) (1.2E?03) (5.3E?02) F20 2 ?7.429 9 ?7.776 0? ?7.775 3? ?6.340 8+ ?7.294 3+ ?7.451 1= (1.7E?02) (0.0E+00) (4.2E?06) (8.4E?01) (2.2E?01) (2.7E?01) 注: 加粗字體表示各行GS值的最優(yōu)結果值. 下載: 導出CSV問(wèn)題 IMPSO-HES SA-COSO CAL-SAPSO Gr-based SAPSO PESPSO ESPSO F2 ~ F5 好/平/差 — 5/2/1 3/4/1 4/2/2 4/2/2 4/2/2 Rank 2.500 0 5.500 0 3.000 0 3.125 0 3.125 0 3.750 0 Adjusted p-value — 0.006 6 0.689 2 0.689 2 0.689 2 0.393 8 F6 ~ F20 好/平/差 — 11/2/2 13/0/2 14/1/0 8/5/2 9/4/2 Rank 1.833 3 4.166 6 5.433 3 4.000 0 2.266 6 3.300 0 Adjusted p-value — 0.001 6 0.000 0 0.002 5 0.525 8 0.039 5 注: 加粗字體表示各組的最優(yōu)結果值. 下載: 導出CSV表 11 處理F1 ~ F5時(shí)IMPSO-HES與7種多模態(tài)進(jìn)化算法所得GS值(均值(方差))
Table 11 GS values obtained by IMPSO-HES and the 7 multimodal EAs on F1 ~ F5 (mean (variance))
問(wèn)題 D IMPSO-HES LIPS EMO-MMO R3PSO FERPSO NCDE NSDE ANDE F1 10 3.6600 3.3110 ?5.0580+ 5.9282 +4.3713 +5.7227 +5.8277 +5.2888 +(4.2E+00) (7.8E-01) (1.3E+00) (2.3E+00) (1.2E+00) (6.4E+00) (1.6E+00) (2.6E+00) 20 21.398 19.528= 26.709+ 31.059+ 18.792- 28.868+ 29.060+ 32.311+ (6.1E+01) (9.8E+00) (2.2E+01) (2.2E+01) (1.2E+01) (5.8E+01) (1.5E+01) (5.5E+01) F2 10 17.990 18.046= 18.022= 19.159+ 18.073= 19.411+ 19.432+ 19.523+ (1.1E+00) (8.1E?01) (7.0E?01) (3.9E?01) (1.06E+00) (1.3E+00) (3.0E?01) (1.5E?01) 20 18.866 18.924= 18.922= 19.663+ 19.313+ 19.895+ 20.108+ 19.950+ (9.0E-01) (3.6E+01) (1.7E?01) (6.5E?02) (2.5E?01) (9.9E?02) (4.9E?02) (8.2E?06) F3 10 78.266 95.069+ 89.325= 108.58+ 100.83+ 110.95+ 101.33+ 106.90+ (1.3E+02) (6.3E+01) (1.2E+02) (2.2E+02) (8.2E+01) (5.5E+02) (1.3E+02) (1.3E+02) 20 173.97 212.48+ 207.09+ 258.90+ 225.25+ 251.77+ 262.26+ 268.57+ (2.4E+02) (2.6E+02) (2.8E+02) (3.3E+02) (5.1E+02) (3.2E+02) (6.5E+02) (1.1E+02) F4 10 37.310 343.96+ 257.96+ 670.32+ 451.41+ 812.90+ 982.18+ 523.1+ (1.1E+02) (4.2E+05) (3.6E+05) (1.3E+05) (2.8E+04) (1.0E+05) (1.1E+05) (2.7E+05) 20 41.469 1431.9 +1399.6 +2853.3 +1722.6 +3031.2 +2737.0 +2416.1 +(5.7E+02) (1.1E+05) (1.5E+05) (3.6E+05) (5.1E+04) (6.9E+05) (7.1E+05) (1.6E+05) F5 10 1.1745 66.246+ 65.750+ 94.936+ 71.342+ 129.69+ 115.66+ 109.05+ (3.7E-02) (3.1E+02) (6.7E+02) (4.7E+02) (4.8E+02) (3.5E+02) (8.8E+02) (6.6E+01) 20 1.0757 160.00+ 156.27+ 305.74+ 194.22+ 298.18+ 300.28+ 300.13+ (1.6E-02) (4.8E+02) (1.1E+03) (7.0E+02) (1.5E+03) (3.7E+03) (2.1E+03) (2.2E+03) 注: 加粗字體表示各組的最優(yōu)結果值. 下載: 導出CSV表 12 處理F6 ~ F20時(shí)IMPSO-HES與7種多模態(tài)進(jìn)化算法所得結果
Table 12 Results of IMPSO-HES and the 7 multimodal EAs on F6 ~ F20
問(wèn)題 D IMPSO-HES LIPS EMO-MMO R3PSO FERPSO NCDE NSDE ANDE F6 GS 均值 ?199.15 ?185.64+ ?196.52+ ?190.93+ ?186.31+ ?191.25+ ?197.86+ ?195.52+ (標準差) (4.6E+00) (8.8E+01) (1.0E+02) (6.1E+01) (1.0E+02) (3.4E+02) (4.5E+01) (5.0E+02) VR 均值 0.80 0.20+ 0.40+ 0.10+ 0.00+ 0.65+ 0.75= 0.40+ F7 GS 均值 ?0.999 9 ?0.999 4+ ?0.999 5+ ?0.999 1+ ?0.998 6+ ?0.998 7+ ?0.998 4+ ?0.998 0+ (標準差) (3.1E?06) (7.3E?07) (2.5E?07) (7.2E?07) (1.0E?06) (8.5E?07) (5.6E?06) (4.6E?06) VR均值 0.78 0.78= 0.76= 0.70= 0.66+ 0.74= 0.78= 0.67+ F8 GS 均值 ?0.985 4 ?0.969 3+ ?0.993 7? ?0.993 1? ?0.975 8+ ?0.966 0+ ?0.948 3+ ?0.968 3+ (標準差) (1.3E?04) (6.8E?04) (2.5E?04) (6.7E?05) (4.1E?04) (8.9E?04) (5.1E?03) (3.1E?03) VR均值 1.00 0.80+ 0.90+ 1.00= 1.00= 0.90+ 0.60+ 0.80+ F9 GS 均值 ?199.99 ?197.58+ ?197.79+ ?196.99+ ?196.92+ ?197.04+ ?196.10+ ?197.22+ (標準差) (1.0E?04) (1.7E+00) (9.9E+00) (1.3E+01) (8.6E+00) (5.2E+00) (1.6E+01) (1.3E+01) VR均值 0.70 0.02+ 0.05+ 0.07+ 0.07+ 0.10+ 0.05+ 0.05+ F10 GS 均值 ?1.031 6 ?1.004 7+ ?1.001 6+ ?1.003 2+ ?0.994 9+ ?0.987 8+ ?0.973 0+ ?1.002 0+ (標準差) (9.8E?07) (3.6E?04) (2.8E?03) (2.8E?03) (8.8E?04) (8.7E?03) (5.0E?03) (3.4E?02) VR均值 1.00 0.55+ 0.10+ 0.45+ 0.30+ 0.40+ 0.35+ 0.5+ F11 GS 均值 ?158.32 ?105.20+ ?134.50= ?90.154+ ?114.099+ ?123.777+ ?111.92+ ?132.37= (標準差) (1.9E+03) (1.3E+03) (1.7E+03) (5.4E+02) (1.3E+03) (1.0E+03) (2.3E+03) (1.6E+03) VR均值 0.02 0.01= 0.01= 0.00+ 0.00+ 0.00+ 0.00+ 0.01= F12 GS 均值 ?0.999 9 ?0.973 3+ ?0.975 3+ ?0.972 7+ ?0.976 4+ ?0.976 4+ ?0.989 0+ ?0.988 7+ (標準差) (1.0E?06) (3.2E?04) (4.9E?04) (4.6E?04) (5.8E?04) (5.2E?04) (3.0E?04) (4.6E?03) VR均值 0.13 0.08+ 0.05+ 0.07+ 0.07+ 0.08+ 0.10+ 0.09+ F13 GS 均值 2.232 9 2.714 6+ 2.560 4+ 2.438 4+ 2.590 3+ 2.481 7+ 2.344 6= 2.579 2+ (標準差) (2.3E?01) (3.2E?01) (2.3E+00) (2.1E?01) (2.4E?01) (7.3E?01) (8.7E?01) (2.2E+00) VR均值 0.09 0.08= 0.08= 0.07= 0.08= 0.13+ 0.09= 0.08= F14 GS 均值 0.087 9 44.360+ 45.829+ 43.836+ 38.669+ 40.250+ 38.149+ 41.010+ (標準差) (5.0E?01) (4.0E+03) (4.8E+03) (4.5E+03) (4.5E+03) (4.3E+03) (1.6E+03) (1.2E+02) VR均值 0.24 0.01+ 0.01+ 0.00+ 0.01+ 0.01+ 0.00+ 0.00+ F15 GS 均值 36.423 103.12+ 85.620+ 108.46+ 82.451+ 67.647+ 75.308+ 89.100+ (標準差) (3.7E+03) (1.4E+03) (6.8E+03) (3.2E+03) (2.7E+03) (1.7E+03) (6.6E+03) (1.8E+03) VR均值 0.03 0.00+ 0.01= 0.00+ 0.01= 0.00+ 0.00+ 0.00+ F16 GS 均值 0.242 3 74.272+ 52.296+ 132.800+ 52.555+ 81.104+ 114.04+ 67.231+ (標準差) (1.3E?01) (8.2E+03) (8.1E+03) (6.6E+03) (3.2E+03) (9.0E+03) (1.6E+03) (1.6E+03) VR均值 0.15 0.00+ 0.02+ 0.00+ 0.00+ 0.00+ 0.00+ 0.00+ F17 GS 均值 32.566 127.50+ 141.05+ 165.93+ 148.05+ 192.72+ 162.20+ 100.12+ (標準差) (2.0E+04) (2.3E+03) (2.5E+04) (5.7E+03) (2.0E+03) (8.5E+03) (5.2E+03) (3.2E+03) VR均值 0.13 0.00+ 0.00+ 0.00+ 0.00+ 0.00+ 0.00+ 0.00+ F18 GS 均值 ?0.267 9 ?0.264 2+ ?0.260 3+ ?0.257 9+ ?0.262 5+ ?0.254 8+ ?0.260 4+ ?0.263 0+ (標準差) (1.6E?06) (6.0E?05) (6.8E?05) (9.1E?05) (4.9E?05) (1.6E?04) (1.8E?05) (1.5E?04) VR均值 1.00 1.00= 0.95= 0.95= 1.00= 0.80+ 0.80+ 0.85+ F19 GS 均值 0.399 9 0.529 2+ 0.882 5+ 0.797 9+ 0.776 3+ 0.789 5+ 1.337 5+ 0.885 8+ (標準差) (2.4E?05) (1.9E?01) (1.8E?01) (1.8E?01) (1.8E?01) (1.7E+00) (8.6E?02) (2.0E?01) VR均值 0.60 0.03+ 0.03+ 0.10+ 0.06+ 0.16+ 0.06+ 0.2+ F20 GS 均值 ?7.429 9 ?6.619 2+ ?6.649 6+ ?6.664 4+ ?6.728 0+ ?6.679 1+ ?6.420 4+ ?6.981 8+ (標準差) (1.7E?02) (2.9E?01) (8.6E?01) (4.0E?01) (3.3E?01) (4.5E?01) (3.8E?01) (4.6E?01) VR均值 0.40 0.26+ 0.26+ 0.26+ 0.20+ 0.29+ 0.27+ 0.28+ 注: 加粗字體表示各組的最優(yōu)結果值. 下載: 導出CSV表 13 IMPSO-HES與7種多模態(tài)進(jìn)化算法的統計對比結果
Table 13 Statistical comparison results of IMPSO-HES and the 7 multimodal EAs
問(wèn)題 IMPSO-HES LIPS EMO-MMO R3PSO FERPSO NCDE NSDE ANDE F1 ~ F5 好/平/差 GS — 6/3/1 7/3/0 10/0/0 8/1/1 10/0/0 10/0/0 10/0/0 Rank 1.300 0 2.800 0 3.000 0 6.100 0 3.300 0 6.300 0 6.800 0 6.700 0 Adjusted p-value — 0.315 3 0.116 0 0.000 2 0.0937 0.000 1 0.000 0 0.000 0 好/平/差 GS — 15/0/0 13/1/1 14/0/1 15/0/0 15/0/0 14/1/0 14/1/0 F6 ~ F20 VR — 11/4/0 10/5/0 11/4/0 11/4/0 14/1/0 12/3/0 13/2/0 Rank 1.258 6 4.827 5 4.268 9 5.551 7 4.603 4 6.103 4 4.862 0 4.224 1 Adjusted p-value — 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 下載: 導出CSV表 14 問(wèn)題的決策變量信息
Table 14 Decision variable information of the problem
決策變量 單位 范圍 房屋方向 $( ^{ {\circ} } )$ [0, 360) 窗戶(hù)的長(cháng) m (0, 3.6) 窗戶(hù)的高 m (0, 3.9) 窗戶(hù)的傳熱系數 ${\rm{W} }/({\rm{m} }^{2}\cdot{\rm{K} })$ [2, 6] 窗戶(hù)的日射熱取得率 — (0, 0.7) 墻體外保溫層厚度 m (0, 0.1] 墻體日射吸收率 — [0.1, 1] 人員密度 ${{\text{人}}/\rm{m} }^{2}$ [0.1, 1) 照明功率密度 ${\rm{W} }/{\rm{m} }^{2}$ [6, 12] 設備功率密度 $\rm{W}/{\rm{m} }^{2}$ [10, 18] 空調供熱設置溫度 ℃ [18, 23] 空調制冷設置問(wèn)題 ℃ [24, 28] 下載: 導出CSV表 15 處理建筑節能設計問(wèn)題時(shí)兩種算法所得的實(shí)驗結果
Table 15 Results of the two algorithms on building energy conservation
GS Optimal solutions 時(shí)間(s) IMPSO-HES 5.02 X = 71.8, 1.06, 1.85, 3.64, 0.0382 ,0.0905 ,0.2212 ,0.1033 , 6.5, 14.0, 22.3, 26.4, f = 5.1450 X = 297.3, 2.53, 1.63, 4.0065 ,0.0556 ,0.0402 ,0.5983 ,0.1027 , 6.0, 17.2, 19.6, 24.0, f = 5.1X = 351.7, 3.50, 0.38, 2.266, 0.1604 ,0.0567 ,0.8882 ,0.1062 , 6.1, 17.3, 22.6, 24.6, f = 5.11EMO-MMO 4.96 X = 183.2, 1.19, 2.36, 2.32, 0.3439 ,0.0489 ,0.9743 ,0.1085 , 6.18, 12.3, 21.1, 26.3, f = 5.0142 357 X = 215.1, 2.41, 2.09, 5.38, 0.2847 ,0.0532 ,0.4720 ,0.1015 , 6.44, 11.8, 19.3, 27.1, f = 5.02X = 134.7, 1.07, 2.87, 3.73, 0.3129 ,0.0418 ,0.9553 ,0.1015 , 6.02, 12.8, 20.4, 25.3, f = 5.02下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Kruisselbrink J W, Aleman A, Emmerich M T M, Ijzerman A P, Bender A, Baeck T, et al. Enhancing search space diversity in multi-objective evolutionary drug molecule design using niching. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. Montreal, Canada: ACM, 2009. 217?224 [2] Pérez E, Herrera F, Hernández C. Finding multiple solutions in job shop scheduling by niching genetic algorithms. Journal of Intelligent Manufacturing, 2003, 14(3?4): 323?339 [3] 李章維, 肖璐倩, 郝小虎, 周曉根, 張貴軍. 蛋白質(zhì)構象空間的多模態(tài)優(yōu)化算法. 計算機科學(xué), 2020, 47(7): 161?165Li Zhang-Wei, Xiao Lu-Qian, Hao Xiao-Hu, Zhou Xiao-Gen, Zhang Gui-Jun. Multimodal optimization algorithm for protein conformation space. Computer Science, 2020, 47(7): 161?165 [4] Wang Z J, Zhan Z H, Lin Y, Yu W J, Wang H, Kwong S, et al. Automatic niching differential evolution with contour prediction approach for multimodal optimization problems. IEEE Transactions on Evolutionary Computation, 2020, 24(1): 114?128 doi: 10.1109/TEVC.2019.2910721 [5] 李航, 李敏強, 寇紀淞. 遺傳算法求解多模態(tài)優(yōu)化問(wèn)題的動(dòng)力性. 自動(dòng)化學(xué)報, 2008, 34(2): 180?187Li Hang, Li Min-Qiang, Kou Ji-Song. Dynamical behavior of genetic algorithms on multi-modal optimization. Acta Automatica Sinica, 2008, 34(2): 180?187 [6] Zhang Y, Yuan L J, Zhang Q, Sun X Y. Multi-objective optimization of building energy performance using a particle swarm optimizer with less control parameters. Journal of Building Engineering, 2020, 32: Article No. 101505 doi: 10.1016/j.jobe.2020.101505 [7] Ji X F, Zhang Y, Gong D W, Sun X Y. Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 794?808 doi: 10.1109/TEVC.2021.3064835 [8] Li X D. Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference. Seattle, USA: Springer, 2004. 105?116 [9] Cheng R, Li M Q, Li K, Yao X. Evolutionary multiobjective optimization-based multimodal optimization: Fitness landscape approximation and peak detection. IEEE Transactions on Evolutionary Computation, 2018, 22(5): 692?706 doi: 10.1109/TEVC.2017.2744328 [10] Li X D, Epitropakis M G, Deb K, Engelbrecht A. Seeking multiple solutions: An updated survey on niching methods and their applications. IEEE Transactions on Evolutionary Computation, 2017, 21(4): 518?538 doi: 10.1109/TEVC.2016.2638437 [11] 張淑美, 王福利, 譚帥, 王姝. 多模態(tài)過(guò)程的全自動(dòng)離線(xiàn)模態(tài)識別方法. 自動(dòng)化學(xué)報, 2016, 42(1): 60?80Zhang Shu-Mei, Wang Fu-Li, Tan Shuai, Wang Shu. A fully automatic offline mode identification method for multi-mode processes. Acta Automatica Sinica, 2016, 42(1): 60?80 [12] Mahfoud S W. Crowding and preselection revisited. In: Proceedings of the Parallel Problem Solving from Nature 2, PPSN-Ⅱ. Brussels, Belgium: Elsevier, 1992. 27?36 [13] 張貴軍, 何洋軍, 郭海鋒, 馮遠靜, 徐建明. 基于廣義凸下界估計的多模態(tài)差分進(jìn)化算法. 軟件學(xué)報, 2013, 24(6): 1177?1195Zhang Gui-Jun, He Yang-Jun, Guo Hai-Feng, Feng Yuan-Jing, Xu Jian-Ming. Differential evolution algorithm for multimodal optimization based on abstract convex underestimation. Journal of Software, 2013, 24(6): 1177?1195 [14] Petrowski A. A clearing procedure as a niching method for genetic algorithms. In: Proceedings of the IEEE International Conference on Evolutionary Computation. Nagoya, Japan: IEEE, 1996. 798?803 [15] Li X D. Niching without niching parameters: Particle swarm optimization using a ring topology. IEEE Transactions on Evolutionary Computation, 2010, 14(1): 150?169 doi: 10.1109/TEVC.2009.2026270 [16] 王湘中, 喻壽益. 多模態(tài)函數優(yōu)化的多種群進(jìn)化策略. 控制與決策, 2006, 21(3): 285?288Wang Xiang-Zhong, Yu Shou-Yi. Multi-population evolution strategies for multi-modal function optimization. Control and Decision, 2006, 21(3): 285?288 [17] 張貴軍, 陳銘, 周曉根. 動(dòng)態(tài)小生境半徑兩階段多模態(tài)差分進(jìn)化算法. 控制與決策, 2016, 31(7): 1185?1191Zhang Gui-Jun, Chen Ming, Zhou Xiao-Gen. Two-stage differential evolution algorithm using dynamic niche radius for multimodal optimization. Control and Decision, 2016, 31(7): 1185?1191 [18] Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan, 1975. [19] 李敏強, 寇紀淞. 多模態(tài)函數優(yōu)化的協(xié)同多群體遺傳算法. 自動(dòng)化學(xué)報, 2002, 28(4): 497?504Li Min-Qiang, Kou Ji-Song. Coordinate multi-population genetic algorithms for multi-modal function optimization. Acta Automatica Sinica, 2002, 28(4): 497?504 [20] Qu B Y, Suganthan P N, Das S. A distance-based locally informed particle swarm model for multimodal optimization. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 387?402 doi: 10.1109/TEVC.2012.2203138 [21] Biswas S, Kundu S, Das S. Inducing niching behavior in differential evolution through local information sharing. IEEE Transactions on Evolutionary Computation, 2015, 19(2): 246?263 doi: 10.1109/TEVC.2014.2313659 [22] Deb K, Saha A. Multimodal optimization using a Bi-objective evolutionary algorithm. Evolutionary Computation, 2012, 20(1): 27?62 doi: 10.1162/EVCO_a_00042 [23] Bandaru S, Deb K. A parameterless-niching-assisted bi-objective approach to multimodal optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation. Cancún, Mexico: IEEE, 2013. 95?102 [24] Yue C T, Liang J J, Qu B Y, Yu K J, Song H. Multimodal multiobjective optimization in feature selection. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC). Wellington, New Zealand: IEEE, 2019. 302?309 [25] Lim D, Jin Y C, Ong Y S, Sendhoff B. Generalizing surrogate-assisted evolutionary computation. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 329?355 doi: 10.1109/TEVC.2009.2027359 [26] Liu B, Zhang Q F, Gielen G G E. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 180?192 doi: 10.1109/TEVC.2013.2248012 [27] Clarke S M, Griebsch J H, Simpson T W. Analysis of support vector regression for approximation of complex engineering analyses. Journal of Mechanical Design, 2005, 127(6): 1077?1087 doi: 10.1115/1.1897403 [28] Regis R G. Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 326?347 doi: 10.1109/TEVC.2013.2262111 [29] Roux W J, Stander N, Haftka R T. Response surface approximations for structural optimization. Numerical Methods in Engineering, 1998, 42(3): 517?534 doi: 10.1002/(SICI)1097-0207(19980615)42:3<517::AID-NME370>3.0.CO;2-L [30] Wang H D, Jin Y C, Doherty J. Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems. IEEE Transactions on Cybernetics, 2017, 47(9): 2664?2677 doi: 10.1109/TCYB.2017.2710978 [31] Min A T W, Ong Y S, Gupta A, Goh C K. Multiproblem surrogates: Transfer evolutionary multiobjective optimization of computationally expensive problems. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 15?28 doi: 10.1109/TEVC.2017.2783441 [32] Wang H D, Jin Y C, Sun C L, Doherty J. Offline data-driven evolutionary optimization using selective surrogate ensembles. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 203?216 doi: 10.1109/TEVC.2018.2834881 [33] Loshchilov I, Schoenauer M, Sebag M. Comparison-based optimizers need comparison-based surrogates. In: Proceedings of the 11th International Conference on Parallel Problem Solving From Nature. Krakow, Poland: Springer, 2010. 364?373 [34] 龍騰, 郭曉松, 彭磊, 劉莉. 基于信賴(lài)域的動(dòng)態(tài)徑向基函數代理模型優(yōu)化策略. 機械工程學(xué)報, 2014, 50(7): 184?190 doi: 10.3901/JME.2014.07.184Long Teng, Guo Xiao-Song, Peng Lei, Liu Li. Optimization strategy using dynamic radial basis function metamodel based on trust region. Journal of Mechanical Engineering, 2014, 50(7): 184?190 doi: 10.3901/JME.2014.07.184 [35] Chugh T, Jin Y C, Miettinen K, Hakanen J, Sindhya K. A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 129?142 doi: 10.1109/TEVC.2016.2622301 [36] 孫超利, 李貞, 金耀初. 模型輔助的計算費時(shí)進(jìn)化高維多目標優(yōu)化. 自動(dòng)化學(xué)報, 2022, 48(4): 1119?1128Sun Chao-Li, Li Zhen, Jin Yao-Chu. Surrogate-assisted expensive evolutionary many-objective optimization. Acta Automatica Sinica, 2022, 48(4): 1119?1128 [37] 田杰, 孫超利, 譚瑛, 曾建潮. 基于多點(diǎn)加點(diǎn)準則的代理模型輔助社會(huì )學(xué)習微粒群算法. 控制與決策, 2020, 35(1): 131?138Tian Jie, Sun Chao-Li, Tan Ying, Zeng Jian-Chao. Similarity-based multipoint infill criterion for surrogate-assisted social learning particle swarm optimization. Control and Decision, 2020, 35(1): 131?138 [38] 田杰, 譚瑛, 孫超利, 曾建潮. 代理模型輔助進(jìn)化算法在高維優(yōu)化問(wèn)題中的應用. 機械設計與制造, 2018, 12: 269?272Tian Jie, Tan Ying, Sun Chao-Li, Zeng Jian-Chao. Surrogate-assisted evolutionary optimization for high-dimensional expensive optimization. Machinery Design and Manufacture, 2018, 12: 269?272 [39] Sun C L, Jin Y C, Zeng J C, Yu Y. A two-layer surrogate-assisted particle swarm optimization algorithm. Soft Computing, 2015, 19(6): 1461?1475 doi: 10.1007/s00500-014-1283-z [40] Cai X W, Qiu H B, Gao L, Jiang C, Shao X Y. An efficient surrogate-assisted particle swarm optimization algorithm for high-dimensional expensive problems. Knowledge-Based Systems, 2019, 184: Article No. 104901 doi: 10.1016/j.knosys.2019.104901 [41] Liao P, Sun C L, Zhang G C, Jin Y C. Multi-surrogate multi-tasking optimization of expensive problems. Knowledge-Based Systems, 2020, 205: Article No. 106262 doi: 10.1016/j.knosys.2020.106262 [42] Tang Y F, Chen J Q, Wei J H. A surrogate-based particle swarm optimization algorithm for solving optimization problems with expensive black box functions. Engineering Optimization, 2013, 45(5): 557?576 doi: 10.1080/0305215X.2012.690759 [43] Li F, Cai X W, Gao L. Ensemble of surrogates assisted particle swarm optimization of medium scale expensive problems. Applied Soft Computing, 2019, 74: 291?305 doi: 10.1016/j.asoc.2018.10.037 [44] Liu Q F, Wu X F, Lin Q Z, Ji J K, Wong K C. A novel surrogate-assisted evolutionary algorithm with an uncertainty grouping based infill criterion. Swarm and Evolutionary Computation, 2021, 60: Article No. 100787 doi: 10.1016/j.swevo.2020.100787 [45] Dong H C, Li C S, Song B W, Wang P. Multi-surrogate-based differential evolution with multi-start exploration (MDEME) for computationally expensive optimization. Advances in Engineering Software, 2018, 123: 62?76 doi: 10.1016/j.advengsoft.2018.06.001 [46] Gu J C, Li W Q, Cai Y Z. A hybrid meta-model based global optimization method for expensive problems. Computers and Industrial Engineering, 2019, 136: 421?428 [47] Guo D, Jin Y C, Ding J L, Chai T Y. Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems. IEEE Transactions on Cybernetics, 2019, 49(3): 1012?1025 doi: 10.1109/TCYB.2018.2794503 [48] Tenne Y. Online ensemble topology selection in expensive optimization problems. International Journal of Control, Automation and Systems, 2020, 18(4): 955?965 doi: 10.1007/s12555-018-0356-7 [49] 陳萬(wàn)芬, 王宇嘉, 林煒星. 異構集成代理輔助多目標粒子群優(yōu)化算法. 計算機工程與應用, 2021, 57(23): 71?80Chen Wan-Fen, Wang Yu-Jia, Lin Wei-Xing. Heterogeneous ensemble surrogate assisted multi-objective particle swarm optimization algorithm. Computer Engineering and Applications, 2021, 57(23): 71?80 [50] Branke J, Schmidt C. Faster convergence by means of fitness estimation. Soft Computing, 2005, 9(1): 13?20 doi: 10.1007/s00500-003-0329-4 [51] Wang H D, Jin Y C, Yang C E, Jiao L C. Transfer stacking from low-to high-fidelity: A surrogate-assisted bi-fidelity evolutionary algorithm. Applied Soft Computing, 2020, 92: Article No. 106276 doi: 10.1016/j.asoc.2020.106276 [52] Emmerich M, Giotis A, ?zdemir M, B?eck T, Giannakoglou K. Metamodel-assisted evolution strategies. In: Proceedings of the 7th International Conference on Parallel Problem Solving From Nature. Granada, Spain: Springer, 2002. 361?370 [53] Yahyaie F, Filizadeh S. A surrogate-model based multi-modal optimization algorithm. Engineering Optimization, 2011, 43(7): 779?799 doi: 10.1080/0305215X.2010.517528 [54] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE, 1995. 39?43 [55] Shi Y, Eberhart R. A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Anchorage, USA: IEEE, 1998. 69?73 [56] Sun C L, Jin Y C, Cheng R, Ding J L, Zeng J C. Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Transactions on Evolutionary Computation, 2017, 21(4): 644?660 doi: 10.1109/TEVC.2017.2675628 [57] Tian J, Sun C L, Tan Y, Zeng J C. Granularity-based surrogate-assisted particle swarm optimization for high-dimensional expensive optimization. Knowledge-Based Systems, 2020, 187: Article No. 104815 doi: 10.1016/j.knosys.2019.06.023 [58] Goel T, Haftka R T, Shyy W, Queipo N V. Ensemble of surrogates. Structural and Multidisciplinary Optimization, 2007, 33(3): 199?216 doi: 10.1007/s00158-006-0051-9 [59] Gutmann H M. A radial basis function method for global optimization. Journal of Global Optimization, 2001, 19(3): 201?227 doi: 10.1023/A:1011255519438 [60] Zhou L G, Chen H Y, Merigó J M, Gil-Lafuente A M. Uncertain generalized aggregation operators. Expert Systems With Applications, 2012, 39(1): 1105?1117 doi: 10.1016/j.eswa.2011.07.110 [61] 李德清, 韓國柱, 曾文藝, 余先川. 基于布爾矩陣的區間數排序方法. 控制與決策, 2016, 31(4): 629?634Li De-Qing, Han Guo-Zhu, Zeng Wen-Yi, Yu Xian-Chuan. Ranking method of interval numbers based on Boolean matrix. Control and Decision, 2016, 31(4): 629?634 [62] Fan C D, Hou B, Zheng J H, Xiao L Y, Yi L Z. A surrogate-assisted particle swarm optimization using ensemble learning for expensive problems with small sample datasets. Applied Soft Computing, 2020, 91: Article No. 106242 doi: 10.1016/j.asoc.2020.106242 [63] Efron B, Tibshirani R J. An Introduction to the Bootstrap. New York: Chapman & Hall, 1993. [64] Li X D, Engelbrecht A, Epitropakis M G. Benchmark Functions for CEC'2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization, Technical Report, RMIT University, Melbourne, Australia, 2013. [65] Stoean C, Preuss M, Stoean R, Dumitrescu D. Multimodal optimization by means of a topological species conservation algorithm. IEEE Transactions on Evolutionary Computation, 2010, 14(6): 842?864 doi: 10.1109/TEVC.2010.2041668 [66] Qu B Y, Suganthan P N, Liang J J. Differential evolution with neighborhood mutation for multimodal optimization. IEEE Transactions on Evolutionary Computation, 2012, 16(5): 601?614 doi: 10.1109/TEVC.2011.2161873 [67] Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 1937, 32(200): 675?701 doi: 10.1080/01621459.1937.10503522 [68] Finner H. On a monotonicity problem in step-down multiple test procedures. Journal of the American Statistical Association, 1993, 88(423): 920?923 doi: 10.1080/01621459.1993.10476358