基于SCN數據模型的SISO非線(xiàn)性自適應控制
doi: 10.16383/j.aas.c210174
-
1.
中國礦業(yè)大學(xué)信息與控制工程學(xué)院 徐州 221116
-
2.
北京科技大學(xué)自動(dòng)化學(xué)院 北京 100083
Adaptive Control of SISO Nonlinear System Using Data-driven SCN Model
-
1.
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116
-
2.
School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083
-
摘要: 針對一類(lèi)難以建立精確模型的單輸入單輸出(Single-input single-output, SISO) 非線(xiàn)性離散動(dòng)態(tài)系統, 提出了一種數據驅動(dòng)模型的自適應控制方法. 所提方法首先設計具有直鏈與增強結構的隨機配置網(wǎng)絡(luò )(Stochastic configuration network, SCN), 建立了一種可同時(shí)表征非線(xiàn)性系統低階線(xiàn)性部分與高階非線(xiàn)性項(未建模動(dòng)態(tài))的數據驅動(dòng)模型, 并采用增量學(xué)習方法與監督機制, 對模型結構與模型參數進(jìn)行同步更新優(yōu)化, 保證了數據驅動(dòng)模型的無(wú)限逼近能力, 解決了傳統自適應控制采用交替辨識算法存在的建模精度低、模型收斂性無(wú)法保證的問(wèn)題. 進(jìn)而利用直鏈部分與增強部分, 分別設計了線(xiàn)性控制器及虛擬未建模動(dòng)態(tài)補償器, 建立了基于SCN 數據驅動(dòng)模型的自適應控制新方法, 分析了其穩定性與收斂性, 通過(guò)數值仿真實(shí)驗和采用交替辨識算法的傳統自適應控制方法進(jìn)行對比, 實(shí)驗結果表明了所提方法的有效性.
-
關(guān)鍵詞:
- 自適應控制 /
- 隨機配置網(wǎng)絡(luò ) /
- 監督機制 /
- 未建模動(dòng)態(tài) /
- 數據驅動(dòng)模型
Abstract: For a class of single-input single-output (SISO) nonlinear discrete dynamical systems which are difficult to establish an accurate model, a novel adaptive control method is proposed based on data-driven model. In the proposed approach, stochastic configuration network (SCN) is first employed to build the data-driven nonlinear system model, which adopts direct link and enhancement nodes to approximate the low-order linear and the high-order nonlinear parts (unmodeled dynamics) of system, respectively. Besides, this paper employed an incremental learning algorithm and supervision mechanism to optimize the model structure and model parameters synchronously, which guarantee the universal approximation property of the data-driven model, solving the problems of low modeling accuracy and unguaranteed model convergence existing in traditional adaptive control with alternate identification algorithm. Then, the direct link and enhancement nodes are used to design the linear controller and virtual unmodeled dynamics compensator respectively. A new adaptive control approach based on SCN data-driven model is established, and the stability and convergence of the proposed control method are proved. Finally, simulation comparisons between our proposed method and the classic adaptive control method with alternate identification algorithm are made, showing the effectiveness of the proposed method. -
圖 2 基于SCN數據驅動(dòng)模型的自適應控制方法結構圖
Fig. 2 Structure diagram of adaptive control method with SCN-based data-driven model
圖 8 基于SCN數據模型的灰分含量跟蹤控制輸出
Fig. 8 Output of ash content tracking control based on SCN data-driven model
圖 9 基于SCN數據模型的重介質(zhì)選煤灰分含量估計誤差曲線(xiàn)
Fig. 9 Estimation error curve of ash content in dense medium separation process based on SCN data model
表 1 模型性能對比
Table 1 Performance comparison of models
模型性能指標 增強節點(diǎn)個(gè)數 離線(xiàn)建模
時(shí)間 (s)模型在線(xiàn)平均
絕對誤差傳統RVFLNN模型 17 0.257 19 0.004 6 SCN模型 9 0.245 82 0.001 3 下載: 導出CSV表 2 控制系統模型估計性能對比
Table 2 Comparison of performance of model estimates for control systems
基于不同模型的自適應控制系統 ${\rm MAE}$ 基于線(xiàn)性模型的自適應控制 0.009 2 基于BP交替辨識模型的自適應控制 0.007 0 基于A(yíng)NFIS交替辨識模型的自適應控制 0.005 1 基于SCN數據模型的自適應控制 0.001 3 下載: 導出CSV亚洲第一网址_国产国产人精品视频69_久久久久精品视频_国产精品第九页 -
[1] Gao C H, Jian L, Liu X Y, Chen J M, Sun Y X. Data-driven modeling based on volterra series for multidimensional blast furnace system. IEEE Transactions on Neural Networks, 2011, 22(12): 2272?2283 doi: 10.1109/TNN.2011.2175945 [2] Diaz S, Luque J, Romero M C, Escudero J I. Power systems monitoring and control using telecom network management standards. IEEE Transactions on Power Delivery, 2005, 20(2): 1349?1356 doi: 10.1109/TPWRD.2004.833918 [3] Wu Z W, Wu Y J, Chai T Y, Sun J. Data-driven abnormal condition identification and self-healing control system for fused magnesium furnace. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1703?1715 doi: 10.1109/TIE.2014.2349479 [4] Biswal G R, Maheshwari R P, Dewal M L. Modeling, control, and monitoring of S3RS-based hydrogen cooling system in thermal power plant. IEEE Transactions on Industrial Electronics, 2012, 59(1): 562?570 doi: 10.1109/TIE.2011.2134059 [5] 柴天佑. 自動(dòng)化科學(xué)與技術(shù)發(fā)展方向. 自動(dòng)化學(xué)報, 2018, 44(11): 1923?1930 doi: 10.16383/j.aas.2018.c180252Chai Tian-You. Development direction of automation science and technology. Acta Automatica Sinica, 2018, 44(11): 1923?1930 doi: 10.16383/j.aas.2018.c180252 [6] Landau I D. A survey of model reference adaptive techniques-theory and applications. Automatica, 1974, 10(4): 353?379 doi: 10.1016/0005-1098(74)90064-8 [7] 柴天佑, 岳恒. 自適應控制. 北京: 清華大學(xué)出版社, 2016.Chai Tian-You, Yue Heng. Adaptive Control. Beijing: Tsinghua University Press, 2016. [8] Ceperic E, Ceperic V, Baric A. A strategy for short-term load forecasting by support vector regression machines. IEEE Transactions on Power Systems, 2013, 28(4): 4356?4364 doi: 10.1109/TPWRS.2013.2269803 [9] Milanese M, Vicino A. Optimal estimation theory for dynamic systems with set membership uncertainty: An overview. Automatica, 1991, 27(7): 997?1009 [10] Zadeh L A. Fuzzy logic, neural networks, and soft computing. Microprocessing and Microprogramming, 1993, 37(3): 77?84 [11] 徐鳳霞, 朱全民, 趙東亞, 李少遠. 基于U模型的非線(xiàn)性控制系統設計方法十年發(fā)展綜述. 控制與決策, 2013, 28(7): 961?971 doi: 10.13195/j.cd.2013.07.4.xufx.023Xu Feng-Xia, Zhu Quan-Ming, Zhao Dong-Ya, Li Shao-Yuan. U-model based design methods for nonlinear control systems a survey of the development in the 1st decade. Control and Decision, 2013, 28(7): 961?971 doi: 10.13195/j.cd.2013.07.4.xufx.023 [12] Chen S, Billings S A. Neural networks for nonlinear dynamic system modelling and identification. International Journal of Control, 1991, 56(2): 319?346 [13] Panjapornpon C, Saksomboon P, Dechakupt T. Real-time application of pH control in a carbon dioxide bubble column reactor by input/output linearizing control coupled with pH target optimizer. Industrial and Engineering Chemistry Research, 2018, 58(2): 771?781 [14] Gao Y, Er M J. NARMAX time series model prediction: Feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets and Systems, 2005, 150(2): 331?350 doi: 10.1016/j.fss.2004.09.015 [15] Chen L, Narendra K S. Nonlinear adaptive control using neural networks and multiple models. Automatica, 2001, 37(8): 1245?1255 doi: 10.1016/S0005-1098(01)00072-3 [16] 王蘭豪, 賈瑤, 柴天佑. 再磨過(guò)程的泵池液位和給礦壓雙速率區間控制. 自動(dòng)化學(xué)報, 2017, 43(6): 993?1006Wang Lan-Hao, Jia Yao, Chai Tian-You. Double rate interval control of pump pool liquid level and feed pressure in regrinding process. Acta Automatica Sinica, 2017, 43(6): 993?1006 [17] Zhang Y J, Chai T Y, Wang D H. An alternating identification algorithm for a class of nonlinear dynamical systems. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(7): 1?12 doi: 10.1109/TNNLS.2017.2705379 [18] Zhang Y J, Chai T Y, Wang H, Wang D H. Nonlinear decoupling control with ANFIS-based unmodeled dynamics compensation for a class of complex industrial processes. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6): 2352?2366 doi: 10.1109/TNNLS.2017.2691905 [19] Wang H, Wang A P, Brown M, Harris C J. One-to-one mapping and its application to neural networks based control systems design. International Journal of Systems Science, 1996, 27(2): 161?170 doi: 10.1080/00207729608929200 [20] Ljung L. Convergence analysis of parametric identification methods. IEEE Transactions on Automatic Control, 1978, 23(5): 770?783 doi: 10.1109/TAC.1978.1101840 [21] Wang D, Li M. Stochastic configuration networks: Fundamentals and algorithms. IEEE Transactions on Cybernetics, 2017, 47(10): 3466?3479 doi: 10.1109/TCYB.2017.2734043 [22] Pao Y H, Park G H, Sobajic D J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing, 1994, 6(2): 163?180 doi: 10.1016/0925-2312(94)90053-1 [23] Dai W, Zhou X Y, Li D P, Zhu S, Wang X S. Hybrid parallel stochastic configuration networks for industrial data analytics. IEEE Transactions on Industrial Informatics, 2021, 18(4): 2331?2341 [24] Dai W, Zhang L Z, Fu J, Chai T Y, Ma X P. Model-data-based switching adaptive control for dense medium separation in coal beneficiation. Control Engineering Practice, 2020, 98: 1?12 [25] Zhang L J, Xia X H, Zhang J F. Medium density control for coal washing dense medium cyclone circuits. IEEE Transactions on Control Systems Technology, 2014, 23(3): 1117?1122